
Evaluation of Remote Memory Access Communication on the Cray XT3

V. Tipparaju A. Kot J. Nieplocha M. ten Bruggencate N. Chrisochoides
Pacific Northwest National Laboratory Cray, Inc. College of William & Mary

Abstract
This paper evaluates remote memory access (RMA)

communication capabilities and performance on the Cray

XT3. We discuss properties of the network hardware and

Portals networking software layer and corresponding

implementation issues for SHMEM and ARMCI portable

RMA interfaces. The performance of these interfaces is

studied and compared to MPI performance.

1. Introduction

Remote memory access (RMA) communication is an

important communication paradigm for modern systems.

RMA operations offer support for an intermediate

programming model between message passing and shared

memory. RMA model combines some advantages of

shared memory, such as direct access to shared/global

data, and the message-passing model, namely the control

over locality and data distribution. RMA is sometimes

considered a form of message passing; however, an

important difference over the MPI-1 message-passing

model is that RMA does not require explicit receive

operation and thus offers increased asynchrony of data
transfers. RMA has been implemented by system vendors

along with the traditional message passing interfaces of

MPI. Perhaps the most well known of the vendor devised

RMA interfaces is the Cray SHMEM that was introduced

on the Cray T3D 12 years ago and since then implemented

by multiple vendors including Cray, SGI, IBM, and

Quadrics. A special form of RMA has been added to the

MPI-2 standard. However, the MPI-2 interface introduces

more synchronization than any other existing RMA

interfaces and still has not been widely adopted by

applications. In addition to the direct use of RMA libraries
in applications, RMA is used to implement global address

space programming models such as Co-Array Fortran,

UPC, Global Arrays or X10 language under development

by IBM. These programming models are critically

1-4244-0910-1/07/$20.00 © 2007 IEEE.

dependent on the quality of RMA implementation on the

parallel systems.

The current paper discusses implementation issues of

RMA communication over Portals layer and evaluates

performance of RMA interfaces on the Cray XT3: the

Cray SHMEM, MPI-2 and ARMCI which were

implemented directly over Portals. We also include in our

performance evaluation study MPI-2 one-sided operations;

however, we note that it is not recommended by Cray to

use MPI-2 on XT3. We used a set of basic
microbenchmarks to evaluate the data transfers operations

provided by these interfaces.

Since the RMA model promises performance

advantages due to its higher level of asynchrony over

message passing, we also evaluate whether this feature

enables effective overlapping of communication with

computation on the XT3. The availability of nonblocking

RMA operations presents additional opportunities for

overlapping data transfers and computations. Although

prefetching and poststoring instructions are often

supported by the shared memory h/w and are exploited by

compilers to overlap computations with data movement, a
scientific programmer on shared memory systems

typically faces difficulties when attempting to explicitly

overlap computations and communication due to the lack

of precise APIs. Such explicit nonblocking APIs are

present in the most RMA interfaces.

Finally, we use NAS MG to establish whether RMA

implementation of this benchmark can be competitive to

the standard MPI-1 version distributed by NAS.

2. Cray XT3 Network hardware and software

2.1 Seastar Network

The Cray XT3 uses the Seastar network interconnect. It

is a full system-on-chip design that integrates high-speed

serial links, a 3-D router, with network interface

functionality. The network interconnect includes an

embedded PowerPC processor, in a single chip. The

Seastar, initially, was designed specifically to support the

ASCI applications on the Sandia Red Strom system. On

the Seastar network, there are 2 DMA engines, one for

sending and the other for receiving, that interact with a

router that supports a 3-D torus interconnect and the

HyperTransport (HT) cave that provides an interface to the

AMD Opteron processor(s) and the host memory. The

embedded processor is provided to program the DMA

engines and assist with other network-level processing
needs. The DMA engines provide robust support for

transferring data between the network and host memory by

providing hardware support for breaking each outgoing

message into 64 byte packets and re-assembling incoming

messages. One reason behind the packetization is to allow

incoming packets from several different messages from

distinct sources to be interleaved. The Seastar has a

hardware mechanism to match incoming packets to their

appropriate message stream, but the number of concurrent

streams that can be processed is limited to 256. This is a

clear limitation but the Portals implementation tries to

address it for this network.

2.2 Portals network Interface

The Portals network programming interface is intended

to allow scalable, high-performance network

communication between nodes of a parallel computing
system [1]. The Portals API was adopted by Cray for their

XT3 supercomputer and forms the lowest programming

API for the Seastar network. MPI-2, ARMCI and CRAY

SHMEM have been implemented on top of Portals which

is the high-performance low level network programming

interface provided by Cray for their SeaStar interconnect

on the XT3 platform.

The following are the properties of the Portals network

programming interface that were envisioned for highly

scalable network architecture: 1) connectionless to

maximize scalability 2) independent of network h/w to

achieve portability 3) user-level flow control and OS
bypass for low latency communication, 4) receiver

managed message passing to minimize memory

consumption, 5) ability to handle unexpected messages to

support MPI.

The Portals layer provides RMA data movement

operations, but unlike other RMA programming interfaces,

the target of a remote operation is not a virtual address.

Instead, each message contains a set of match bits that

allow the receiver to determine where incoming messages

should be placed. This flexibility allows Portals to support

both traditional RMA operations and two-sided
send/receive operations. A target process can choose to

accept message operations from any specific process or

can choose to ignore message operations from any specific

process.

Data movement. A Portal represents an opening in the

address space of a process. Other processes can use a

Portal to read (get), write (put), or atomically swap

(getput) the memory associated with the portal. Every data

movement operation involves two processes, the initiator

and the target. The initiator is the process that initiates the

data movement operation. The target is the process that

responds to the operation by either accepting the data for a

put operation, replying with the data for a get operation, or
both for a swap operation.

In addition to the standard address components (process

id, memory buffer id, and offset), a Portal address includes

a set of match bits. This addressing model is appropriate

for supporting one-sided operations as well as traditional

two-sided message passing operations. Specifically, the

Portals API provides the flexibility needed for an efficient

implementation of MPI-1, which defines two-sided

operations with one-sided completion semantics.

Figure 1 presents a graphical representation of the

structures used by a target in the interpretation of a Portal

address. The process id is used to route the message to the
appropriate node. The memory buffer id, called the portal

id, is used as an index into the Portal table. Each element

of the Portal table identifies a match list. Each element of

the match list specifies two bit patterns: a set of "don't

care" bits, and a set of "must match" bits. In addition to the

two sets of match bits, each match list element has at most

one memory descriptor (MD). Each MD identifies a

memory region and an optional event queue (EQ). The

memory region specifies the memory to be used in the

operation and the EQ is used to record information about

these operations.
Figure 2 illustrates the steps involved in translating a

Portal address, starting from the first element in a match

list. If the match criteria specified in the match list entry

are met and the MD list accepts the operation, the

operation (put, get, or swap) is performed using the

memory region specified in the MD. If the MD specifies

that it is to be unlinked when a threshold has been

exceeded, the match list entry is removed from the match

list and the resources associated with the MD and match

list entry are reclaimed. Finally, if there is an EQ specified

in the MD and the MD accepts the event, the operation is

logged in the EQ. Associating a MD with an EQ is
optional.

Access Control. A process can control access to its

Portal Table

Match List Memory

Descriptor

Event Queue

Memory

Regions

Library Space

Application Space

Figure 1: Portal Addressing Structures

Portals using an access control list. Each entry in the

access control list specifies a process id, possibly a job id,

a user id, and a Portal table index. The access control list

is actually an array of entries. Each incoming request

includes an index into the access control list (i.e., a

"cookie" or hint). If the id of the process issuing the

request doesn't match the id specified in the access control

list entry or the Portal table index specified in the request

doesn't match the Portal table index specified in the access

control list entry, the request is rejected. Process
identifiers, job identifiers, user identifiers, and Portal table

indexes may include wildcard values to increase the

flexibility of this mechanism.

Receiving messages. The Portals API uses four types of

messages: put requests, acknowledgements, get requests,

and replies. When an incoming message arrives on a

network interface, the communication system first checks

that the target process identified in the request is a valid

process that has initialized the network interface (i.e., that

the target process has a valid Portal table). If this test fails,
the communication system discards the message and

increments the dropped message count for the interface.

The remainder of the processing depends on the type of

the incoming message. Put and get messages are subject to

access control checks and translation (searching a match

list), while acknowledgement and reply messages bypass

the access control checks and the translation step.

Acknowledgement messages include a handle for the

MD used in the original PtlPut or PtlPutRegion operation.

This MD will identify the EQ where the event should be

recorded. Upon receipt of an acknowledgement, the

runtime system only needs to confirm that the MD and EQ
still exist and that there is space for another event. Should

the any of these conditions fail, the message is simply

discarded and the dropped message count for the interface

is incremented. Otherwise, the system builds an

acknowledgement event from the information in the

acknowledgement message and adds it to the EQ.

3. SHMEM

Cray Research Inc. introduced the Cray SHMEM

library in 1993 to support the global address space
programming model of the Cray T3D massively parallel

system. This was the first scalable system with hardware

that allowed any process was able to read or write data

from any other process at any time. Since then, Cray

SHMEM has been carried forward to all subsequent Cray

platforms. The Cray SHMEM library supports a wide set

of functionality in the area of RMA communication,

including

1. Data transfer operations e.g., shmem_put and atomic

operations e.g., shmem_swap

2. Collective data transfer operations e.g.,

shmem_sum_to_all

3. Initialization and information operations e.g.,

shmem_init, shmem_my_pe

4. Synchronization operations e.g., shmem_barrier,

shmem_quiet

On Cray XT3 systems, the Cray SHMEM library is

implemented on top of the Portals, using Version 3.3 of

the Portals API [1]. At start-up Cray SHMEM has to

prepare memory for communication. To minimize

overhead on the critical data transmit path, Cray SHMEM

sets up all Portals resources, which it will use throughout

the execution of an application at this time. The resources
are set up statically and are reused for the duration of the

job run, thereby avoiding unnecessary system calls on the

transmit path. Data accessed by a Cray SHMEM data

transfer operation can reside in any of the following four

memory segments: data segment, private heap, symmetric

heap and stack. Each of these memory segments is bound

to the Portals device by a distinct MD to enable access to

the memory segment via Cray SHMEM data transfer calls.

The start address and length of each memory segment are

supplied by the Catamount loader. Only two of the four

Match?

Perform

Operation

Get Next

Match Entry

Unlink
MD?

Unlink MD &
Match Entry

Event

Queue?

Discard Message Increment Drop

Count

Record Start

Event

Entry

MD

Exists and
Accepts?

More

Match

Entries?

MD

Accepts

Event?

yes

yes

yes
yes

yes

yes

no

no

no

no

no no

Figure 2: Portal Address Translation

memory segments are symmetric on Cray XT3 and thus

remotely accessible in the context of SHMEM, namely the

data segment and the symmetric heap. One match list

element per symmetric memory segment is allocated so

that the memory segment becomes remotely accessible via

an associated Portals Index. Cray SHMEM reserves two
Portals Indices, one for the data segment and one for the

symmetric heap, in order to minimize the time spent

searching through match lists during data transfers. The

MDs describing the stack and private heap remain free-

floating. EQs are allocated to allow monitoring the

completion of transfers. Specifically, separate EQs are

allocated for Cray SHMEM Put and Cray SHMEM Get

operations. This approach allows for easy separation of

and monitoring for Put and Get related events.

Cray SHMEM uses Portals communication calls to

implement data transfer and synchronization operations.

Once the application initiates a Cray SHMEM data
transfer operation, the source and target addresses and the

length of the data transfer supplied to the call determine

which MD and associated EQ, local and remote offsets

and Portals Index to supply to the appropriate Portals

routine. Also, the target PE number is translated into the

target Portals Process ID. After returning from the Portals

routine called, Cray SHMEM monitors EQs to determine

when it is safe to return control to the application. Strided

Get and Put operations are implemented as a series of

contiguous Cray SHMEM Put or Get operations. All Cray

SHMEM Put calls request acknowledgement events to
support global synchronization. Throughout the execution

of an application Cray SHMEM keeps track of the number

of outstanding Put operations. Global synchronization is

achieved by waiting for acknowledgement events to arrive

on the initiator for all outstanding Put operations.

4. ARMCI

Aggregate Remote Memory Copy Interface (ARMCI)

[11] is a portable RMA communication library that can be

used in MPI applications. It was also used to implement

several parallel programming models such as CAF, Global

Arrays or GPSHMEM [12]. ARMCI offers an extensive

set of functionality in the area of RMA communication: 1)

data transfer operations 2) atomic operations 3) memory

management and synchronization operations, and 4) locks.

In scientific computing, applications often require

transfers of noncontiguous data that corresponds to

fragments of multidimensional arrays, sparse matrices, or
other more complex data structures. The noncontiguous

interfaces are available in ARMCI to address these needs.

ARMCI offers blocking and nonblocking data transfer

operations.

ARMCI implementation of Portals has to: 1) prepare

the memory for communication, 2) use Portals

communication calls to implement ARMCI put, get and

accumulate functionality for contiguous, strided and vector

data types and 3) implement atomic read modify write

operations

One of the fundamental tasks for the ARMCI

implementation over Portals involves preparation for the
local and remote memory used in communication. ARMCI

communication library requires all remote memory used

for communication to be allocated with ARMCI memory

allocator. This enables ARMCI library to prepare for

remote communication to and from that memory. For

supporting communication to and from a remote memory,

ARMCI implementation over Portals relies on a "wild

card" MD. Portals message passing interface requires a

corresponding descriptor on the remote end for every

communication call. Because most ARMCI calls are one-

sided in nature and don’t involve explicit remote process

involvement, ARMCI implementation on top of the
Portals message passing layer post an anticipatory wild

card remote MD. These descriptors are posted such that

they don't have any association to any EQs (See section

2.2).

For the local memory used in communication

operations, there could be three kinds of memory: 1)

ARMCI global memory allocated with the collective

ARMCI_Malloc call 2) ARMCI local memory allocated

with ARMCI_Malloc_local call and 3) user memory

which could either be static or allocated with malloc. In

order to allow communication from these three kinds of
memory, we use different sets of MD. A Portals MD can

optionally be either retained or unlinked upon the

completion of the communication call. Retaining a MD

allows us to quicken communication calls by merely

modifying a MD for all future communications. Allowing

it to be unlinked frees up NIC resources but requires the

MD to be bound to the EQ for every communication call.

In ARMCI implementation, MDs describing Global

memory are retained when possible and local MDs are

allowed to be unlinked upon completion. This is primarily

because we don’t have a way to determine how many

malloc calls a user might do or how many static memory
segments the user might use. All descriptors posted for

local memory are associated with EQs to enable the

ARMCI library for tracking completion of communication

operations that use these MDs.

First, the ARMCI implementation tries to find a

corresponding MD for the memory used by the initiator of

the call in Get or a Put operation to check if it is already

retained (see section 2.2). If the MD is retained, it checks

to ensure the descriptor doesn’t have a pending operation

on it and subsequently updates the descriptor. In the case

that the descriptor is not retained, it binds the descriptor.
After this a Portals memory transfer operation is initiated

(via a PtlGetRegion or a PtlPutRegion call). Vector and

strided Get or Put operations are implemented as a series

of contiguous Portals Put or Get calls. The Catamount

Kernel is the only supported kernel even as to date on the

Cray XT3 platform. This kernel doesn’t support user level

threads. ARMCI uses either of the Owner Computes or

Caller Computes [14] methods. The Owner computes

method requires either explicit support from the network
layer or the ability to run a user level thread. Since both

these options are not available, ARMCI Accumulate

operation currently uses the caller computer mode.

5. MPI-2 One-sided

RMA extends the communication mechanisms of MPI
by allowing one process to specify all communication

parameters, both for the sending side and for the receiving

side. Message-passing communication achieves two

effects: communication of data from sender to receiver;

and synchronization of sender with receiver. The RMA

design separates these two functions. Three

communication calls are provided: MPI_PUT, MPI_GET

and MPI_ACCUMULATE (remote update). RMA

communications fall in two categories: active target

communication, where data is moved from the memory of

one process to the memory of another, and both are
explicitly involved in the communication and passive

target communication, where data is moved from the

memory of one process to the memory of another, and

only the origin process is explicitly involved in the

transfer.

The Cray XT3 MPICH2 uses a Portals-based variant of

the approach taken in the MPICH2 CH3 ADI3 device to

support MPI-2 remote memory access (RMA) [5]. One-

sided operations are simulated using two-sided

send/receive messaging. MPI-2 RMA accesses are

organized around exposure epochs and windows [6]. An

application marks the beginning of an exposure epoch
using one of the RMA synchronization functions:

MPI_Win_fence, MPI_Win_start/MPI_Win_post, or

MPI_Win_lock. The application can then begin using

RMA access calls: MPI_Put, MPI_Get, MPI_Accumulate.

In the Cray XT3 MPICH2 implementation, no data

transfer actually occurs in these calls. Almost all data

transfer occurs at the end of an epoch, e.g. in an

MPI_Win_fence call. At this point all processes involved

in the epoch determine how many updates from calls to

RMA access functions by the other processes need to be

processed. Each process examines the list of RMA access
requests posted locally by the application and begins to

build RMA messages. For accesses that involve derived

data types, this includes packing information about the

data type into the message. If the access request is a PUT

or ACCUMULATE, the application data is also packed

into the message. The message is then sent using

approaches similar to that for MPI send/receive operations

in the Cray XT3 MPICH2 [7]. Receivers unpack these

messages and for PUT or ACCUMULATE operations,

update the target region of the window. For GETs, the

message is unpacked to determine which region(s) of the

window are being accessed. Any derived data information

is unpacked and used to reconstitute the data type used in

the original MPI_Get call. The appropriate region(s) of the
window are then packed into a buffer using this data type

information. This buffer is then delivered as a message

back to the original requestor.

6. Performance Evaluation

We performed our experiments on a Cray XT3

supercomputer with 2.6 GHz dual-core AMD Opteron
nodes with 4GB of memory. Each node is connected to a

Cray Seastar router through Hypertransport, and the

Seastar NICs are all interconnected in a 3D-torus

topology. The system is located at the National Center for

Computational Sciences, Oak Ridge. It uses UNICOS/lc

1.5 operating system (includes SHMEM), Portals library

version 3.3 and MPICH2 version 1.0.2. The experiments

included several micro benchmarks to evaluate different

parameters of the communication operations. In addition,

the MG NAS benchmark was used to evaluate

performance in of RMA in application context on the Cray
XT3.

6.1 Micro benchmarks

The motivation for the experiments described in this

section was to demonstrate the performance of the

implementation at the system level. The next section

shows how much of these gains can be leveraged at the

application level.

Bandwidth test. The first experiment shows the effective

bandwidth of blocking get and put operations for all three

discussed communication libraries: ARMCI (over Portals),

SHMEM and MPI. We measured execution time of

ARMCI_Get, ARMCI_Put, shmem_getmem,

Figure 3. Effective Get bandwidth

shmem_putmem, MPI_Get and MPI_Put (see 3 and 4).

For comparison we also show the performance of two-

sided MPI communication using the ring benchmark (see

Figure 5). The timings have been averaged over 1000
iterations. They show substantial difference between RMA

performance of MPI vs. ARMCI and SHMEM. Figure 5

shows that performance of MPI one-sided operations are

lagging performance of MPI two sided. The performance

levels of MPI-2 active and passive models are equivalent.

Moreover, the MPI-2 performance presented above is the

upper bound of applications would experience. We found

that the bandwidth results can deteriorate if remote process

does not make MPI calls which indicates the progress

engine is not implemented as truly one-sided.

Overlap test. The next experiment deals with overlapping
communication with computation, and it was performed in

the context of ARMCI and MPI-2 (Figure 6). Note that

MPI_Get is not a part of MPI-1 standard. This is included

in MPI-2 standard. This test is irrelevant for Cray

SHMEM since it does not support a non-blocking get

operation. The computation is incorporated in the program

in the form of a delay. Increasing computation is gradually

inserted between the initiating non-blocking get call and

the wait completion call. As we keep increasing the

computation, at some point the sum of the non-blocking

call issue overhead and computation would exceed the idle

CPU time, so the total benchmark running time would

increase. This point gives us the maximum possible

overlap. We performed this experiment on two nodes, with

one node issuing the non-blocking get for data located on

the other and then waiting for the transfer to be completed

in the ARMCI_Wait or the corresponding MPI Fence or

Unlock calls (depending on active or passive mode). The

experiment indicates that MPI implementation (active and

passive models have same behavior) there is no overlap.

The overlap potential in ARMCI is very good. These
results are consistent with Cray's recommendation for not

using MPI-2 interface in performance critical code

sections. Fluctuations on ARMCI Get overlap percentage

is primarily because of the fluctuations in the measured

time for the computation incorporated in the overlap test

as mentioned above.

6.2 MG Benchmark

The NAS-MG multigrid benchmark solves Poisson's
equation in 3D using a multigrid V-cycle. MG benchmark

carries out computation at a series of levels and each level

of the V-cycle defines a grid at a successively coarser

resolution [15]. The NPB 2.4 code uses a three-step

0.0E+00

2.0E+02

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

1.4E+03

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Message size (Bytes)

B
a
n
d
w

id
th

 (
M

B
/s

)
ARMCI

SHMEM

MPI

Figure 4. Effective Put bandwidth

Figure 5. Effective MPI bandwidth

0

10

20

30

40

50

60

70

80

90

100

1 100 10000 1000000 100000000

Bytes

O
v
e
rl
a
p
(%
) ARMCI_NbGet

MPI_Get

Figure 6. Maximum potential overlap

0

5

10

15

20

25

30

35

0 5 10 15 20

processors

ti
m
e
[s
]

MPI

ARMCI

Figure 7. Comparing MPI-1 and ARMCI RMA
implementation of NAS MG benchmark

dimensional exchange algorithm to satisfy boundary

conditions. This is implemented with point-to-point

message passing communication. In addition to this, point-

to-point communication is used in the parallel

implementation of these stencils to update every

processors boundary values for each dimension that is
distributed.

Our primary modification involved replacing these

point-to-point communications with ARMCI PUT

operations. Figure 7 shows that RMA communication can

be effective for applications on the Cray XT3. The graph

in Figure 7 compares the performance of the NAS

benchmarks implemented by NASA AMES based on the

MPI-1 message passing standard with the ARMCI

implementation for Class B [15] problem size of

256X256X256.

7. Conclusions and Future work

We have evaluated the implementation of three

implementations of RMA communication libraries

(ARMCI, SHMEM, MPI-2) on the Portals network

interface on the Cray XT3. We have shown the

effectiveness of the RMA model through
microbenchmarks and application benchmarks. ARMCI

offers superset of all the one-sided communication

operations in the MPI-2 and SHMEM standard.

Performance of SHMEM and ARMCI are equivalent and

significantly better than MPI-2 one-sided operations. We

are investigating extentions to the Portals network layer to

make it more general and better support RMA models.

ARMCI shows over 80% overlap for all the message sizes

tested. Performance of ARMCI and SHMEM

implementations are comparable. MPI-2 RMA

implementation, as recommended by Cray, is not yet ready

to be used in performance critical sections of the code on
the XT3 platform that the tests were performed on.

References

[1] Brightwell, Ron, Trammell Hudson, Kevin T. Pedretti, Rolf
Riesen, Keith D. Underwood, "Portals 3.3 on the Sandia/Cray
Red Storm System," Cray User Group, May 2005.
[2] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. June, 1995.
[3] Message Passing Interface Forum. MPI2: Extensions to the

Message Passing Interface. July, 1997.
[4] R. Bariuso, Allan Knies, SHMEM's User's Guide, Cray
Research, Inc., SN-2516, rev. 2.2, 1994.
[5] R. Thakur, W. Gropp, B. Toonen. Optimizing the
Sychronization Operations in MPI one-sided communication. In
International Journal of High Performance Computing
Applications. Volume 19 , No.2 (2005).
[6] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B.

Nitzberg, W. Saphir, and M. Snir. MPI - The Complete

Reference, Vol2, The MPI Extensions, MIT Press, 2nd edition,
1998.
[7] R. Brightwell, A. B. Maccabe, and R. Riesen. Design,
Implemtation, and Performance of MPI on Portals 3.0. In
International Journal of High Performance Computing

Applications, Vol. 17, No. 1 (2003).
[8] R. Numrich, J.K. Reid, Co-Array Fortran for parallel
programming. ACM Fortran Forum, 17(2):1-31, 1998.
[9] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E.
Brooks, and K. Warren. Introduction to UPC and language
specification. Tech Report CCS-TR-99-157, Center for
Computing Sciences, 1999.
[10] K. Parzyszek, J. Nieplocha and R. Kendall, A Generalized

Portable SHMEM Library for High Performance Computing,
Proc PDCS-2000, 2000.
[11] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Panda.
High Performance Remote Memory Access Comunications: The
ARMCI Approach. International Journal of High Performance
Computing and Applications, 20(2), 2006.
[12] J. Nieplocha, R.J. Harrison, R.J. Littlefield, “Global Arrays:
A Nonuniform Memory Access Programming Model for High-

Performance computers”, The Journal of Supercomputing, vol
10, pp. 197-220, 1996.
[13] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H.
Trease, and E. Apra. "Advances, Applications and Performance
of the Global Arrays Shared Memory Programming Toolkit."
International Journal of High Performance Computing and
Applications, 20(2), 2006
[14] Jarek Nieplocha, Vinod Tipparaju, and Edoardo Apra, An

Evaluation of Two Implementation Strategies for Optimizing
One-Sided Atomic Reduction, in proc. of Communication
Architecture for Clusters 2005 workshop of International Parallel
and Distributed Processing symposium 2005, 2005
[15] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L.
Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski, R.
Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga,
The NAS parallel benchmarks, RNR-94-007, NASA 1994.

