IEEE International Workshop on Intelligent Data Aition and Advanced Computing Systems: Technobogy Applications
5-7 September 2005, Sofia, Bulgaria

Parallel Out-of-Core Constrained Delaunay Mesh Generation

Andriy Kot !, Andrey ChernikoV, Nikos Chrisochoide$
The College of William and Mary, PO Box 8795, Wilinsburg, VA 23187
1) kot@cs.wm.edu, www.cs.wm.edu/~kot
2) ancher@cs.wm.edu, www.cs.wm.edu/~ancher
3) nikos@cs.wm.edu, www.cs.wm.edu/~nikos

Abstract - In this paper we present two approadioes for system throughput, it usually cannot exploitess
parallel out-of-core mesh generation. The first s@eh patterns of irregular and adaptive applications.
is based on a traditional prioritized page repla@m Apother approach is to use algorithm-specific dut-0
algorithm using prioritized version of accepted LRUqe algorithms to bypass both the size and pegoo®
replacement scheme proposed by Salmon et al. foryRiations of the VM. Although complexities of duc

body calculations. The second approach is basethen lqorithms ar ite high. th I hi d
percolation model proposed for the HTMT petaflop%go S are quite nign, they usually achieve/\go

design. We evaluate both approaches using the Iﬁaraperformance. For example, dense matrix operatioaes a
constrained Delaunay mesh generation method. OWell-known for much better performance when
preliminary data suggest that for problem sizesaipalf Performing out-of-core with specific algorithms 25
a billion element meshes the traditional approagivéry rather than VM. Although, it should be noted tHatse
effective. However for larger problem sizes (in ¢tinder algorithms are labor intensive and once they are
of billions of elements) the traditional approactcbmes developed cannot be applied to a different apptioat
prohibitively expensive, but it appears from our |n this paper we present two out-of-core approaches
preliminary data that the non-traditional percolati for parallel mesh generation and we evaluate thétm w
approach is a good alternative. Parallel Constrained Delaunay Mesh (PCDM) genematio
[4]. The Out-of-core PCDM (OPCDM) is not limited in
fproblem size and its performance is comparablen¢o t
original PCDM for small to medium mesh sizes. The
OPCDM presents a good and effective alternative to
PCDM, for very large meshes which require large
number of processors for their aggregate physical

COWs and contemporary supercomputers providegemory. In this case the difference in waiting temger
large aggregate memory and computing powemmber of processors can often be quite substaarihit
However, many applications do not require both sype can be much higher than the additional overheativees
resources in equal proportions. Moreover, it is npgy for running PCDM in an out-of-core mode.
unusual for memory-intensive applications (e.g..slme However, our own performance data from OPCDM
generation and refinement) to use hundreds of ntmlesuggest that for very large mesh size problemadtsal
utilize their memory rather than CPUs. Consideting execution time is almost quadratic and it becomes
long wait-in-queue times associated with usage pfohibitively large. In order to address this peoshl we
parallel computers, there is a need for an altamatare developing yet another approach: a multi-layere
solution, namely an effective mechanism to employ approach similar to the HTMT Petaflop design [28] 1
disk memory as a supplement for the RAM. that masks disk latencies. Moreover we designed and

One approach is to use OS-provided virtual memoimplemented a multi-layered run-time system (MRTS)
(VM). While VM is easy to employ it has a number ofhat handles the accesses to out-of-core memoryl $/R
limitations. First, the amount of VM is limited #GB provides clear and simple interface to an applcati
for a single process on 32 bits architectures (@B MRTS targets commercial of-the-self COWS with no
for Windows and Linux since a half is reserved hee dedicated hardware.
0S). Second, since the OS-supported VM is optimizedThe following are the research goals of the MRTS
system:

» efficient handling of out-of-core requests and

minimizing or completely hiding latencies
associated with them

Keywords - Parallel, Mesh Generation, Delaunay, Out-o
Core, Distributed

INTRODUCTION

This was supported in part by NSF Career Award R@©049086,
ITR #ACI-0085969, NGS #ANI-0203974 and ITR #CNS-2380.

e modular design of the runtime system to allow fageneration) uses an extended virtual memory sctieme
an easy plug-and-play replacement of schedulistpre out-of-core pages on the disk and algorithm-
policies and disk management schemes specific space-filling curves to arrange data witkie

« simple and clear interface for an applicatiopages. One non algorithm-specific feature [21] He t
developer to allow easy porting from in-core tpage replacement algorithm which is based on the la
out-of-core environmeht recently used (LRU) replacement policy. The same

In this paper we evaluate the performance of tipelicy is used as a basic virtual memory policy rfizainy

PCDM with problem sizes that fit in physical as lhad platforms (e.g., Linux). However, authors extendoyt
virtual memory and compare it OPCDM in terms dhtroducing priorities, different aging speeds fifferent
problem size and speed of execution. Finally, wdata types, and explicit page locking. The N-body
describe the first design and implementation of tlealculations are irregular, but not adaptive, ared can
MRTS system and discuss some of its drawbacks We wiot use fully this approach, although we borrow som
be improving in the future. Our preliminary datagygest ideas.
that there is much space for improvement. TheseAn approach that target different applications with
improvements along with the fact that 3-dimensionkimiting a developer to specific algorithm(s) invek
mesh generation is much more demanding in memdnyilt-in support for out-of-core directly from the
and more computational intensive suggest that cwompiler [15, 14]). There are two methods behing th
MRTS approach can be useful for more reasonabée sipproach: (1) conservative analysis of the codajlasi
meshes. With the current implementation and for & compiler cache optimization, (2) user specified
dimensional meshes we see the benefits of the MRdi®ctives that guide compiler on how to optimite t
approach to appear for problem sizes larger thagethout-of-core operations. The first method works vesfl
billion elements (see Fig. 6). Our goal is to immo with regular applications, and is completely trargmt
MRTS' performance so that we can see its benédit8- to the programmer. The second method is suitable to
dimensional meshes, at a size around of one hillible handle irregular access patterns, but it requires
meshes of such sizes are necessary for many eniggeeorogrammer's input. Unfortunately, it is often haod
applications today. sometimes impossible for the programmer to pretthiet
access pattern, especially for adaptive applicatiéiso,
II. RELATER WORK not enough theoretical work has been done so far fo

To the best of our knowledge, the only out-of-cor%ombi.ning _adaptive _and out-of-core algorithms. Qur
algorithm-specific approach for sequential mes ork in this paper is less general than the compile

generation is Etree [27]. The novelty of Etreeristhie approach but addresses adaptivity in the contexa of

use of a spatial database to store and operatarga lflq?]sém(gntappllcatlons parallel mesh generation and
octree meshes. Each octant is assigned a unique ke '

using the linear quadtree technique which is starec inally, there are many traditional application-Gfie

B-tree. There are three steps to generate a meth \ﬁpproaches for parallel dense matrix operations. Fo
a example, SOLAR [25] is a library for scalable oit-o
Etree: (1) construct, creates an unbalanced ociree

disk, (2) balance, octants violating the 2-to-1 stcaint core linear algebra computations. SOLAR uses differ

are decomposed, and (3) transform, eIement-nor(ﬁ’é‘pping layouts (depending on the underlying 1/@ an

relations and node coordinates are stored in tywarsge agoilthmvsrr:gc:flcs) tlci) ;tl?t:? r(i)ut-?f;corenrr;]arltr;cmsdl_ :
databases. Then, the operations on the mesh 0ysS vendor supplie aries for asyncnro

performed by querying the database via provide@eEtrI - Its efficiency is achieved through the usehigh

calls. Though limited to unstructured octree mesttas performance in-core subroutines of BLAS [8], LAPACK

approach provides exceptional performance where {ﬁ%;niazzzl)‘”:éi?e[st{)ag%: E{ggger;og'srsggsm Sv
requirements for mesh quality and conformity alldw pIp

especially, considering the recently introduced ng'Sk accesses. While limited to algorithms withuieg

Level Bucket Sort algorithm[26] that reduces theesi access pattern, SOLAR performance is almost as gsod

and time requirements for extract operations. Efgee ' <0'¢ Implementations of the same problems. Other

. : . . out-of-core approaches for parallel linear algedgppear
different from our work in two ways: (1) Etree istn . [7, 28, 20, 19, and 17].

parallel; (2) it is specific to octree-based mesh
generation. A. Non-traditional Out-of-core

Salmon's et al. method for N-body simulation [21] The HTMT [24] design can be considered as an out-
(computation with irregular access patterns likesimeof-core system. One of the features of the HTMTais
Processing in Memory (PIM) [18] technology. Badligal
1 Given the original parallel application was depeld using the the memory chips are combined with processing logic
concept of Berkeley Active Messages[29]. thus relieving the CPU(s) and caches from soméaif t

work. Being around for quite some time, it was geltg .+ Add triangles obtained by connectirg with every
used for regular applications (i.e., dense-arrays)
computations on large amounts of data). However, €dge '”ac(pi) toM .
research [13] showed that it is possible to maggutar The case when the new point happens to be cloae to
application to PIM-based architectures quite effety. constrained edge is treated separately. Following
The main idea is to introduce some processing pov&ewchuk [22], we use diametral lenses to deteet if
close to the lower-level memory for performing meyro segment is encroached upon. Tdiametral lensef a
intensive but not computationally-intensive openasi. It segment is the intersection of two disks, whosdersn
is very useful when dealing with huge parallel gukar lie on the opposite sides of the segment on edobr'st
computations which require gather and scatter ¢djpesa boundaries, and whose boundaries intersect in the
of data. endpoints of the segment. A segment is said to be
The HTMT program execution model is based on tlcroached uporby point P, if P, lies inside its
percolation model [10, 11] which relies on finediged diametral lenses. When a point selected for inseris
threads to hide long latency events. Under thisund out to encroach upon a segment, another mint
percolation model long latencies are never encoedteinserted in the middle of the segment instead.
because the right data are percolated (moved)ktoight To refine the mesh in parallel, we use coarse gahin
processor at the right time. Such a model relieshen domain decomposition. First, an initial conforming
ability to decompose a program into a sufficientnbber coarse mesh of the domain is created. The useeof th
of fine grained automatically executed threadsk&ps available highly optimized and reliable codes (e.qg.
The HTMT runtime system consists of components @riangle [23]) allows accomplishing this step very
modules that responsible for migration of percalati efficiently. Second, a grapks = (V, E) is constructed,
threads, known as parcels, through the parallehinec such that (i) every triangld; in the coarse mesh is
In this paper, we borrow the percolation executioepresented by a vertex[1V , and the weight of; is
model in order to hide long latencies for traditibout- set equal to the area df; (i) every edge p, p; which

of-core parallel mesh generation applications. is shared by two triangle$, and t]- in the mesh is
represented by an ed@ Ll E, and the weight of; is

Ill. PARALLEL CONSTRAINEDDELAUNAY MESHING set equal to the length ofp, p,. This graph is
(PCDM) partitioned using the Metis library [16] inttN >> P

The mesh generation procedure starts WiWrtex sets such that the total weight of the wexden all
sets is approximately equal, and the total weidghthe

constructing an initial mesh which conforms to ieut q hich ¢ ; in diff t setsaig
vertices and segments, and then refines this mesh (FUges which connect vertexes in ditterent setsa yf

the constraints on triangle quality and size aré. mbe small. Finally, one more graph partitioning problésn

general idea of the Delaunay refinement is to ms&olved.tlr\]low, the goal is tt(; (:';t]”bme thfetsubdmg
points in the circumcenters of triangles that vieléhe among the processors, so that the sum of the veely

: : : the subdomains on each processor is approximately
required bounds, until there are no such trianigiftsTo . .
q ual, and the total length of the subdomain botesla

update the triangulation, we use the Bowyer/WatsSf?f h hared bet is minimizied. £
algorithm[2, 30], which is based on deleting thartgles which are shared between processors IS m".“m'z“?’d- .
1 shows an example of rocket engine pipe domain

that are no longer Delaunay and inserting new gt&s e)))
g y ¢ 9 decomposition. During runtime, the Load Balancing

that satisfy the Delaunay property.) L T
The set of triangles in the mesh whose circumeircl!;'brary [1] maintains the equidistribution and snal

include the newly inserted poinp, is called acavity edgecut confjitions by moving the Sl_deomains a_mbegt
[12], and we will denote it a@(p Also. we will use Processors in response to dynamically changing work
;) ,

the symboIOC(pi) to stand for the set of edges whichPad imbalance. " ,
belong to only one triangle B(p,), ie., external The domain decomposition procedure described above

edges creates N subdomains, each of which is bounded by

In the absence of external boundaries, the algnritﬁadges of the initial coarse triangulation. The edgad
maintains a Delaunay mebh: at any 'iteration it their endpoints that are shared between two subidema
performs the following steps: ' are duplicated. The boundary edges are treated as
e Select a triangle from the queue of unsatisfactory constrained segments, and whenever th_ey are sglital

triangles. encroachment on one processor, an active mess&$3[9,
. Compute the circumcentad. of this triangle is sent to the processor holding the adjacent subig
P o, gie. so that the duplicate of the boundary edge is sjsib,

* Find C(pi) and@C(pi) and the mesh is globally consistent (see Fig. 2).

* Delete all triangles irC(pi) fromM .

% ’ @ Fig. 2. If the inserted poinpl4 encroaches upon a constrained
edge P, P5 (@), another pointd, ; is inserted in the middle of
p22p3 instead and a message is sent to the neighboring
processor (b), the local cavity 49, 5 is constructed and
triangulated (c), the neighboring processor alsstracts and
triangulates its local cavity opl5 (d).

out-of-core, the message's data buffer is stored
until the subdomain is scheduled for loading; after
the subdomain is loaded, the message's handler is

A. Out-of-core PCDM executed . .

In order to generate large finite element meshes on .A.ISQ’ some aggregation of messages is performed to
smaller set of computing nodes we developed mynimize the amount of replacements.
straightforward out-of-core implementation of Phaial B. Evaluation
Constrained Meshing (OPCDM). As the PCDM is The following section will provide the reader wite
continually upgraded and improved, we tried to middee results of testing the performance of the PCDM gisin
porting as transparent as possible, sacrificing esophysical memory only, the PCDM with enabled virtual
performance for code reuse. memory, and the OPCDM which is using disk exphcitl

In the center of OPCDM is a table containing magpin We will discuss the pros and cons of all three

of in-core (currently present in memory) and outofe implementations which are used as a motivationttier
(currently residing on disk) subdomains. Thenain contribution of this paper: the design and
replacement policy is determined by the end userofir implementation of a run-time system which implensemt
experiments we used prioritized version of accefastl percolation model for out-of-core parallel mesh
recently used replacement scheme proposed by Salrgeneration methods.
[22]. Out of all subdomains, only a small amounkegpt To evaluate the performance of the PCDM
in-core, with the rest residing on hard drive. Bgri implementation we used SciCldneomputational cluster
refinement, an in-core subdomain is replaced with at the College of William and Mary. In particulaxe
out-of-core one if both of the following conditiomse used between 32% and 64 nodes of subcluster
met: (1) there is pending work (i.e., outstandiptits of whirlwind (64 single-cpu Sun Fire V120 servers @ 65
edges in its interfaces due to their refinementam MHz with 1 GB memory and 36.4 GB disk space per
adjacent subdomain) for an out-of-core subdomdlh, (ode) and for $128%-processors configuration wed use
the amount of available physical memory is notisigfiit additionally 64 nodes of subcluster twister (32 e
to load new subdomains. Sun Fire 280R servers @ 900 MHz with 2 GB memory
There are no changes in the algorithm other than #nd 72.8 GB disk space per node, 36.4 GB per
following (these changes do not alter the correstnaf processor). For our mesh generation tests we uped p
the original parallel algorithm): geometry smaller version of which is presentedign E.

* when a new out-of-core subdomain is picked for Tables TABLE |, TABLE Il and TABLE IIl show the
refinement it is put into loading queue (loadspeeds of mesh generation for problems of diffeseres
immediately if no other work is being performed)

« when a new incoming active message[29] is
pending for execution and the target subdomatin1i§ttp://wwwCompsci_WmedU/S.ci(zlone/index_html

Fig. 1.A decomposition of a pipe cross-section 28
subdomains, which are mapped into 8 processors.

varying from small to medium to large. Meshes were Table TABLE

Il compares the speed of mesh

generated using 1, 32 and 128 processors confignsat generation between the PCDM and the OPCDM for 32

TABLE |

TRIANGULATION SPEEDS(TRIANGLES PER SECOND)FOR SMALL

PROBLEM S|ZE(13.8 X 106 TRIANGLES)

procs Triangle PCDM
1 14x10" 59x10*
32 n/a 86x10"
TABLE II

TRIANGULATION SPEEDS(TRIANGLES PER SECONPFOR MEDIUM

PROBLEM SIZE(575x 108 TRIANGLES)

procs Triangle PCDM OPCDM
1 n/a n/a n/a
32 n/a 1.45x1C° | 1.13x1C°
128 n/a 40%x10° no need
TABLE Il

TRIANGULATION SPEEDS(TRIANGLES PER SECOND)FOR LARGE

prosLEM size(1.15% 10° triancLES)

procs Triangle PCDM OPCDM
1 n/a n/a n/a
32 n/a nla 32x10°
128 n/a 40x10° no need

Since Triangle
computation we use Parallel
(PDR) method which uses Triangle as a subroutihe. 1
PDR method is based on the theoretical framewao}k
which allows inserting points at triangle circumtss
concurrently without destroying the conformity an
Delaunay properties of the mesh. It uses a coamaay .
mesh partitioning scheme which guarantees that
points in certain regions will be independent ariThe
PDR algorithm does not rely on domain decompositio
since no explicit boundary construction is requir€tdis

(23]

is not suited for
Delaunay Refineme

paralle

and 128 processors configurations (the problem wsize
just too large to run sequentially, even for outofe).

In the configuration with 32 processors the amooint
memory required for computation is about the same a
the total amount of available virtual memory. Tliere,

the speeds of both the PCDM and the OPCDM are close
In the configuration with 128 processors, the spetd
mesh generation with PCDM is even higher. However,
the wait-in-queue time can be as high as 40 honds a
thus rendering the effective speed to three ordérs
magnitude lower. We did not test the OPCDM in 128
processors configuration since with 32 processoid a
OPCDM we can generate half a million elements.

Table TABLE Il compares speed of mesh generation
of the PCDM and OPCDM for 32 and 128 processors
configurations (the problem size is just too latgerun
sequentially with out-of-core). The problem sizesis
large that it is not possible to compute it evethvd2
nodes with PCDM. Yet again, the speed of mesh
generation is rather high on 128 processors
configuration, but it is the effective speed whieh
dominated by wait-in-queue time of approximately 40
hours. We did not test the OPCDM in 128 processors
configuration for the same reason as above. Adtitlg,
the OPCDM on 32 processors configuration still has
petter effective speed. However, it is two ordefs o
Wtagnitude slower than with the medium problem (&ze
nly two times smaller). This suggests that thdadulity
l%I the OPCDM is not acceptable for larger probléres

Fig. 3 shows these same data in a form that allows
aeeing trends better.

Above data suggests that better more scalablei@olut

{Renecessary to generate even larger meshes. Tie ne

section will describe a design and an executionehofl
hich we believe is capable to reduce the disknkEes
or very large size meshes (i.e., large than aiohill

method also eliminates the need to restructure tﬂlgments).

sequential mesh generation kernel and allows phegiyi

the available serial libraries (e.g. Triangle [23])
Table TABLE | compares the sequential execution Similar to the HTMT architecture, we propose a run-
time and speed of the Triangle and PCDM. Due to tlime system organized into multiple layers. The top
parallel overheads, PCDM is in most cases about t¢execution) layer contains the fastest processodsthe
times slower. However, as we increase the meshugizefastest, but very limited in size memory. The baito
to 13.8 million, Triangle starts thrashing and brees (storage) layer contains the slowest processorstlaad
significantly slower, which can be explained byfeliént slowest but large in size memory. The executioramf
choices of data structures. For a comparison, BR Papplication is divided into multiple tasks that are
method on 36 processors creates a 12.7 million rireslexecuted in the top layer, but are stored in thiobo
22 seconds.

IV. MULTI-LAYERED OUT-OFCOREAPPROACH

layer. The middle (control) layer is coordinatingda
balancing the loads of both execution and storagers.

ampuling Engine
(CE)

Control

Scheduler Jnt {CU;

z

8

$ x

£ \ "2

H ¢

]

= 2000 | Input _ | | Output _|
queue queus

1500

- T ¢ /4_____
Applicatian
500 ._.,‘ﬁ:/’ ‘ Assembler [Terminator | N, input

3 02 04 06 08 1 12 14 18 18
size of the mesh (trangles) Billions

Global

Pending cirestory

B objecte /]
[handlars |

Queue

~8-32 procs PCDM ==#==40 procs PCDM =#=64 procs PCDM X132 procs OPCDM =#e=64 procs OPCOM

Local
cirectory

Fig. 3. Time to refine a mesh with PCDM (swap of)/ahd

OPCDM
The rest of the section describes the architedfitee = 7 ? ______
Data

Multi-layered Run-Time System (MRTS), based on the ata
simplified version of the Percolation model frometh | ‘ ‘ | | | (DS}

HTMT Petaflop design [10, 11]. The MRTS is a softeva - -
system which organizes multiple nodes of a
multiprocessor or COWSs in three layers:

e the Computing Engines (CE) layer - provides
computing power
* the Data Servers (DS) layer - provides storagé The Data Servers provide storage for the MRTS.
* the Control Unit (CU) - controls system resourcefherefore, these nodes must have larger memoryleWhi
and execution of an application. RAM has certain limitations (e.g., max 4GB address

A. Program Execution Model space for 32 bits architectures, relatively highktgadisk

The MRTS stores application data in the DS layer afemory can be an effective alternative. The DSarse
performs computations in the CE layer. The mairaid@ut-of-core approach with physical memory actingaas
behind the program execution model is a controllé@che. Currently, we employ two out-of-core stragg
movement of data used and/or produced by computatid he first uses virtual memory provided by the opaga
between the CE and the DS layers. A datum normafiystem. The second implements an out-of-core
resides at the DS layer. However, when it is nedded Mechanism proposed by Salmon [22]. It is similaDt®-
execution it moves up (percolates) to the CE |ayé]{0\(ided virtual memory, but allows more controleov
Eventually, after the execution, when datum is n889INg.
necessary at the CE anymore, it moves back dowimeto The DS layer is independent from the rest of the
DS. The CU is responsible for achieving the be8ystem, thus allowing for different implementatiofis
possible performance. It controls the executioreach the future, we plan to develop a database storage
computational block and ensures that the necesitay Subsystem that supports an effective mapping betwee
percolate to the CE just before the execution efttlock the application data structures and internal system
that uses them. Fig. 4 shows the organization ef tRonstructs (e.g., memory pages).
MRTS. The CU controls the execution flow of an applicatio

The MRTS uses CE nodes exclusively foit schedules percolations of data and executesliglara
computation. Therefore, they must have powerfilocks of computation that hide latencies assodiatith
processors. Unfortunately, very fast memory nedded disk and network accesses. This suggests the CdJ is
nodes with high-end processors is quite expengisea potential performance bottleneck; as a result tHeTHl
result, the CE nodes have limited memory capatitis. could be hard to scale. To overcome this in large
imperative that they do not stay idle, thus the oéshe configurations, we plan to use multiple MRTS

system should provide continuous stream of wortheo Subsystems connected in one big cluster with Béls
CE. rather than increase the number of the DS and the C

(see Fig. 5).

Fig. 4. Organization of the MRTS

B. Percolation cycle o0
Throughout this document, we will call a
computational task a handler and a datum nece$sary
the handler's execution an object. The followinghe
percolation cycle of an object:
1. after the creation and between percolations, arg’“""

$ 2500

4000

3500

Subcluster 1

QQ Q Switching Network e
-.Computing.Engine *
k

500

Y -—l"fl‘/
Control Switch 2 _/ %o 0z o os os 1 12 “ 1 " 2

: size of the mesh (triangles)
Unit Billions

/ ~8-32 procs PCOM —=40 procs PCOM =64 procs PCOM ~X~32 procs OPCDM —#=64 procs OPCOM

Fig. 6. Prediction of performance for the OPCDMtvs MPCDM
Switch 1 for very large problems (billions of triangles).

time t

problems up to half a billion elements. While tleeand
non-traditional approach based on the HTMT peraniat
is a good alternative for problem sizes in the profe
billions of elements.

We plan to improve the performance of the MRTS in
order to make this approach attractive for smadiee

Data Servers problems. We will implement and evaluate different
schemes for managing system resources on all three
Fig. 5. Scaling for the MRTS multi-cluster levels. For the DS level, we will evaluate differemut-
of-core strategies, including use of databasesvdvicbn
object resides in one of the DS nodes 64 bits architectures. For the CU, we will evaluate

2. to proceed with its execution an application posgftferent scheduling policies for managing avai@bl
requests for the execution of different handlers computational and memory resources focusing on
3. when certain conditions are met, the CU picks gfinimizing and completely hiding network/memory-
object and orders it to percolate to one of the CGfgcess latencies. Finally, for the CE, we will exsh the
nodes possibilities of exploiting multiple level of pakelism
4, thg requested handlers execute soon after hr‘!ﬁng multi-threaded programming techniques.
object has been percolated and stored inthe CE A0, we plan to evaluate the use of compression on
5. after the completion of the handler, the objegioth application (mesh compression) and systeml.leve
percolates down to one of the DS nodes. There is an efficiency tradeoff between the timilke to
During the execution, a handler might call oth&fompress and the time we save by transmittingfeori

handlers and create new objects. The percolatiefe cysmaller amount of data. Therefore it is not clestrwhat
repeats until there are no more handlers to execufg pay offs are.

which signals the termination of the application.

We implemented the PCDM with a prototype of the ACKNOWLEDGMENT
MRTS (MPCDM). Though its performance still needs)))
improvement, we can see a very positive trend Eige This work was performed in part using computational

6): the MPCDM scales much better than the OPCDM. facilities at the College of William and Mary whietere
enabled by grants from Sun Microsystems, the Nation

V. SUMMARY Science Foundation, and Virginia's Commonwealth

Technology Research Fund.
We presented two out-of-core approaches for paralle
mesh generation and we used the PCDM application to REFERENCES
evaluate their performance for different sizesrobfems))) o
d fi i 0 liminar daE:ld Kevin Barker, Andrey Chernikov, Nikos Chrisoéties, and Keshav
and processor con 'g.u.ra 1ons. ur pre y Pingali. A load balancing framework for adaptive dan
suggest that the traditional approach based on page asynchronous applicationtEEE Transactions on Parallel and
replacement algorithm using prioritized version qf Distributed Systemd5(2):183.192, February 2004.
LZA Adrian Bowyer. Computing Dirichlet tesselation€omputer
accepted last recently used replacement schemle j5,na 24:162.166, 1981.

developed by Salmon et al. is very effective faresi

[3] Andrey N. Chernikov and Nikos P. Chrisochoid€sactical and [16] George Karypis and Vipin KumavleTiS: A Software Package for

ef_cient point insertion scheduling method for parguaranteed

quality delaunay re_nement. Proceedings of the 18th annual
international conference on Supercomputipgges 48.57. ACM

Press, 2004.

[4] L. Paul Chew, Nikos Chrisochoides, and Flori@akup. Parallel

[5] J. Choi, J. Dongarra, R. Pozo, and D. Walkerl&pack: A scalable

[6] James Demmel, Jack Dongarra, Jeremy Du CromeABreenbaum,

constrained Delaunay meshing. WSME/ASCE/SES Summer
[18] P. Kogge, J. Brockman, T. Sterling, and G. GRmocessing in

Meeting, Special Symposium on Trends in Unstrudtuviesh

Generation pages 89.96, Northwestern University, Evanstbn, |

1997.

linear algebra for distributed memory concurrermmpaters. Inin
Proceedings of the 4th Symposium on the Frontiefdassively
Parallel Computation1992.

Partitioning Unstructured Graphs, Partitioning Mes) and
Computing Fill-Reducing Orderings of Sparse Matsic¥ersion
4.0. University of Minnesota, September 1998.

[17] Kenneth Klimkowski and Robert A. van de Geiffinatomy of a

parallel out-of-core dense linear solverI@PP (3) pages 29.33,
1995.

memory: Chips to peta_ops, 1997.

[19] Z. Li, J. H. Reif, and S. K. S. Gupta. Syntizegy ef_cient out-of-

core programs for block recursive algorithms udihack-cyclic
data distributions. IEEE Transactions on Parallel and
DistributedSystemd.0(3):297.??, 1999.

[20] Steven Newhouse. A parallel implementationaaf out of core

dense matrix solver using hidios.

Sven Hammarling, and Danny Sorensen. Prospectusthior [21] John Salmon and Michael Warren. Parallel duteve methods

development of a linear algebra library for highfpemance

computers. Technical Report ANL/MCS-TM-97, 9700 ou

Cass Avenue, Argonne, IL 60439-4801, USA, 1987.

[7] Jack Dongarra, Sven Hammarling, and DavidW.WalkKey

[8] Jack J. Dongarra, Jeremy Du Croz, Sven Hamnwariind Richard

concepts for parallel out-of-core LRU factorizatiohechnical
report, Knoxville, TN 37996, USA, 1996.

J. Hanson. An extended set of FORTRAN Basic Lindgebra

Subprograms.ACM Transactions on Mathematical Software

14(1):1.17, 1988. 18

[9] Andriy Fedorov and Nikos Chrisochoides. Comnuation support

[10]

for dynamic load balancing of irregular adaptivelagtions. In
2004 International conference on parallel procegsimorkshops
(ICPPW'04) pages 555.562, 2004.

G. Gao, K. Theobald, A. Marquez, and T. Stgli The htmt
program execution model, 1997.

[11] Guang Gao, Jos’e Nelson Amaral, Andr'es M'ezxqand Kevin

[12]

[13]

Theobald. A re_nement of the htmt program executiwdel,

1998.

Paul-Louis George and Houman Borouchakdelaunay
Triangulation and Meshing. Application to Finite eBhents
HERMES, 1998.

Mary Hall, Peter Kogge, Jeff Koller, Pedro iinJacqueline

[22] Jonathan Richard ShewchulDelaunay Re_nement

for N-body simulation. InProceedings of the Eighth SIAM
Conference on Parallel Processing for Scienti_c @otimg
1997.

Mesh
Generation PhD thesis, Carnegie Mellon University, 1997.

[23] J.R. Shewchuk. Triangle: Engineering a 2D fyyahesh generator

and Delaunay triangulator. Rroceedings of the First workshop
on Applied Computational Geometry pages 123.133,
Philadelphia, PA, 1996.

[24] Thomas Sterling. A hybrid technology multitacked computer

architecture for peta_ops computing, 1997.

[25] S. Toledo and F. Gustavson. The design andeimgntation of

solar, a portable library for scalable out-of-cdirgear algebra
computations, 1996.

[26] Tiankai Tu and David R. O'Hallaron. Extractihgxahedral mesh

structures from balanced linear octreesPilaceedings of the 13th
INternational Meshing Roundtahl2005.

[27] Tiankai Tu, David R. O'Hallaron, and Julio Copez. Etree . a

database-oriented method for generating large @oteshes.

[28] Jeffrey Scott Vitter. External memory algorite and data

structures. In James Abello and Jeffrey Scott ¥iteditors,
External Memory Algorithms and Visualizatjopages 1.38.
American Mathematical Society Press, Providence1€99.

Chame, Jeff Draper, Jeff LaCoss, John Granacki, oApo [29] T. von Eicken, D.E. Culler, K.E. Schauser, &d. Goldstein.

Srivastava, Wiliam Athas, Jay Brockman, Vincentedtr,
Joonseok Park, and Jaewook Shin. Mapping irregydplications
to DIVA, A PIM-based data-intensive architectur@99.

[14] M. Kandemir, A. Choudhary, J. Ramanujam, andBBrdawekar.

Compilation techniques for out-of-core parallel qartations.
Parallel Computing24(3.4):597.628, 1998.

[15] Mahmut T. Kandemir, Alok N. Choudhary, J. Ramgmm, and

Meenakshi A. Kandaswamy. A uni_ed compiler algonitfior
optimizing locality, parallelism and communicationout-of-core
computations. I1/O in Parallel and Distributed Systempages
79.92, 1997.

Active messages: a mechanism for integrated conwvation and
computation. In 19th annual symposium on computer
architecture 1992.

[30] David F. Watson. Computing the n-dimensionaélddinay

tesselation with application to Voronoi polytopeSomputer
Journal 24:167.172, 1981.

