
IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
5-7 September 2005, Sofia, Bulgaria

Parallel Out-of-Core Constrained Delaunay Mesh Generation

Andriy Kot 1, Andrey Chernikov 2, Nikos Chrisochoides 3

The College of William and Mary, PO Box 8795, Williamsburg, VA 23187
1) kot@cs.wm.edu, www.cs.wm.edu/~kot

2) ancher@cs.wm.edu, www.cs.wm.edu/~ancher
3) nikos@cs.wm.edu, www.cs.wm.edu/~nikos

Abstract - In this paper we present two approaches for
parallel out-of-core mesh generation. The first approach
is based on a traditional prioritized page replacement
algorithm using prioritized version of accepted LRU
replacement scheme proposed by Salmon et al. for n-
body calculations. The second approach is based on the
percolation model proposed for the HTMT petaflops
design. We evaluate both approaches using the parallel
constrained Delaunay mesh generation method. Our
preliminary data suggest that for problem sizes up to half
a billion element meshes the traditional approach is very
effective. However for larger problem sizes (in the order
of billions of elements) the traditional approach becomes
prohibitively expensive, but it appears from our
preliminary data that the non-traditional percolation
approach is a good alternative.

Keywords - Parallel, Mesh Generation, Delaunay, Out-of-
Core, Distributed

I. INTRODUCTION
1

COWs and contemporary supercomputers provide
large aggregate memory and computing power.
However, many applications do not require both types of
resources in equal proportions. Moreover, it is not
unusual for memory-intensive applications (e.g., mesh
generation and refinement) to use hundreds of nodes to
utilize their memory rather than CPUs. Considering the
long wait-in-queue times associated with usage of
parallel computers, there is a need for an alternative
solution, namely an effective mechanism to employ a
disk memory as a supplement for the RAM.

One approach is to use OS-provided virtual memory
(VM). While VM is easy to employ it has a number of
limitations. First, the amount of VM is limited to 4GB
for a single process on 32 bits architectures (only 2GB
for Windows and Linux since a half is reserved for the
OS). Second, since the OS-supported VM is optimized

1 This was supported in part by NSF Career Award #CCR-0049086,
ITR #ACI-0085969, NGS #ANI-0203974 and ITR #CNS-0312980.

for system throughput, it usually cannot exploit access
patterns of irregular and adaptive applications.

Another approach is to use algorithm-specific out-of-
core algorithms to bypass both the size and performance
limitations of the VM. Although complexities of such
algorithms are quite high, they usually achieve very good
performance. For example, dense matrix operations are
well-known for much better performance when
performing out-of-core with specific algorithms [25]
rather than VM. Although, it should be noted that these
algorithms are labor intensive and once they are
developed cannot be applied to a different application.

In this paper we present two out-of-core approaches
for parallel mesh generation and we evaluate them with
Parallel Constrained Delaunay Mesh (PCDM) generation
[4]. The Out-of-core PCDM (OPCDM) is not limited in
problem size and its performance is comparable to the
original PCDM for small to medium mesh sizes. The
OPCDM presents a good and effective alternative to
PCDM, for very large meshes which require large
number of processors for their aggregate physical
memory. In this case the difference in waiting for larger
number of processors can often be quite substantial and it
can be much higher than the additional overhead cost we
pay for running PCDM in an out-of-core mode.

However, our own performance data from OPCDM
suggest that for very large mesh size problems its actual
execution time is almost quadratic and it becomes
prohibitively large. In order to address this problem, we
are developing yet another approach: a multi-layered
approach similar to the HTMT Petaflop design [25, 10]
that masks disk latencies. Moreover we designed and
implemented a multi-layered run-time system (MRTS)
that handles the accesses to out-of-core memory. MRTS
provides clear and simple interface to an application.
MRTS targets commercial of-the-self COWS with no
dedicated hardware.

The following are the research goals of the MRTS
system:

• efficient handling of out-of-core requests and
minimizing or completely hiding latencies
associated with them

• modular design of the runtime system to allow for
an easy plug-and-play replacement of scheduling
policies and disk management schemes

• simple and clear interface for an application
developer to allow easy porting from in-core to
out-of-core environment1

In this paper we evaluate the performance of the
PCDM with problem sizes that fit in physical as well as
virtual memory and compare it OPCDM in terms of
problem size and speed of execution. Finally, we
describe the first design and implementation of the
MRTS system and discuss some of its drawbacks we will
be improving in the future. Our preliminary data suggest
that there is much space for improvement. These
improvements along with the fact that 3-dimensional
mesh generation is much more demanding in memory
and more computational intensive suggest that our
MRTS approach can be useful for more reasonable size
meshes. With the current implementation and for 2-
dimensional meshes we see the benefits of the MRTS
approach to appear for problem sizes larger than three
billion elements (see Fig. 6). Our goal is to improve
MRTS' performance so that we can see its benefits, for 3-
dimensional meshes, at a size around of one billion. The
meshes of such sizes are necessary for many engineering
applications today.

II. RELATER WORK

To the best of our knowledge, the only out-of-core
algorithm-specific approach for sequential mesh
generation is Etree [27]. The novelty of Etree is in the
use of a spatial database to store and operate on large
octree meshes. Each octant is assigned a unique key
using the linear quadtree technique which is stored as a
B-tree. There are three steps to generate a mesh with
Etree: (1) construct, creates an unbalanced octree on
disk, (2) balance, octants violating the 2-to-1 constraint
are decomposed, and (3) transform, element-node
relations and node coordinates are stored in two separate
databases. Then, the operations on the mesh are
performed by querying the database via provided Etree
calls. Though limited to unstructured octree meshes, this
approach provides exceptional performance where the
requirements for mesh quality and conformity allow it;
especially, considering the recently introduced Two-
Level Bucket Sort algorithm[26] that reduces the size
and time requirements for extract operations. Etree is
different from our work in two ways: (1) Etree is not
parallel; (2) it is specific to octree-based mesh
generation.

Salmon's et al. method for N-body simulation [21]
(computation with irregular access patterns like mesh

1 Given the original parallel application was developed using the
concept of Berkeley Active Messages[29].

generation) uses an extended virtual memory scheme to
store out-of-core pages on the disk and algorithm-
specific space-filling curves to arrange data within the
pages. One non algorithm-specific feature [21] is the
page replacement algorithm which is based on the last
recently used (LRU) replacement policy. The same
policy is used as a basic virtual memory policy for many
platforms (e.g., Linux). However, authors extend it by
introducing priorities, different aging speeds for different
data types, and explicit page locking. The N-body
calculations are irregular, but not adaptive, and we can
not use fully this approach, although we borrow some
ideas.

An approach that target different applications without
limiting a developer to specific algorithm(s) involves
built-in support for out-of-core directly from the
compiler [15, 14]). There are two methods behind this
approach: (1) conservative analysis of the code, similar
to compiler cache optimization, (2) user specified
directives that guide compiler on how to optimize the
out-of-core operations. The first method works very well
with regular applications, and is completely transparent
to the programmer. The second method is suitable to
handle irregular access patterns, but it requires
programmer's input. Unfortunately, it is often hard or
sometimes impossible for the programmer to predict the
access pattern, especially for adaptive applications. Also,
not enough theoretical work has been done so far for
combining adaptive and out-of-core algorithms. Our
work in this paper is less general than the compiler
approach but addresses adaptivity in the context of a
class of applications parallel mesh generation and
refinement.

Finally, there are many traditional application-specific
approaches for parallel dense matrix operations. For
example, SOLAR [25] is a library for scalable out-of-
core linear algebra computations. SOLAR uses different
mapping layouts (depending on the underlying I/O and
algorithm specifics) to store out-of-core matrices and
employs vendor supplied libraries for asynchronous disk
I/O. Its efficiency is achieved through the use of high
performance in-core subroutines of BLAS [8], LAPACK
[6] and ScaLAPACK [5] and a simple non-recursive (in
most cases) pipeline to hide latencies associated with
disk accesses. While limited to algorithms with regular
access pattern, SOLAR performance is almost as good as
in-core implementations of the same problems. Other
out-of-core approaches for parallel linear algebra appear
in [7, 28, 20, 19, and 17].

A. Non-traditional Out-of-core
The HTMT [24] design can be considered as an out-

of-core system. One of the features of the HTMT is a
Processing in Memory (PIM) [18] technology. Basically,
the memory chips are combined with processing logic
thus relieving the CPU(s) and caches from some of their

work. Being around for quite some time, it was generally
used for regular applications (i.e., dense-arrays
computations on large amounts of data). However,
research [13] showed that it is possible to map irregular
application to PIM-based architectures quite effectively.
The main idea is to introduce some processing power
close to the lower-level memory for performing memory-
intensive but not computationally-intensive operations. It
is very useful when dealing with huge parallel irregular
computations which require gather and scatter operations
of data.

The HTMT program execution model is based on the
percolation model [10, 11] which relies on fine-grained
threads to hide long latency events. Under this
percolation model long latencies are never encountered
because the right data are percolated (moved) to the right
processor at the right time. Such a model relies on the
ability to decompose a program into a sufficient number
of fine grained automatically executed threads (tasks).

The HTMT runtime system consists of components or
modules that responsible for migration of percolating
threads, known as parcels, through the parallel machine.

In this paper, we borrow the percolation execution
model in order to hide long latencies for traditional out-
of-core parallel mesh generation applications.

III. PARALLEL CONSTRAINED DELAUNAY MESHING

(PCDM)

The mesh generation procedure starts with
constructing an initial mesh which conforms to the input
vertices and segments, and then refines this mesh until
the constraints on triangle quality and size are met. The
general idea of the Delaunay refinement is to insert
points in the circumcenters of triangles that violate the
required bounds, until there are no such triangles left. To
update the triangulation, we use the Bowyer/Watson
algorithm[2, 30], which is based on deleting the triangles
that are no longer Delaunay and inserting new triangles
that satisfy the Delaunay property.

The set of triangles in the mesh whose circumcircles
include the newly inserted point ip is called a cavity
[12], and we will denote it as()ipC . Also, we will use
the symbol ()ipC∂ to stand for the set of edges which
belong to only one triangle in()ipC , i.e., external
edges.

In the absence of external boundaries, the algorithm
maintains a Delaunay meshΜ ; at any iteration it
performs the following steps:
• Select a triangle from the queue of unsatisfactory

triangles.

• Compute the circumcenter ip of this triangle.

• Find ()ipC and ()ipC∂ .

• Delete all triangles in ()ipC fromΜ .

• Add triangles obtained by connecting ip with every

edge in ()ipC∂ toΜ .

The case when the new point happens to be close to a
constrained edge is treated separately. Following
Shewchuk [22], we use diametral lenses to detect if a
segment is encroached upon. The diametral lenses of a
segment is the intersection of two disks, whose centers
lie on the opposite sides of the segment on each other's
boundaries, and whose boundaries intersect in the
endpoints of the segment. A segment is said to be
encroached upon by point ip if ip lies inside its
diametral lenses. When a point selected for insertion is
found out to encroach upon a segment, another point is
inserted in the middle of the segment instead.

To refine the mesh in parallel, we use coarse grained
domain decomposition. First, an initial conforming
coarse mesh of the domain is created. The use of the
available highly optimized and reliable codes (e.g.
Triangle [23]) allows accomplishing this step very
efficiently. Second, a graph ()EV,G = is constructed,
such that (i) every triangle it in the coarse mesh is
represented by a vertex Vvi ∈ , and the weight of iv is
set equal to the area of it ; (ii) every edge 1ppk which
is shared by two triangles it and jt in the mesh is
represented by an edge Eeij ∈ , and the weight of ije is
set equal to the length of 1ppk . This graph is
partitioned using the Metis library [16] into PN >>
vertex sets such that the total weight of the vertexes in all
sets is approximately equal, and the total weight of the
edges which connect vertexes in different sets is fairly
small. Finally, one more graph partitioning problem is
solved. Now, the goal is to distribute the subdomains
among the processors, so that the sum of the weights of
the subdomains on each processor is approximately
equal, and the total length of the subdomain boundaries
which are shared between processors is minimized. Fig.
1 shows an example of rocket engine pipe domain
decomposition. During runtime, the Load Balancing
Library [1] maintains the equidistribution and small
edgecut conditions by moving the subdomains among the
processors in response to dynamically changing work
load imbalance.

The domain decomposition procedure described above
creates N subdomains, each of which is bounded by
edges of the initial coarse triangulation. The edges and
their endpoints that are shared between two subdomains
are duplicated. The boundary edges are treated as
constrained segments, and whenever they are split due to
encroachment on one processor, an active message[9, 29]
is sent to the processor holding the adjacent subdomain,
so that the duplicate of the boundary edge is also split,
and the mesh is globally consistent (see Fig. 2).

A. Out-of-core PCDM
In order to generate large finite element meshes on a

smaller set of computing nodes we developed a
straightforward out-of-core implementation of Parallel
Constrained Meshing (OPCDM). As the PCDM is
continually upgraded and improved, we tried to make the
porting as transparent as possible, sacrificing some
performance for code reuse.

In the center of OPCDM is a table containing mapping
of in-core (currently present in memory) and out-of-core
(currently residing on disk) subdomains. The
replacement policy is determined by the end user; for our
experiments we used prioritized version of accepted last
recently used replacement scheme proposed by Salmon
[22]. Out of all subdomains, only a small amount is kept
in-core, with the rest residing on hard drive. During
refinement, an in-core subdomain is replaced with an
out-of-core one if both of the following conditions are
met: (1) there is pending work (i.e., outstanding splits of
edges in its interfaces due to their refinement in an
adjacent subdomain) for an out-of-core subdomain, (2)
the amount of available physical memory is not sufficient
to load new subdomains.

There are no changes in the algorithm other than the
following (these changes do not alter the correctness of
the original parallel algorithm):

• when a new out-of-core subdomain is picked for
refinement it is put into loading queue (loads
immediately if no other work is being performed)

• when a new incoming active message[29] is
pending for execution and the target subdomain is

out-of-core, the message's data buffer is stored
until the subdomain is scheduled for loading; after
the subdomain is loaded, the message's handler is
executed

Also, some aggregation of messages is performed to
minimize the amount of replacements.

B. Evaluation
The following section will provide the reader with the

results of testing the performance of the PCDM using
physical memory only, the PCDM with enabled virtual
memory, and the OPCDM which is using disk explicitly.

We will discuss the pros and cons of all three
implementations which are used as a motivation for the
main contribution of this paper: the design and
implementation of a run-time system which implements a
percolation model for out-of-core parallel mesh
generation methods.

To evaluate the performance of the PCDM
implementation we used SciClone1 computational cluster
at the College of William and Mary. In particular, we
used between 32 and 64 nodes of subcluster
whirlwind (64 single-cpu Sun Fire V120 servers @ 650
MHz with 1 GB memory and 36.4 GB disk space per
node) and for 128-processors configuration we used
additionally 64 nodes of subcluster twister (32 dual-cpu
Sun Fire 280R servers @ 900 MHz with 2 GB memory
and 72.8 GB disk space per node, 36.4 GB per
processor). For our mesh generation tests we used pipe
geometry smaller version of which is presented in Fig. 1.

Tables TABLE I, TABLE II and TABLE III show the
speeds of mesh generation for problems of different sizes

1 http://www.compsci.wm.edu/SciClone/index.html

Fig. 1.A decomposition of a pipe cross-section into 128
subdomains, which are mapped into 8 processors.

Fig. 2. If the inserted point 14p encroaches upon a constrained
edge 32 pp (a), another point 15p is inserted in the middle of

32 pp instead and a message is sent to the neighboring
processor (b), the local cavity of 15p is constructed and

triangulated (c), the neighboring processor also constructs and
triangulates its local cavity of 15p (d).

varying from small to medium to large. Meshes were
generated using 1, 32 and 128 processors configurations.

TABLE I
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR SMALL

PROBLEM SIZE (
6108.13 × TRIANGLES)

procs Triangle PCDM

1
4104.1 ×

4109.5 ×

32 n/a
4106.8 ×

TABLE II
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR MEDIUM

PROBLEM SIZE (
81075.5 × TRIANGLES)

procs Triangle PCDM OPCDM
1 n/a n/a n/a

32 n/a
61045.1 ×

61013.1 ×
128 n/a 3100.4 × no need

TABLE III
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR LARGE

PROBLEM SIZE (
91015.1 × TRIANGLES)

procs Triangle PCDM OPCDM
1 n/a n/a n/a

32 n/a n/a 3102.3 ×
128 n/a 3100.4 × no need

Since Triangle [23] is not suited for parallel

computation we use Parallel Delaunay Refinement
(PDR) method which uses Triangle as a subroutine. The
PDR method is based on the theoretical framework [3]
which allows inserting points at triangle circumcenters
concurrently without destroying the conformity and
Delaunay properties of the mesh. It uses a coarse-grained
mesh partitioning scheme which guarantees that the
points in certain regions will be independent a-priori. The
PDR algorithm does not rely on domain decomposition,
since no explicit boundary construction is required. This
method also eliminates the need to restructure the
sequential mesh generation kernel and allows plugging in
the available serial libraries (e.g. Triangle [23]).

Table TABLE I compares the sequential execution
time and speed of the Triangle and PCDM. Due to the
parallel overheads, PCDM is in most cases about two
times slower. However, as we increase the mesh size up
to 13.8 million, Triangle starts thrashing and becomes
significantly slower, which can be explained by different
choices of data structures. For a comparison, the PDR
method on 36 processors creates a 12.7 million mesh in
22 seconds.

Table TABLE II compares the speed of mesh
generation between the PCDM and the OPCDM for 32
and 128 processors configurations (the problem size is
just too large to run sequentially, even for out-of-core).
In the configuration with 32 processors the amount of
memory required for computation is about the same as
the total amount of available virtual memory. Therefore,
the speeds of both the PCDM and the OPCDM are close.
In the configuration with 128 processors, the speed of
mesh generation with PCDM is even higher. However,
the wait-in-queue time can be as high as 40 hours and
thus rendering the effective speed to three orders of
magnitude lower. We did not test the OPCDM in 128
processors configuration since with 32 processors and
OPCDM we can generate half a million elements.

Table TABLE III compares speed of mesh generation
of the PCDM and OPCDM for 32 and 128 processors
configurations (the problem size is just too large to run
sequentially with out-of-core). The problem size is so
large that it is not possible to compute it even with 32
nodes with PCDM. Yet again, the speed of mesh
generation is rather high on 128 processors
configuration, but it is the effective speed which is
dominated by wait-in-queue time of approximately 40
hours. We did not test the OPCDM in 128 processors
configuration for the same reason as above. Additionally,
the OPCDM on 32 processors configuration still has
better effective speed. However, it is two orders of
magnitude slower than with the medium problem (size is
only two times smaller). This suggests that the scalability
of the OPCDM is not acceptable for larger problem sizes.

Fig. 3 shows these same data in a form that allows
seeing trends better.

Above data suggests that better more scalable solution
is necessary to generate even larger meshes. The next
section will describe a design and an execution model of
which we believe is capable to reduce the disk latencies
for very large size meshes (i.e., large than a billion
elements).

IV. MULTI-LAYERED OUT-OF-CORE APPROACH

Similar to the HTMT architecture, we propose a run-
time system organized into multiple layers. The top
(execution) layer contains the fastest processors and the
fastest, but very limited in size memory. The bottom
(storage) layer contains the slowest processors and the
slowest but large in size memory. The execution of an
application is divided into multiple tasks that are
executed in the top layer, but are stored in the bottom
layer. The middle (control) layer is coordinating and
balancing the loads of both execution and storage layers.

The rest of the section describes the architecture of the
Multi-layered Run-Time System (MRTS), based on the
simplified version of the Percolation model from the
HTMT Petaflop design [10, 11]. The MRTS is a software
system which organizes multiple nodes of a
multiprocessor or COWs in three layers:

• the Computing Engines (CE) layer - provides
computing power

• the Data Servers (DS) layer - provides storage
• the Control Unit (CU) - controls system resources

and execution of an application.

A. Program Execution Model
The MRTS stores application data in the DS layer and

performs computations in the CE layer. The main idea
behind the program execution model is a controlled
movement of data used and/or produced by computations
between the CE and the DS layers. A datum normally
resides at the DS layer. However, when it is needed for
execution it moves up (percolates) to the CE layer.
Eventually, after the execution, when datum is not
necessary at the CE anymore, it moves back down to the
DS. The CU is responsible for achieving the best
possible performance. It controls the execution of each
computational block and ensures that the necessary data
percolate to the CE just before the execution of the block
that uses them. Fig. 4 shows the organization of the
MRTS.

The MRTS uses CE nodes exclusively for
computation. Therefore, they must have powerful
processors. Unfortunately, very fast memory needed for
nodes with high-end processors is quite expensive. As a
result, the CE nodes have limited memory capacity. It is
imperative that they do not stay idle, thus the rest of the
system should provide continuous stream of work to the
CE.

The Data Servers provide storage for the MRTS.
Therefore, these nodes must have larger memory. While
RAM has certain limitations (e.g., max 4GB address
space for 32 bits architectures, relatively high cost), disk
memory can be an effective alternative. The DS use an
out-of-core approach with physical memory acting as a
cache. Currently, we employ two out-of-core strategies.
The first uses virtual memory provided by the operating
system. The second implements an out-of-core
mechanism proposed by Salmon [22]. It is similar to OS-
provided virtual memory, but allows more control over
paging.

The DS layer is independent from the rest of the
system, thus allowing for different implementations. In
the future, we plan to develop a database storage
subsystem that supports an effective mapping between
the application data structures and internal system
constructs (e.g., memory pages).

The CU controls the execution flow of an application.
It schedules percolations of data and executes parallel
blocks of computation that hide latencies associated with
disk and network accesses. This suggests the CU is a
potential performance bottleneck; as a result the MRTS
could be hard to scale. To overcome this in large
configurations, we plan to use multiple MRTS
subsystems connected in one big cluster with their CUs
rather than increase the number of the DS and the CE
(see Fig. 5).

Fig. 4. Organization of the MRTS

Fig. 3. Time to refine a mesh with PCDM (swap on/off) and
OPCDM

B. Percolation cycle
Throughout this document, we will call a

computational task a handler and a datum necessary for
the handler's execution an object. The following is the
percolation cycle of an object:

1. after the creation and between percolations, an

object resides in one of the DS nodes
2. to proceed with its execution an application posts

requests for the execution of different handlers
3. when certain conditions are met, the CU picks an

object and orders it to percolate to one of the CE
nodes

4. the requested handlers execute soon after the
object has been percolated and stored in the CE

5. after the completion of the handler, the object
percolates down to one of the DS nodes.

During the execution, a handler might call other
handlers and create new objects. The percolation cycle
repeats until there are no more handlers to execute,
which signals the termination of the application.

We implemented the PCDM with a prototype of the
MRTS (MPCDM). Though its performance still needs
improvement, we can see a very positive trend (see Fig.
6): the MPCDM scales much better than the OPCDM.

V. SUMMARY

We presented two out-of-core approaches for parallel
mesh generation and we used the PCDM application to
evaluate their performance for different sizes of problems
and processor configurations. Our preliminary data
suggest that the traditional approach based on page
replacement algorithm using prioritized version of
accepted last recently used replacement scheme
developed by Salmon et al. is very effective for size

problems up to half a billion elements. While the second
non-traditional approach based on the HTMT percolation
is a good alternative for problem sizes in the order of
billions of elements.

We plan to improve the performance of the MRTS in
order to make this approach attractive for smaller size
problems. We will implement and evaluate different
schemes for managing system resources on all three
levels. For the DS level, we will evaluate different out-
of-core strategies, including use of databases and VM on
64 bits architectures. For the CU, we will evaluate
different scheduling policies for managing available
computational and memory resources focusing on
minimizing and completely hiding network/memory-
access latencies. Finally, for the CE, we will research the
possibilities of exploiting multiple level of parallelism
using multi-threaded programming techniques.

Also, we plan to evaluate the use of compression on
both application (mesh compression) and system level.
There is an efficiency tradeoff between the time it take to
compress and the time we save by transmitting/storing
smaller amount of data. Therefore it is not clear yet what
the pay offs are.

ACKNOWLEDGMENT

This work was performed in part using computational
facilities at the College of William and Mary which were
enabled by grants from Sun Microsystems, the National
Science Foundation, and Virginia's Commonwealth
Technology Research Fund.

REFERENCES

[1] Kevin Barker, Andrey Chernikov, Nikos Chrisochoides, and Keshav
Pingali. A load balancing framework for adaptive and
asynchronous applications. IEEE Transactions on Parallel and
Distributed Systems, 15(2):183.192, February 2004.

[2] Adrian Bowyer. Computing Dirichlet tesselations. Computer
Journal, 24:162.166, 1981.

Data Servers

…

…

Control
Unit

Switch 1

Switch 2

Subcluster 1

Computing Engine

…

Switching Network

Fig. 5. Scaling for the MRTS multi-cluster

Fig. 6. Prediction of performance for the OPCDM vs the MPCDM
for very large problems (billions of triangles).

[3] Andrey N. Chernikov and Nikos P. Chrisochoides. Practical and
ef_cient point insertion scheduling method for parallel guaranteed
quality delaunay re_nement. In Proceedings of the 18th annual
international conference on Supercomputing, pages 48.57. ACM
Press, 2004.

[4] L. Paul Chew, Nikos Chrisochoides, and Florian Sukup. Parallel
constrained Delaunay meshing. In ASME/ASCE/SES Summer
Meeting, Special Symposium on Trends in Unstructured Mesh
Generation, pages 89.96, Northwestern University, Evanston, IL,
1997.

[5] J. Choi, J. Dongarra, R. Pozo, and D. Walker. Scalapack: A scalable
linear algebra for distributed memory concurrent computers. In In
Proceedings of the 4th Symposium on the Frontiers of Massively
Parallel Computation, 1992.

[6] James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
Sven Hammarling, and Danny Sorensen. Prospectus for the
development of a linear algebra library for high-performance
computers. Technical Report ANL/MCS-TM-97, 9700 South
Cass Avenue, Argonne, IL 60439-4801, USA, 1987.

[7] Jack Dongarra, Sven Hammarling, and DavidW.Walker. Key
concepts for parallel out-of-core LRU factorization. Technical
report, Knoxville, TN 37996, USA, 1996.

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard
J. Hanson. An extended set of FORTRAN Basic Linear Algebra
Subprograms. ACM Transactions on Mathematical Software,
14(1):1.17, 1988. 18

[9] Andriy Fedorov and Nikos Chrisochoides. Communication support
for dynamic load balancing of irregular adaptive applications. In
2004 International conference on parallel processing workshops
(ICPPW'04), pages 555.562, 2004.

[10] G. Gao, K. Theobald, A. Marquez, and T. Sterling. The htmt
program execution model, 1997.

[11] Guang Gao, Jos´e Nelson Amaral, Andr´es M´arquez, and Kevin
Theobald. A re_nement of the htmt program execution model,
1998.

[12] Paul-Louis George and Houman Borouchaki. Delaunay
Triangulation and Meshing. Application to Finite Elements.
HERMES, 1998.

[13] Mary Hall, Peter Kogge, Jeff Koller, Pedro Diniz, Jacqueline
Chame, Jeff Draper, Jeff LaCoss, John Granacki, Apoorv
Srivastava, William Athas, Jay Brockman, Vincent Freeh,
Joonseok Park, and Jaewook Shin. Mapping irregular applications
to DIVA, A PIM-based data-intensive architecture. 1999.

[14] M. Kandemir, A. Choudhary, J. Ramanujam, and R. Bordawekar.
Compilation techniques for out-of-core parallel computations.
Parallel Computing, 24(3.4):597.628, 1998.

[15] Mahmut T. Kandemir, Alok N. Choudhary, J. Ramanujam, and
Meenakshi A. Kandaswamy. A uni_ed compiler algorithm for
optimizing locality, parallelism and communication in out-of-core
computations. In I/O in Parallel and Distributed Systems, pages
79.92, 1997.

[16] George Karypis and Vipin Kumar. MeTiS: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices. Version
4.0. University of Minnesota, September 1998.

[17] Kenneth Klimkowski and Robert A. van de Geijn. Anatomy of a
parallel out-of-core dense linear solver. In ICPP (3), pages 29.33,
1995.

[18] P. Kogge, J. Brockman, T. Sterling, and G. Gao. Processing in
memory: Chips to peta_ops, 1997.

[19] Z. Li, J. H. Reif, and S. K. S. Gupta. Synthesizing ef_cient out-of-
core programs for block recursive algorithms using block-cyclic
data distributions. IEEE Transactions on Parallel and
DistributedSystems, 10(3):297.??, 1999.

[20] Steven Newhouse. A parallel implementation of an out of core
dense matrix solver using hidios.

[21] John Salmon and Michael Warren. Parallel out-of-core methods
for N-body simulation. In Proceedings of the Eighth SIAM
Conference on Parallel Processing for Scienti_c Computing,
1997.

[22] Jonathan Richard Shewchuk. Delaunay Re_nement Mesh
Generation. PhD thesis, Carnegie Mellon University, 1997.

[23] J.R. Shewchuk. Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator. In Proceedings of the First workshop
on Applied Computational Geometry, pages 123.133,
Philadelphia, PA, 1996.

[24] Thomas Sterling. A hybrid technology multithreaded computer
architecture for peta_ops computing, 1997.

[25] S. Toledo and F. Gustavson. The design and implementation of
solar, a portable library for scalable out-of-core linear algebra
computations, 1996.

[26] Tiankai Tu and David R. O'Hallaron. Extracting hexahedral mesh
structures from balanced linear octrees. In Proceedings of the 13th
INternational Meshing Roundtable, 2005.

[27] Tiankai Tu, David R. O'Hallaron, and Julio C. L´opez. Etree . a
database-oriented method for generating large octree meshes.

[28] Jeffrey Scott Vitter. External memory algorithms and data
structures. In James Abello and Jeffrey Scott Vitter, editors,
External Memory Algorithms and Visualization, pages 1.38.
American Mathematical Society Press, Providence, RI, 1999.

[29] T. von Eicken, D.E. Culler, K.E. Schauser, and S.C. Goldstein.
Active messages: a mechanism for integrated communication and
computation. In 19th annual symposium on computer
architecture, 1992.

[30] David F. Watson. Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytopes. Computer
Journal, 24:167.172, 1981.

