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Abstract - In this paper we present two approaches for 
parallel out-of-core mesh generation. The first approach 
is based on a traditional prioritized page replacement 
algorithm using prioritized version of accepted LRU 
replacement scheme proposed by Salmon et al. for n-
body calculations. The second approach is based on the 
percolation model proposed for the HTMT petaflops 
design. We evaluate both approaches using the parallel 
constrained Delaunay mesh generation method. Our 
preliminary data suggest that for problem sizes up to half 
a billion element meshes the traditional approach is very 
effective. However for larger problem sizes (in the order 
of billions of elements) the traditional approach becomes 
prohibitively expensive, but it appears from our 
preliminary data that the non-traditional percolation 
approach is a good alternative. 
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I. INTRODUCTION
1 

COWs and contemporary supercomputers provide 
large aggregate memory and computing power. 
However, many applications do not require both types of 
resources in equal proportions. Moreover, it is not 
unusual for memory-intensive applications (e.g., mesh 
generation and refinement) to use hundreds of nodes to 
utilize their memory rather than CPUs. Considering the 
long wait-in-queue times associated with usage of 
parallel computers, there is a need for an alternative 
solution, namely an effective mechanism to employ a 
disk memory as a supplement for the RAM. 

One approach is to use OS-provided virtual memory 
(VM). While VM is easy to employ it has a number of 
limitations. First, the amount of VM is limited to 4GB 
for a single process on 32 bits architectures (only 2GB 
for Windows and Linux since a half is reserved for the 
OS). Second, since the OS-supported VM is optimized 
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for system throughput, it usually cannot exploit access 
patterns of irregular and adaptive applications. 

Another approach is to use algorithm-specific out-of-
core algorithms to bypass both the size and performance 
limitations of the VM. Although complexities of such 
algorithms are quite high, they usually achieve very good 
performance. For example, dense matrix operations are 
well-known for much better performance when 
performing out-of-core with specific algorithms [25] 
rather than VM. Although, it should be noted that these 
algorithms are labor intensive and once they are 
developed cannot be applied to a different application. 

In this paper we present two out-of-core approaches 
for parallel mesh generation and we evaluate them with 
Parallel Constrained Delaunay Mesh (PCDM) generation 
[4]. The Out-of-core PCDM (OPCDM) is not limited in 
problem size and its performance is comparable to the 
original PCDM for small to medium mesh sizes. The 
OPCDM presents a good and effective alternative to 
PCDM, for very large meshes which require large 
number of processors for their aggregate physical 
memory. In this case the difference in waiting for larger 
number of processors can often be quite substantial and it 
can be much higher than the additional overhead cost we 
pay for running PCDM in an out-of-core mode. 

However, our own performance data from OPCDM 
suggest that for very large mesh size problems its actual 
execution time is almost quadratic and it becomes 
prohibitively large. In order to address this problem, we 
are developing yet another approach: a multi-layered 
approach similar to the HTMT Petaflop design [25, 10] 
that masks disk latencies. Moreover we designed and 
implemented a multi-layered run-time system (MRTS) 
that handles the accesses to out-of-core memory. MRTS 
provides clear and simple interface to an application. 
MRTS targets commercial of-the-self COWS with no 
dedicated hardware. 

The following are the research goals of the MRTS 
system: 

• efficient handling of out-of-core requests and 
minimizing or completely hiding latencies 
associated with them 



• modular design of the runtime system to allow for 
an easy plug-and-play replacement of scheduling 
policies and disk management schemes 

• simple and clear interface for an application 
developer to allow easy porting from in-core to 
out-of-core environment1 

In this paper we evaluate the performance of the 
PCDM with problem sizes that fit in physical as well as 
virtual memory and compare it OPCDM in terms of 
problem size and speed of execution. Finally, we 
describe the first design and implementation of the 
MRTS system and discuss some of its drawbacks we will 
be improving in the future. Our preliminary data suggest 
that there is much space for improvement. These 
improvements along with the fact that 3-dimensional 
mesh generation is much more demanding in memory 
and more computational intensive suggest that our 
MRTS approach can be useful for more reasonable size 
meshes. With the current implementation and for 2-
dimensional meshes we see the benefits of the MRTS 
approach to appear for problem sizes larger than three 
billion elements (see Fig. 6). Our goal is to improve 
MRTS' performance so that we can see its benefits, for 3-
dimensional meshes, at a size around of one billion. The 
meshes of such sizes are necessary for many engineering 
applications today. 

II.  RELATER WORK 

To the best of our knowledge, the only out-of-core 
algorithm-specific approach for sequential mesh 
generation is Etree [27]. The novelty of Etree is in the 
use of a spatial database to store and operate on large 
octree meshes. Each octant is assigned a unique key 
using the linear quadtree technique which is stored as a 
B-tree. There are three steps to generate a mesh with 
Etree: (1) construct, creates an unbalanced octree on 
disk, (2) balance, octants violating the 2-to-1 constraint 
are decomposed, and (3) transform, element-node 
relations and node coordinates are stored in two separate 
databases. Then, the operations on the mesh are 
performed by querying the database via provided Etree 
calls. Though limited to unstructured octree meshes, this 
approach provides exceptional performance where the 
requirements for mesh quality and conformity allow it; 
especially, considering the recently introduced Two-
Level Bucket Sort algorithm[26] that reduces the size 
and time requirements for extract operations. Etree is 
different from our work in two ways: (1) Etree is not 
parallel; (2) it is specific to octree-based mesh 
generation. 

Salmon's et al. method for N-body simulation [21] 
(computation with irregular access patterns like mesh 
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generation) uses an extended virtual memory scheme to 
store out-of-core pages on the disk and algorithm-
specific space-filling curves to arrange data within the 
pages. One non algorithm-specific feature [21] is the 
page replacement algorithm which is based on the last 
recently used (LRU) replacement policy. The same 
policy is used as a basic virtual memory policy for many 
platforms (e.g., Linux). However, authors extend it by 
introducing priorities, different aging speeds for different 
data types, and explicit page locking. The N-body 
calculations are irregular, but not adaptive, and we can 
not use fully this approach, although we borrow some 
ideas. 

An approach that target different applications without 
limiting a developer to specific algorithm(s) involves 
built-in support for out-of-core directly from the 
compiler [15, 14]). There are two methods behind this 
approach: (1) conservative analysis of the code, similar 
to compiler cache optimization, (2) user specified 
directives that guide compiler on how to optimize the 
out-of-core operations. The first method works very well 
with regular applications, and is completely transparent 
to the programmer. The second method is suitable to 
handle irregular access patterns, but it requires 
programmer's input. Unfortunately, it is often hard or 
sometimes impossible for the programmer to predict the 
access pattern, especially for adaptive applications. Also, 
not enough theoretical work has been done so far for 
combining adaptive and out-of-core algorithms. Our 
work in this paper is less general than the compiler 
approach but addresses adaptivity in the context of a 
class of applications parallel mesh generation and 
refinement. 

Finally, there are many traditional application-specific 
approaches for parallel dense matrix operations. For 
example, SOLAR [25] is a library for scalable out-of-
core linear algebra computations. SOLAR uses different 
mapping layouts (depending on the underlying I/O and 
algorithm specifics) to store out-of-core matrices and 
employs vendor supplied libraries for asynchronous disk 
I/O. Its efficiency is achieved through the use of high 
performance in-core subroutines of BLAS [8], LAPACK 
[6] and ScaLAPACK [5] and a simple non-recursive (in 
most cases) pipeline to hide latencies associated with 
disk accesses. While limited to algorithms with regular 
access pattern, SOLAR performance is almost as good as 
in-core implementations of the same problems. Other 
out-of-core approaches for parallel linear algebra appear 
in [7, 28, 20, 19, and 17]. 

A. Non-traditional Out-of-core 
The HTMT [24] design can be considered as an out-

of-core system. One of the features of the HTMT is a 
Processing in Memory (PIM) [18] technology. Basically, 
the memory chips are combined with processing logic 
thus relieving the CPU(s) and caches from some of their 



work. Being around for quite some time, it was generally 
used for regular applications (i.e., dense-arrays 
computations on large amounts of data). However, 
research [13] showed that it is possible to map irregular 
application to PIM-based architectures quite effectively. 
The main idea is to introduce some processing power 
close to the lower-level memory for performing memory-
intensive but not computationally-intensive operations. It 
is very useful when dealing with huge parallel irregular 
computations which require gather and scatter operations 
of data. 

The HTMT program execution model is based on the 
percolation model [10, 11] which relies on fine-grained 
threads to hide long latency events. Under this 
percolation model long latencies are never encountered 
because the right data are percolated (moved) to the right 
processor at the right time. Such a model relies on the 
ability to decompose a program into a sufficient number 
of fine grained automatically executed threads (tasks). 

The HTMT runtime system consists of components or 
modules that responsible for migration of percolating 
threads, known as parcels, through the parallel machine. 

In this paper, we borrow the percolation execution 
model in order to hide long latencies for traditional out-
of-core parallel mesh generation applications. 

III.  PARALLEL CONSTRAINED DELAUNAY MESHING 

(PCDM) 

The mesh generation procedure starts with 
constructing an initial mesh which conforms to the input 
vertices and segments, and then refines this mesh until 
the constraints on triangle quality and size are met. The 
general idea of the Delaunay refinement is to insert 
points in the circumcenters of triangles that violate the 
required bounds, until there are no such triangles left. To 
update the triangulation, we use the Bowyer/Watson 
algorithm[2, 30], which is based on deleting the triangles 
that are no longer Delaunay and inserting new triangles 
that satisfy the Delaunay property.  

The set of triangles in the mesh whose circumcircles 
include the newly inserted point ip  is called a cavity 
[12], and we will denote it as( )ipC . Also, we will use 
the symbol ( )ipC∂  to stand for the set of edges which 
belong to only one triangle in( )ipC , i.e., external 
edges. 

In the absence of external boundaries, the algorithm 
maintains a Delaunay meshΜ ; at any iteration it 
performs the following steps: 
• Select a triangle from the queue of unsatisfactory 

triangles. 

• Compute the circumcenter ip  of this triangle. 

• Find ( )ipC  and ( )ipC∂ . 

• Delete all triangles in ( )ipC  fromΜ . 

• Add triangles obtained by connecting ip  with every 

edge in ( )ipC∂  toΜ . 

The case when the new point happens to be close to a 
constrained edge is treated separately. Following 
Shewchuk [22], we use diametral lenses to detect if a 
segment is encroached upon. The diametral lenses of a 
segment is the intersection of two disks, whose centers 
lie on the opposite sides of the segment on each other's 
boundaries, and whose boundaries intersect in the 
endpoints of the segment. A segment is said to be 
encroached upon by point ip  if ip  lies inside its 
diametral lenses. When a point selected for insertion is 
found out to encroach upon a segment, another point is 
inserted in the middle of the segment instead. 

To refine the mesh in parallel, we use coarse grained 
domain decomposition. First, an initial conforming 
coarse mesh of the domain is created. The use of the 
available highly optimized and reliable codes (e.g. 
Triangle [23]) allows accomplishing this step very 
efficiently. Second, a graph ( )EV,G =  is constructed, 
such that (i) every triangle it  in the coarse mesh is 
represented by a vertex Vvi ∈ , and the weight of iv  is 
set equal to the area of it ; (ii) every edge 1ppk  which 
is shared by two triangles it  and jt  in the mesh is 
represented by an edge Eeij ∈ , and the weight of ije  is 
set equal to the length of 1ppk . This graph is 
partitioned using the Metis library [16] into PN >>  
vertex sets such that the total weight of the vertexes in all 
sets is approximately equal, and the total weight of the 
edges which connect vertexes in different sets is fairly 
small. Finally, one more graph partitioning problem is 
solved. Now, the goal is to distribute the subdomains 
among the processors, so that the sum of the weights of 
the subdomains on each processor is approximately 
equal, and the total length of the subdomain boundaries 
which are shared between processors is minimized. Fig. 
1 shows an example of rocket engine pipe domain 
decomposition. During runtime, the Load Balancing 
Library [1] maintains the equidistribution and small 
edgecut conditions by moving the subdomains among the 
processors in response to dynamically changing work 
load imbalance. 

The domain decomposition procedure described above 
creates $N$ subdomains, each of which is bounded by 
edges of the initial coarse triangulation. The edges and 
their endpoints that are shared between two subdomains 
are duplicated. The boundary edges are treated as 
constrained segments, and whenever they are split due to 
encroachment on one processor, an active message[9, 29] 
is sent to the processor holding the adjacent subdomain, 
so that the duplicate of the boundary edge is also split, 
and the mesh is globally consistent (see Fig. 2). 



A. Out-of-core PCDM 
In order to generate large finite element meshes on a 

smaller set of computing nodes we developed a 
straightforward out-of-core implementation of Parallel 
Constrained Meshing (OPCDM). As the PCDM is 
continually upgraded and improved, we tried to make the 
porting as transparent as possible, sacrificing some 
performance for code reuse. 

In the center of OPCDM is a table containing mapping 
of in-core (currently present in memory) and out-of-core 
(currently residing on disk) subdomains. The 
replacement policy is determined by the end user; for our 
experiments we used prioritized version of accepted last 
recently used replacement scheme proposed by Salmon 
[22]. Out of all subdomains, only a small amount is kept 
in-core, with the rest residing on hard drive. During 
refinement, an in-core subdomain is replaced with an 
out-of-core one if both of the following conditions are 
met: (1) there is pending work (i.e., outstanding splits of 
edges in its interfaces due to their refinement in an 
adjacent subdomain) for an out-of-core subdomain, (2) 
the amount of available physical memory is not sufficient 
to load new subdomains. 

There are no changes in the algorithm other than the 
following (these changes do not alter the correctness of 
the original parallel algorithm): 

• when a new out-of-core subdomain is picked for 
refinement it is put into loading queue (loads 
immediately if no other work is being performed) 

• when a new incoming active message[29] is 
pending for execution and the target subdomain is 

out-of-core, the message's data buffer is stored 
until the subdomain is scheduled for loading; after 
the subdomain is loaded, the message's handler is 
executed 

Also, some aggregation of messages is performed to 
minimize the amount of replacements. 

B. Evaluation 
The following section will provide the reader with the 

results of testing the performance of the PCDM using 
physical memory only, the PCDM with enabled virtual 
memory, and the OPCDM which is using disk explicitly. 

We will discuss the pros and cons of all three 
implementations which are used as a motivation for the 
main contribution of this paper: the design and 
implementation of a run-time system which implements a 
percolation model for out-of-core parallel mesh 
generation methods. 

To evaluate the performance of the PCDM 
implementation we used SciClone1 computational cluster 
at the College of William and Mary. In particular, we 
used between $32$ and $64$ nodes of subcluster 
whirlwind (64 single-cpu Sun Fire V120 servers @ 650 
MHz with 1 GB memory and 36.4 GB disk space per 
node) and for $128$-processors configuration we used 
additionally 64 nodes of subcluster twister (32 dual-cpu 
Sun Fire 280R servers @ 900 MHz with 2 GB memory 
and 72.8 GB disk space per node, 36.4 GB per 
processor). For our mesh generation tests we used pipe 
geometry smaller version of which is presented in Fig. 1. 

Tables TABLE I, TABLE II and TABLE III show the 
speeds of mesh generation for problems of different sizes 
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Fig. 1.A decomposition of a pipe cross-section into 128 
subdomains, which are mapped into 8 processors. 

Fig. 2. If the inserted point 14p  encroaches upon a constrained 
edge 32 pp  (a), another point 15p  is inserted in the middle of 

32 pp  instead and a message is sent to the neighboring 
processor (b), the local cavity of 15p  is constructed and 

triangulated (c), the neighboring processor also constructs and 
triangulates its local cavity of 15p  (d). 



varying from small to medium to large. Meshes were 
generated using 1, 32 and 128 processors configurations. 

TABLE I 
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR SMALL 

PROBLEM SIZE (
6108.13 × TRIANGLES) 

procs Triangle PCDM 

1 
4104.1 ×  

4109.5 ×  

32 n/a 
4106.8 ×  

TABLE II 
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR MEDIUM 

PROBLEM SIZE (
81075.5 ×  TRIANGLES) 

procs Triangle PCDM OPCDM 
1 n/a n/a n/a 

32 n/a 
61045.1 ×  

61013.1 ×  
128 n/a 3100.4 ×  no need 

TABLE III 
TRIANGULATION SPEEDS (TRIANGLES PER SECOND) FOR LARGE 

PROBLEM SIZE (
91015.1 ×  TRIANGLES) 

procs Triangle PCDM OPCDM 
1 n/a n/a n/a 

32 n/a n/a 3102.3 ×  
128 n/a 3100.4 ×  no need 

 
Since Triangle [23] is not suited for parallel 

computation we use Parallel Delaunay Refinement 
(PDR) method which uses Triangle as a subroutine. The 
PDR method is based on the theoretical framework [3] 
which allows inserting points at triangle circumcenters 
concurrently without destroying the conformity and 
Delaunay properties of the mesh. It uses a coarse-grained 
mesh partitioning scheme which guarantees that the 
points in certain regions will be independent a-priori. The 
PDR algorithm does not rely on domain decomposition, 
since no explicit boundary construction is required. This 
method also eliminates the need to restructure the 
sequential mesh generation kernel and allows plugging in 
the available serial libraries (e.g. Triangle [23]). 

Table TABLE I compares the sequential execution 
time and speed of the Triangle and PCDM. Due to the 
parallel overheads, PCDM is in most cases about two 
times slower. However, as we increase the mesh size up 
to 13.8 million, Triangle starts thrashing and becomes 
significantly slower, which can be explained by different 
choices of data structures. For a comparison, the PDR 
method on 36 processors creates a 12.7 million mesh in 
22 seconds. 

Table TABLE II compares the speed of mesh 
generation between the PCDM and the OPCDM for 32 
and 128 processors configurations (the problem size is 
just too large to run sequentially, even for out-of-core). 
In the configuration with 32 processors the amount of 
memory required for computation is about the same as 
the total amount of available virtual memory. Therefore, 
the speeds of both the PCDM and the OPCDM are close. 
In the configuration with 128 processors, the speed of 
mesh generation with PCDM is even higher. However, 
the wait-in-queue time can be as high as 40 hours and 
thus rendering the effective speed to three orders of 
magnitude lower. We did not test the OPCDM in 128 
processors configuration since with 32 processors and 
OPCDM we can generate half a million elements. 

Table TABLE III compares speed of mesh generation 
of the PCDM and OPCDM for 32 and 128 processors 
configurations (the problem size is just too large to run 
sequentially with out-of-core). The problem size is so 
large that it is not possible to compute it even with 32 
nodes with PCDM. Yet again, the speed of mesh 
generation is rather high on 128 processors 
configuration, but it is the effective speed which is 
dominated by wait-in-queue time of approximately 40 
hours. We did not test the OPCDM in 128 processors 
configuration for the same reason as above. Additionally, 
the OPCDM on 32 processors configuration still has 
better effective speed. However, it is two orders of 
magnitude slower than with the medium problem (size is 
only two times smaller). This suggests that the scalability 
of the OPCDM is not acceptable for larger problem sizes. 

Fig. 3 shows these same data in a form that allows 
seeing trends better. 

Above data suggests that better more scalable solution 
is necessary to generate even larger meshes. The next 
section will describe a design and an execution model of 
which we believe is capable to reduce the disk latencies 
for very large size meshes (i.e., large than a billion 
elements). 

IV.  MULTI-LAYERED OUT-OF-CORE APPROACH 

Similar to the HTMT architecture, we propose a run-
time system organized into multiple layers. The top 
(execution) layer contains the fastest processors and the 
fastest, but very limited in size memory. The bottom 
(storage) layer contains the slowest processors and the 
slowest but large in size memory. The execution of an 
application is divided into multiple tasks that are 
executed in the top layer, but are stored in the bottom 
layer. The middle (control) layer is coordinating and 
balancing the loads of both execution and storage layers. 



The rest of the section describes the architecture of the 
Multi-layered Run-Time System (MRTS), based on the 
simplified version of the Percolation model from the 
HTMT Petaflop design [10, 11]. The MRTS is a software 
system which organizes multiple nodes of a 
multiprocessor or COWs in three layers: 

• the Computing Engines (CE) layer - provides 
computing power 

• the Data Servers (DS) layer - provides storage 
• the Control Unit (CU) - controls system resources 

and execution of an application. 

A. Program Execution Model 
The MRTS stores application data in the DS layer and 

performs computations in the CE layer. The main idea 
behind the program execution model is a controlled 
movement of data used and/or produced by computations 
between the CE and the DS layers. A datum normally 
resides at the DS layer. However, when it is needed for 
execution it moves up (percolates) to the CE layer. 
Eventually, after the execution, when datum is not 
necessary at the CE anymore, it moves back down to the 
DS. The CU is responsible for achieving the best 
possible performance. It controls the execution of each 
computational block and ensures that the necessary data 
percolate to the CE just before the execution of the block 
that uses them. Fig. 4 shows the organization of the 
MRTS. 

The MRTS uses CE nodes exclusively for 
computation. Therefore, they must have powerful 
processors. Unfortunately, very fast memory needed for 
nodes with high-end processors is quite expensive. As a 
result, the CE nodes have limited memory capacity. It is 
imperative that they do not stay idle, thus the rest of the 
system should provide continuous stream of work to the 
CE. 

The Data Servers provide storage for the MRTS. 
Therefore, these nodes must have larger memory. While 
RAM has certain limitations (e.g., max 4GB address 
space for 32 bits architectures, relatively high cost), disk 
memory can be an effective alternative. The DS use an 
out-of-core approach with physical memory acting as a 
cache. Currently, we employ two out-of-core strategies. 
The first uses virtual memory provided by the operating 
system. The second implements an out-of-core 
mechanism proposed by Salmon [22]. It is similar to OS-
provided virtual memory, but allows more control over 
paging. 

The DS layer is independent from the rest of the 
system, thus allowing for different implementations. In 
the future, we plan to develop a database storage 
subsystem that supports an effective mapping between 
the application data structures and internal system 
constructs (e.g., memory pages). 

The CU controls the execution flow of an application. 
It schedules percolations of data and executes parallel 
blocks of computation that hide latencies associated with 
disk and network accesses. This suggests the CU is a 
potential performance bottleneck; as a result the MRTS 
could be hard to scale. To overcome this in large 
configurations, we plan to use multiple MRTS 
subsystems connected in one big cluster with their CUs 
rather than increase the number of the DS and the CE 
(see Fig. 5). 

Fig. 4. Organization of the MRTS 

Fig. 3. Time to refine a mesh with PCDM (swap on/off) and 
OPCDM 



B. Percolation cycle 
Throughout this document, we will call a 

computational task a handler and a datum necessary for 
the handler's execution an object. The following is the 
percolation cycle of an object: 

1. after the creation and between percolations, an 

object resides in one of the DS nodes 
2. to proceed with its execution an application posts 

requests for the execution of different handlers 
3. when certain conditions are met, the CU picks an 

object and orders it to percolate to one of the CE 
nodes 

4. the requested handlers execute soon after the 
object has been percolated and stored in the CE 

5. after the completion of the handler, the object 
percolates down to one of the DS nodes. 

During the execution, a handler might call other 
handlers and create new objects. The percolation cycle 
repeats until there are no more handlers to execute, 
which signals the termination of the application. 

We implemented the PCDM with a prototype of the 
MRTS (MPCDM). Though its performance still needs 
improvement, we can see a very positive trend (see Fig. 
6): the MPCDM scales much better than the OPCDM. 

V. SUMMARY  

We presented two out-of-core approaches for parallel 
mesh generation and we used the PCDM application to 
evaluate their performance for different sizes of problems 
and processor configurations. Our preliminary data 
suggest that the traditional approach based on page 
replacement algorithm using prioritized version of 
accepted last recently used replacement scheme 
developed by Salmon et al. is very effective for size 

problems up to half a billion elements. While the second 
non-traditional approach based on the HTMT percolation 
is a good alternative for problem sizes in the order of 
billions of elements. 

We plan to improve the performance of the MRTS in 
order to make this approach attractive for smaller size 
problems. We will implement and evaluate different 
schemes for managing system resources on all three 
levels. For the DS level, we will evaluate different out-
of-core strategies, including use of databases and VM on 
64 bits architectures. For the CU, we will evaluate 
different scheduling policies for managing available 
computational and memory resources focusing on 
minimizing and completely hiding network/memory-
access latencies. Finally, for the CE, we will research the 
possibilities of exploiting multiple level of parallelism 
using multi-threaded programming techniques. 

Also, we plan to evaluate the use of compression on 
both application (mesh compression) and system level. 
There is an efficiency tradeoff between the time it take to 
compress and the time we save by transmitting/storing 
smaller amount of data. Therefore it is not clear yet what 
the pay offs are. 
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