
A (Condensed) Parametric Study of Optimistic Computation
in Wide-Area, Distributed Environments

Craig A. Lee Nikos Chrisochoides
Computer Systems Research Department Computer Science Department

The Aerospace Corporation, P.O. Box 92957 College of William and Mary
El Segundo, CA 90009 Williamsburg, VA 23187

lee@aero.org nikos@cs.wm.edu

Abstract

This paper explores the use of optimistic computation to
improve application performance in wide-area distributed
environments. We do so by defining a parametric model
of optimistic computation and then running sets of param-
eterized experiments to show where, and to what degree,
optimistic computation can produce speed-ups. The model
is instantiated as an optimistic workload generator imple-
mented as a parallel MPI code. Sets of experiments are then
run using this code on an EmuLab system where the network
topology, bandwidth and latency can be experimentally con-
trolled. Hence, the results we obtain are from a real parallel
code running over a real network protocol through emulated
network conditions. We show that under favorable condi-
tions, many fold speed-ups are possible, and even under
moderate conditions, speed-ups can still be realized. While
generally optimism provides the best speed-ups when net-
work latency dominates the processing cycle, we have seen
cases (with a 90% probability of success) when latency is
only 1/6 of the processing cycle yet produces break-even rel-
ative performance and 85% of “local” performance. The
ultimate goal is to apply this understanding to real-world
grid applications that can use optimism to tolerate higher
latencies.

1 Introduction

Optimistic, or speculative, computation is a well-known
performance technique that has been applied on many dif-
ferent scales, in many different areas. At the hardware level,
speculative branch execution is used to prevent bubbles from
getting into an instruction pipeline. At the system level, op-
timism can be used to do speculative cluster scheduling to
service applications such as speculative DNA sequencing
[13]. At the computational domain level, optimistic simu-

lation has been long known to produce performance bene-
fits [10, 9], under the right conditions, and is still finding
applications today [18]. Of course, the key issue for opti-
mistic computation is that it can produce both performance
enhancement and degradation, depending on how often the
optimistic course of action is incorrect, and how severe the
related performance penalty is.

The development of grids and other wide-area environ-
ments with constrained bandwidths and high latencies ac-
tually presents another arena where optimistic computation
can be applied. Clearly, loosely coupled applications will be
more suited to these environments, e.g., those applications
and systems that essentially require resource integration but
with lenient performance requirements. This does not, how-
ever, mean that we should never consider the issues faced by
more tightly coupled applications on the grid. The better that
latency can be tolerated, the better that a range of applica-
tions will have acceptable performance. Besides optimistic
discrete event simulation, other applications that involve the
exchange of control information could benefit from better
latency tolerance. For example, a parallel computational
fluid dynamics code that exchanges varying parametric data
between neighbors may be a candidate for parameter esti-
mation techniques, but a parallel mesh generation code that
exchanges proposed new mesh points between neighbors
may be a candidate for optimistic execution [5].

Hence, the research issue becomes how well can such
heterogeneous latency hierarchies be tolerated? How much
latency can be tolerated and under what conditions? When is
a net gain in performance realized? Only after we understand
these issues can we understand what level of coupling is
feasible in grid applications.

The goal in this paper, therefore, is to understand quan-
titatively, as best as possible, how optimism can be used to
improve performance by tolerating latencies in wide-area,
distributed environments, e.g., grids. The approach we have
taken is to define a simple model of optimistic computation



based on message-passing, and then instantiate this model
in an optimistic workload generator written in MPI. We then
ran this generator in different node topologies on an EmuLab
system [22], where the network bandwidth and latency could
be experimentally controlled. This allowed us to construct
sets of parametric experiments to compare the performance
of optimistic and non-optimistic computations. While there
are many issues concerning the design of the model and the
representation of parameters, this enabled us to make this
preliminary investigation into optimistic grid computation.

We begin by reviewing some background material and
related work. We then introduce the model of optimism,
followed by the experimental approach and results. We con-
clude with a discussion.

2 Background and Related Work

Optimistic computation is just one method to tolerate la-
tency and improve concurrency in a parallel or distributed
environment. Other common techniques include overlap-
ping communication and computation, parameter estima-
tion, data compression, and redundant computation (e.g.,
ghost zones) between communicating nodes. Such tech-
niques were nicely demonstrated for a distributed parallel
solver in [1].

Bubenik and Zwaenepoel formalized the semantics of op-
timistic computation by modeling computations as program
dependency graphs, and defining transformations that can
produce an optimistic program from a pessimistic one, while
preserving the semantics [3]. This work was used to derive
both an optimistic method of fault tolerance based on mes-
sage logging and checkpointing, and also an optimistic make
that monitors a file system for out-of-date targets and brings
them up-to-date before a make request is issued [4].

Optimism has also been used for parallelizing compilers
on parallel machines. In [14], rather than use mutual ex-
clusion locks to protect critical sections, optimistic synchro-
nization primitives are used. Most parallelizing compilers
approached the problem by doing extensive, static, compile-
time analysis to identify critical sections. In [2], transforma-
tions are defined for object-oriented programs that enable ob-
jects to do causality violation detection and roll-back, while
preserving the semantics of the sequential code.

Optimism is also widely known for its use in parallel,
discrete event simulation. Time Warp [10] is generally re-
garded as the first optimistic simulation framework. Many
other systems followed, such as SPEEDES [17] and WarpIV
[16] that addressed issues such as computing global virtual
time and incremental state saving to support roll-back.

The parametric studies we pursue in this paper are based
on message-passing and relevant work has been done here as
well. In the active messages concept, handler routines are
not allowed to block or contain arbitrary user code. When

Figure 1. Workload Model.

using optimistic active messages, however, this restrictions
can be relaxed [20]. Optimistic message passing has also
been done using PVM in HOPE system [6, 11, 7]. There has
also been a CORBA Optimistic Programming Environment
(COPE) that improved on HOPE by hiding the optimistic
machinery through object encapsulation [12]. Optimistic
computation has also been done in Java with the E Exten-
sions [8] that provide for messages that are simply “sent”
with status being returned in a channel object. Additional
optimistic, distributed computation has been done in Java –
the Code Undo project approaches optimism by “undoing
code” rather than “undoing messages” [21]. All in all, the
value of optimistic computation in distributed environments
has clearly been recognized [19].

3 A Model of Optimistic Computation

To investigate the issue of optimistic computation in dis-
tributed environments, we define a parametric model of op-
timism that can be used to quantitatively understand its be-
havior. There are several component to any such model that
must be defined that correspond to instances of optimism in
different application domains. These components include
(1) the workload model, (2) the optimism control model,
and (3) the failure dependency model. We discuss each of
these in turn.

3.1 Workload Model

The workload model we use here is shown in Figure 1.
This is a simple, asymmetric, pair-wise interaction between
two nodes, say Pi and Pj . Optimistic computation at each
node is comprised of 1 ≤ k ≤ K processing blocks, which

2



determines the length of the entire computation. On node Pi,
at the end of blki,k, a message msgi,j,k is sent. This message
requires some amount of processing time, say msgblki,j,k,
after which a short success or failure reply message is sent.
In the absence of other useful work (or optimistic execution)
Pi would have to idly wait until replyi,j,k is received. Only
then could blki,k+1 begin. This defines the following basic
parameters for our model of optimism:

• Number of processing blocks,

• Block processing time,

• Message length, and

• Message Block processing time

Since the communication between Pi and Pj will be through
a network, we also have the parameters of

• Communication Bandwidth, and

• Communication Latency.

While some of these parameters are straight-forward, oth-
ers can be characterized or represented in multiple ways.
Clearly the number of processing blocks, and perhaps the
message length, can be represented by a static value. In dif-
ferent applications, however, the block processing time and
message block processing time could be variable; in which
case, it would be more realistic to represent the parameter by
a mean with some distribution, rather than a simple, static
value. Similarly, in practical situations using shared network
resources, the communicationbandwidth and latency will be
variable. Much work has been done trying to characterize
network bandwidth and latency for performance prediction
reasons, but this is out of scope for this paper. Our primary
goal for this paper is to define the model and make prelim-
inary investigations into the overall behavior of optimistic
computation in grid environments.

3.2 Optimism Control Model

For the purposes of this parametric study, the optimism
control model refers to two key aspects of optimistic compu-
tation. Any block message sent to another node may succeed
or fail. Hence, there is a success probability associated with
block messages. For an application that is executing opti-
mistically, this probability is a result of the application’s own
behavior. For modeling purposes, however, we will use the
success probability as an independent variable, and measure
its effect on workload execution. How this should be char-
acterized is also application-dependent, but again, it could
be a simple static value, a distribution, a trace of values, or
whatever representation is most feasible and effective.

Furthermore, the very concept of optimistic computa-
tion means that computation proceeds optimistically without

Figure 2. Node with multiple interfaces.

waiting for some result, or in this case, a return message. In
our model of optimistic computation, this means that more
than one block messages could be outstanding at any given
time. We refer to the number of such outstanding messages
as the level of optimism. Hence, an optimism level of 1 ac-
tually denotes non-optimism; that is to say, for any host-pair
interaction, there is only one outstanding block message at
a time, and the sending host waits until a reply returns. An
optimism level of 2 allows a second block message to be sent
before waiting for a reply to the first block message, and so
on.

3.3 Failure Dependency Model

Clearly when an optimistic block succeeds, the compu-
tation may proceed. When it fails, however, what happens?
This is defined by the failure dependency model.

In general, the computation at Pi must roll-back to some
previous state. Not only is there a processing overhead asso-
ciated with rolling back, it means that some segment of the
computation must then be redone. Roll back is typically ac-
complished by methods for incremental state saving. What
state must be saved and how complicated it is to do this
incrementally is application-dependent.

Furthermore, we must realize that while the workload
model is defined to be a basic, pair-wise interaction, one
particular node may interact with multiple other nodes op-
timistically, as illustrated in Figure 2. Node Pi has opti-
mistic interactions with both Pj and Pr that will determine
the progress on its overall workload. The dependency model
must capture if there are dependencies among the set of pair-
wise interactions. That is to say, it must capture if a failure
on the i, j interface can affect progress on work associated
with the i, r interface. An i, j failure must have some level
of roll-back on the workload associated with that interface,
but it may or may not cause a roll-back on the i, r workload.

3



4 Experimental Approach

With this model of optimistic computation, we proceeded
to build a workload generator that produced sets of funda-
mental, pair-wise interactions in parallel. We then evalu-
ated these workloads in an environment where the network
topology, bandwidths and latencies could all be controlled
to emulate a wide-area grid. This enabled us to run set of ex-
periments across the parameter space defined by our model
and characterize the behavior of optimistic computation on
a grid. We emphasize that this tool is not a simple, event-
driven simulator. We are emulating optimistic computation
where a genuine parallel implementation is generating real
network traffic.

4.1 The Optimistic Workload Generator

Our workload generator was a parallel code written in
MPI using MPICH-2 1.0.3 and TCP/IP. This code was struc-
tured as a state machine that would service events on any in-
terfaces without blocking. For our purposes, events were the
end of a “processing era” or an incoming message. Process-
ing eras were timed against the system clock with compen-
sation being made for interleaved operations, e.g., receiving
a message.

On start-up, this code would initialize from a configura-
tion file that defined the number of nodes, which nodes had
pair-wise communication, and the parameters of optimism
on each interface. To summarize, the following parameters
were defined for the workload generator:

• Number of processing blocks,

• Block processing time,

• Message length,

• Message Block processing time,

• Communication Bandwidth,

• Communication Latency,

• Level of Optimism, and

• Success Probability

Note that the number of processing blocks defined the length
of any computation. This is the only parameter that is the
same across all nodes and interfaces in a computation. All
other parameters could be set on a per interface basis, or to
a default value.

With so many parameters, it is a challenge to design feasi-
ble experiments that can capture and demonstrate their effect
on the performance of optimistic computation. For this rea-
son, we have used a number of simplifying assumptions.

Figure 3. Simple pair topology.

While arguments could be made that more realistic assump-
tions could be used, we argue that the assumptions we make
here are adequate for capturing the fundamental behavior of
optimistic computing in grid environments. In this paper, the
goal is just to quantify the first-order behavior of optimistic
grid computing.

That said, for any one computation, we adopted simple
static values for all parameters: the block processing time,
message length, block message processing time, bandwidth,
latency, success probability, and level of optimism. We also
adopted a very simple failure dependency model. When a
block message failed, it only caused the node to roll-back to
the failed block and restart the computation from that point
(implicitly causing any other outstanding block messages to
be redone). We did not explicitly model the overhead of any
state saving. Furthermore, we assumed that there was no
interaction between interfaces on any one node. That is to
say, failure on one interface did not cause any roll-back on
other interfaces.

Again, while the argument could be made that these as-
sumptions are over-simplifications, these assumptions are
the first step in evaluating optimistic grid computing through
emulation. As we shall see, the data produced by these ini-
tial experiments is considerable, even with these simplifying
assumptions. Refinement of these experiments to address
other assumptions must be left to future work.

4.2 The EmuLab Platform

All experiments were run on an EmuLab system. Emu-
Lab was originally developed at the University of Utah un-
der NSF sponsorship to provide a network emulation facility
[22]. EmuLab is essentially a specialized cluster connected
by a configurable switch. Through a web-based portal, users
can define experiments which entails defining a topology of
nodes. For each node, the entire software environment can
be specified. This includes which operating system will run
on the node, and all installed libraries and software pack-
ages. For this purpose, entire system images can be built.
The network behavior on links between nodes can also be
controlled. Dummynet nodes [15] can be inserted on links

4



whereby the apparent bandwidth and latency experienced on
a given link for all traffic can be set.

When an experiment is actually instantiated, a set of nodes
is dedicated to the experiment, the physical routes among
them are configured in the switch, and the appropriate sys-
tem images are booted. At this point, the user can log-on to
any node in the experiment and work as usual. Of course,
this typically means running scripts and codes to collect ex-
perimental results.

The EmuLab system at The Aerospace Corporation
(which is affectionately called AeroLab) currently consists
32 2.4-GHz. Xeon processors with 512MB of RAM and
80GB of disk. All nodes have multiple Gigabit Ethernet
network interfaces. AeroLab has one Cisco 6509 switches,
which functions as the testbed backplane or programmable
patch panel. Several other servers provide user, file, web,
and serial line service.

For our experiments, FreeBSD 4.7 was run on all nodes,
including the Dummynet nodes. We also note that the TCP
send and receive buffers were set to 16MB in all cases.

4.3 The Experiments

For this paper, we only have space to report on the simple
pair topology shown in Figure 3, which had a Dummynet
node on the single link. On this topology, symmetric ex-
periments were run where both node0 and node1 generated
block messages and responded to each other. Clearly run-
ning the workload generator on both nodes increases the
bandwidth demand on the network and the processing load
on each node, with the processing of blocks and messages
being interleaved.

5 Experimental Results

We now present the experimental results. These exper-
iments ran between 50 seconds, with small messages, high
bandwidth, low latency, high success probability, etc., and
almost 8600 seconds, with large messages, low bandwidth,
and high latency, low success probability, etc. Again for
reasons of space, we will only present the normalized per-
formance where the optimistic performance in a “distributed
environment” is normalized against the best possible non-
optimistic performance in a “local environment. That is to
say, for example, the optimistic performance with 100 msec.
of additional latency will be compared to the non-optimistic
performance with zero additional latency (where all other pa-
rameters are held equal). This normalized comparison will
give us an understanding of how well optimistic execution
can compensate for a distributed environment and produce
performance closer to that of a local environment. Hence,
normalized performance close to 1 means that optimistic
execution in a distributed environment was able to produce

performance close to that of non-optimistic execution in a
local environment.

5.1 Latency-Success Probability Experiments

Figure 4 presents the normalized performance for this
topology essentially across four parameters. Nine graphs are
presented in a two-dimensional matrix. From left to right,
each column contains the results from Optimism Levels 2,
3, and 4. In each column, from top to bottom, the block pro-
cessing and message processing times are set to 100, 200,
and 400 msec. (In each individual graph, the block pro-
cessing time and message processing time are equal.) In
all nine graphs, the message length was 1000 bytes, and the
network bandwidth was 1Gb/sec. In all graphs, 500 blocks
were computed. This produced experiments long enough
to generate useful measurements but without being exces-
sively time-consuming. Each graph shows the relative per-
formance for six different Success Probabilities (0.50, 0.65,
0.80, 0.90, 0.95, and 0.99) as a function of six network la-
tencies (0, 20, 50, 100, 200, and 400 msec.). These network
latencies are one-way; not round-trip. (A one-way network
latency of 400 msec. may seem huge, but AeroLab’s Dum-
mynet nodes were provisioned to emulate network latencies
up to geosynchronous orbit.) With this presentation, we can
get an understanding of how four parameters in our model –
level of optimism, block/message processing time, latency,
and probability of success – affect performance. We will
call this the Latency-Success Probability experiment.

This normalized performance is shown in Figure 4 and
provides an important insight. For the 100 msec. processing
time case (top row), optimism (with a good probability of
success) can approach the performance of non-optimistic,
local computation. However, as additional network latency
is added, the normalized performance drops off. As higher
levels of optimism are used, though, performance improves
and is closer to that of local execution. (We see that even
through Opt Level 4 with a network latency of 400 msec. can
produce a speed-up of 4x over non-optimistic execution in
a distributed environment, this is not enough to completely
compensate for the network latency and normalized perfor-
mance is still below 80%.) When the processing times are
higher, and closer to that of the network latency (bottom
row), we see that the normalized performance primarily de-
pends on the success of probability. Even though lower
speed-ups are realized, it is enough to approach the perfor-
mance of local execution – just so long as the probability of
success remains high.

5.2 Bandwidth-Message Length Experiments

The experiments so far have focused on the effects of
latency and success probability on optimistic speed-up. We

5



Opt Level 2 Opt Level 3 Opt Level 4

The line key for all graphs is at left. In each graph, the Processing
and Message-Processing Times are equal. In each column, from
top to bottom, these times are 100, 200, and 400 msec.

Figure 4. Normalized performance for the Symmetric Pair, Latency-Success Probability experiments.

Opt Level 2 Opt Level 3 Opt Level 4

The line key for all graphs is at left.

Figure 5. Normalized performance of the Symmetric Pair, Bandwidth-Message Length experiments.

6



now look at the effects of message size and bandwidth in
the symmetric pair topology. For these experiments, we
fix the block processing and message processing times at
50 msec. and the network latency at 200 msec. (This will
allow optimistic execution to demonstrate a broader range of
effect.) The success probability is fixed at 0.90. Again, 500
processing blocks were computed. Here, message lengths
and network bandwidth are varied. Message lengths of 1
KB, 3 KB, 10 KB, 30 KB, 100 KB, 300 KB and 1 MB
are used. Network bandwidths of 100 Kb/s, 1 Mb/s, 10
Mb/s, 100 Mb/s and 1 Gb/s are used. Given the range of
message lengths and bandwidths used, we did not run all
combinations – sending 1 MB messages over a 100 Kb/s
link would take just too long. Hence, we only ran messages
up to 3 KB over 100 Kb/s links, messages up to 30 KB over
1 Mb/s links, messages up to 300 KB over 10 Mb/s links,
and messages up to 1 MB over 100 Mb/s and 1 G/s links.

Figure 5 shows the performance results normalized to that
in a “local” environment, i.e., the performance using a band-
width of 1 Gb/sec. Here we see that increasing the level of
optimism increases the general relative performance. This
general performance does not, however, approach the level
of optimism since there are less spare processing cycles on
each node. We also see that for the larger messages and
higher bandwidths, the severe bottleneck in performance
begins with messages of 100 KB. This should not be sur-
prising since increasing the level of optimism also increases
the bandwidth demand, thereby exacerbating the drop-off
in performance seen in the non-optimistic performance for
messages larger than 100 KB. What is also pronounced is
the drop-off in performance for the slower bandwidths, e.g.,
100 Kb/sec. and 1 Mb/sec. Here, however, the bandwidth
demand is most likely exceeding the limited available band-
width.

Hence, as long as the middleware and the network can
meet the bandwidth demand, optimism can actually produce
significant speed-ups. As soon as the network bandwidth is
saturated, however, performance sinks precipitously – in the
worst cases, below the non-optimistic performance.

6 Discussion and Conclusions

The goal of this work was to shed some light, or bound
the discussion, on how effective optimistic computation can
be in distributed environments and under what conditions
– and not just to understand this particular model of opti-
mism or the idiosyncrasies of this particular implementation.
That said, the results provided by this model of optimism,
workload generator and EmuLab experiments are both in-
structive, useful and problematic at the same time. We can
clearly make a number of qualitative observations.

In these experiments, we see the effect of processing
times, latency, and available cycles on a host. If the block

and message processing times are large compared to the mes-
sage latency, then optimism is less beneficial. Also, if a host
has a heavier processing load, such as in the square topology
where each node symmetrically interacts on two interfaces,
then optimism is less beneficial unless latencies are much
higher. That is to say, optimism is most beneficial when the
network latency dominates in the processing cycle.

This may not be surprising but these results do serve
to confirm our qualitative intuitions about how optimism
should work. To summarize in a more concise way, if the
processing time requires 1/nth of the processing cycle (and
the rest of the cycle is network latency), then an optimistic
speed-up of up to n is possible, if the processor and net-
work do not become saturated, and the probability of suc-
cess is good with a low failure overhead. We have seen
this – using a real parallel code, running over a real network
protocol. Likewise, we have seen break-even relative perfor-
mance when the latency is only 1/6th of the processing cycle
time with a 90% probability of success that produces 85%
of “local” performance. The many factors governing opti-
mistic behavior means that there is a significant range where
optimism can exceed break-even performance and provide
significant speed-ups.

The next step naturally it would be useful to be able to
make accurate predictive statements for specific applica-
tions using optimistic execution: given the parameter val-
ues that characterize its behavior, how much speed-up could
be routinely realized? To be able to make such predictions
accurately, however, will require much more work. As we
have already noted, a number of assumptions were made to
make the experiments presented here feasible. The use of
static processing times, message lengths, success probabili-
ties, and also network bandwidth and latency, all contribute
to the quantitative results seen. Distributions of values could
be used for these variables, and network traces could be “re-
played” to produce competing traffic with different results.
The failure dependency model was also something we did
not investigate thoroughly. It seems unlikely, however, that
such refinements would completely eliminate all possible
optimistic speed-up, rather it would only move where the
break-even points come and the degree to which benefits
are seen. Quantifying such differences experimentally is a
worthy future endeavor.

Finally we wish to emphasize that the ultimate goal of this
work is to enable grid applications to become more latency-
tolerant using techniques such as optimistic computation.
Clearly this is a hard question that can best be answered
by direct experience. Actually evaluating applications such
as optimistic mesh generation, however, may involve even
more work than reported in this paper. Nonetheless, as grids
and service architectures become more commonplace, these
evaluations will be done and the fundamental technique of
optimistic computation will be put to use.

7



Acknowledgments

This work was supported by NSF EIA-0203974: Mesh
Generation and Optimistic Computation on the Grid,
through a subcontract with the College of William and Mary,
and by the Aerospace Parallel Computing MOIE project.
The author gratefully acknowledges the many conversations
with Eric Coe and James Stepanek on the use of AeroLab
and its network behavior.

References

[1] Allen, Dramlitsch, Foster, Karonis, Ripeanu, and Sei-
del. Supporting efficient execution in heterogeneous
distributed computing environments with cactus and
globus. In Supercomputing, 2001.

[2] A. Back and S. J. Turner. Transformations for the
Optimistic Parallel Execution of Object-Oriented Pro-
grams. In International Conference on Parallel Object-
Oriented Methods and Applications (POOMA), 1996.

[3] R. Bubenik and W. Zwaenepoel. Semantics of opti-
mistic computation. In Proceedings of the 10th Inter-
national Conference on Distributed Computing Sys-
tems (ICDCS), pages 20–29, Washington, DC, 1990.
IEEE Computer Society.

[4] R. Bubenik and W. Zwaenepoel. Optimistic make.
IEEE Trans. on Computers, 41(2):207–217, February
1992.

[5] N. Chrisochoides, C. Lee, and B. Lowekamp. Mesh
generation and optimistic computation on the grid.
In V. Getov, M. Gerndt, A. Hoisie, A. Malony, and
B. Miller, editors, Performance Analysis and Grid
Computing, pages 231–250. Kluwer Press, 2003.

[6] C. Cowan. Optimistic Programming in PVM. In 2nd
PVM User’s Group Meeting, May 1994.

[7] Crispin Cowan and Hanan Lutfiyya. A wait-free al-
gorithm for optimistic programming: HOPE realized.
In International Conference on Distributed Computing
Systems, pages 484–493, 1996.

[8] Electric Communities. The E Extensions to Java.
www.erights.org/history/original-e/datasheet.html.

[9] R. M. Fujimoto. Parallel discrete event simulation.
CACM, 33:31–53, 1990.

[10] D.R. Jefferson. Virtual Time. ACM Trans. Prog. Lang.
Systems, 7:405–425, 1985.

[11] H. Lutfiyya and C. Cowan. Optimistic Language Con-
structs. In Workshop on Research Issues in the In-
tersection of Software Engineering and Programming
Languages, 1995. At ICSE-17.

[12] Namprempre, Sussman, and Marzullo. A Framework
for Optimistic Execution in CORBA Environment.
www-cse.ucsd.edu/ cnamprem/concurrency.ps, 1999.

[13] D. Petrou. Cluster scheduling for explicitly speculative
tasks. PhD thesis, CMU-PDL-04-112, Dept. of Elect.
and Comp. Eng., Carnegie Mellon Univ., 2004.

[14] Martin C. Rinard. Effective Fine-Grain Synchroniza-
tion for Automatically Parallelized Programs Using
Optimistic Synchronization Primitives. ACM Trans-
actions on Computer Systems, 17(4):337–371, 1999.

[15] Luigi Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM Computer Com-
munication Review, 27(1):31–41, 1997.

[16] Jeffrey S. Steinman. The WarpIV Simulation Kernel.
In PADS ’05: Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation,
pages 161–170, Washington, DC, USA, 2005. IEEE
Computer Society.

[17] J.S. Steinman, C.A. Lee, L.F. Wilson, and D.M. Nichol.
Global virtual time and distributed synchronization. In
IEEE 9th Workshop on Parallel and Distributed Simu-
lation, pages 139–148, June 14–16 1995. Lake Placid,
NY.

[18] Tang, Perumalla, Fujimoto, Karimabadi, Driscoll, and
Omelchenko. Optimistic simulations of physical sys-
tems using reverse computation. Simulation, 82(1):61–
73, 2006.

[19] Stephen J. Turner. Optimistic Network Computing and
its Performance Control. In International Conference
on Supercomputing, Workshop on Performance Data
Mining, 1997.

[20] Wallach, Hsieh, Johnson, Kaashock, and Weihl. Opti-
mistics active messages: A mechanism for scheduling
communication and computation. In PPoPP, 1995.

[21] M. Weiner and Vijay Garg. Optimistic Distributed
Computation via Code Undo. ECE Parallel and Dis-
tributed Systems Lab TR-PDS-2004-007, University
of Texas, 2004. Available at maple.ece.utexas.edu.

[22] White et al. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proc. of
the Fifth Symp. on Operating Systems Design and Im-
plementation, pages 255–270, Boston, MA, December
2002.

8


