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Abstract

Neurosurgical resection is a therapeutic intervention in
the treatment of brain tumors. Precision of the resec-
tion can be improved by utilizing Magnetic Resonance
Imaging (MRI) as an aid in decision making during Im-
age Guided Neurosurgery (IGNS). Image registration
adjusts pre-operative data according to intra-operative
tissue deformation. Some of the approaches increase
the registration accuracy by tracking image landmarks
through the whole brain volume. High computational
cost used to render these techniques inappropriate for
clinical applications.

In this paper we present a parallel implementation of
a state of the art registration method, and a number
of needed incremental improvements. Overall, we re-
duced the response time for registration of an average
dataset from about an hour and for some cases more
than an hour to less than seven minutes, which is within
the time constraints imposed by neurosurgeons. For
the first time in clinical practice we demonstrated, that
with the help of distributed computing non-rigid MRI
registration based on volume tracking can be computed
intra-operatively.
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1 Introduction

Cancer is one of the leading causes of death in USA
and around the world. The American Cancer Society
estimated that 12,700 people were expected to die from
brain and nervous system cancer alone, in 2005 [Amer-
ican Cancer Society 2005]. Medical imaging, and Mag-
netic Resonance imaging (MRI) in particular, provide
great help in diagnosing the disease, and, when nec-
essary, facilitate minimally invasive brain tumor resec-
tion. The determination of the optimal limits during
the surgical resection of intrinsic brain tumors is partic-
ularly challenging due to the difficulty of distinguishing
tumor from essential brain by visual inspection. The
introduction of intraoperative imaging aided by near
real-time deformation, or registration, of preoperative
datasets can allow the surgeon to base their intraoper-
ative decisions on quantitative analysis in addition to
his/her experience and intuition.

The primary need for the described research is moti-
vated by intraoperative deformation of the brain tis-
sue as the tumor resection progresses. Figure 1 shows
that such deformation can be quite significant, thus pre-
operative imaging data becomes invalid. It has been
shown that intra-operative Magnetic Resonance Imag-
ing (MRI) can capture brain deformation and can be ef-
fectively used to guide the registration process [Ferrant
2001; Rexilius 2001; Warfield et al. 2002; Clatz et al.
2005]. Nowadays, Magnetic Resonance Therapy (MRT)
systems are becoming more and more ubiquitous. In
this paper we focus on the computational challenges of a
displacement-based approach to registration of preoper-
ative MRI to intraoperative data, as presented in [Clatz
et al. 2005]. This method uses landmark tracking across
the entire image volume, thus makes the non-rigid reg-
istration more accurate, but computationally expensive
as compared to similar methods which are using surface
tracking [Ferrant 2001]. Initial intra-operative experi-
ments at Brigham and Women’s Hospital (BWH) and
at the College of William and Mary (W&M) using a 4-
processor cluster identified two problems with the paral-
lel implementation of the non-rigid registration method
described in [Clatz et al. 2005]:

1. The execution time of registration is very high,
and varies between 40 minutes to more than an
hour (depending on the input), for a single intra-
operative MR scan;

2. The scalability of the original code is poor due
to computationally expensive sequential processing
components.



Figure 1: Same MRI volume slice before (left) and after
(right) tumor resection.

The execution time of the registration application on
high performance platform at Brigham and Women’s
Hospital (BWH-HPC , see Section 5) exceeds by far the
time surgeon can wait to proceed with the tumor resec-
tion. During neurosurgery a whole brain MRI acquisi-
tion can be performed within 4 minutes. We would like
the non-rigid registration of the preoperative data into
the intra-operative configuration to take no more than
an intra-operative MRI would take, and the less time
it takes the better. There are two ways to achieve this
objective: (1) develop equally accurate, but less com-
putationally demanding models, or (2) use scalable and
more efficient implementations of the methods we have.
In this paper we explore the latter approach.

The registration method in [Clatz et al. 2005] formulates
brain shift as a functional minimization problem using
Partial Differential Equations (PDEs) whose solution is
approximated by Finite Element Methods (FEM). In
the specific model the functional can be decomposed
into a similarity energy and a regularization energy. The
similarity energy (i.e., boundary conditions of the PDE)
is computed by a block (or landmark/feature) matching
algorithm [Clatz et al. 2005]. This is the most computa-
tionally intensive step of the registration process. Fig-
ure 2 depicts the break-down of the registration time
for seven different data sets on W&M-HPC (see Sec-
tion 5) using the original PVM [Belguelin et al. 1993]
implementation. In the same Figure, for comparison
purposes, we present the total execution time of the new
scalable and more portable MPI [Snir and Gropp 1998]
code on multiple clusters (see Section 5) with a large
( > 100) number of single-core processors. The data
for the new version do not include pre-processing costs,
because the code is restructured to perform all the pre-
processing as soon as it has all required input. This hap-
pens much before the arrival of the first intra-operative
image and thus the pre-processing time is masked by
the time it takes to prepare the patient for the surgery.

Other less computationally intensive steps are: (1)
the discretization (or mesh generation) of the domain,
which is part of the pre-processing (see Figure 9) and
(2) the solution of the (non-)linear system of equations
that result from the discretization of the PDE. In [Fe-
dorov et al. 2006] we presented a sequential method
which addresses the mesh generation problem within

1 1’ 2 2’ 3 3’ 4 4’ 5 5’ 6 6’ 7 7’
0

500

1000

1500

2000

2500

3000

3500

4000

Cases

T
im

e 
(s

ec
)

preprocessing
parallel BM
solver

Figure 2: Breakdown of the execution time of: (1) the
original parallel non-rigid registration application for
cases i = 1, 7 on W&M-HPC and (2) its new implemen-
tation for the same cases i′, i = 1, 7, but using eight
clusters with 269 processors in two different adminis-
trative domains.

the time constrains imposed by current Image Guided
Neuro-Surgery (IGNS) procedures. A survey of paral-
lel mesh generation methods that could address future
needs of IGNS methods is presented in [Chrisochoides
2005]. Finally, for the the parallel solution of the (non-
)linear system of equations, there is vast literature and
some efficient publicly available software libraries like
PETSc [Argonne National Laboratory 2005]. These two
relevant topics (i.e., mesh generation and solution of sys-
tems of equations) are out of the scope of this paper.

In this paper we focus on two parallel and distributed
computing issues pertinent to the productivity and ef-
fectiveness of neurosurgeons during IGNS procedures:
(1) performance and (2) ease-of-use of the non-rigid reg-
istration procedure. The first issue introduces two well
known and difficult problems: (a) load balancing and
(b) fault-tolerance. The scientific computing commu-
nity (including our group) has developed application-
specific load balancing libraries and general purpose
software runtime systems [Basermann et al. 2000; Yuan
et al. 1997; Devine et al. 2000; Decker 2000; Friedman
et al. 1997; Kalé and Krishnan 1993; Kohn and Baden
2001; Barker et al. 2004]. The issue of fault tolerance
for parallel and distributed computing has also been ad-
dressed previously [Fagg and Dongarra 2000; Sankaran
et al. 2005; Chakravorty and Kalé 2004; Elnozahy et al.
2002]. We do not use the existing software for load bal-
ancing and fault tolerance for the following three rea-
sons: (1) the benefits these systems offer do not justify
the additional complexity required to rewrite and main-
tain the code; (2) the smaller the number of third party
libraries the registration code uses the easier its distri-
bution becomes within the medical community; (3) the
computation consists of separate phases, each of which
requires a different approach to fault tolerance. We be-



lieve that customized application-specific load balancing
and fault tolerance are most appropriate for this appli-
cation.

Using a multi-level dynamic load balancing method we
describe in Section 4.2 and fault-tolerance approach we
describe in Section 4.3 we are able to safely run the reg-
istration application on multiple CoWs. As a result we
have reduced the execution time of the parallel block
matching by two orders of magnitude (i.e., less than
30 seconds for our last case) as compared to the exe-
cution time we get on BWH-HPC and W&M-HPC. In
Section 4.4 we address the ease-of-use which help us to
farther reduce the response time of the registration pro-
cedure by eliminating human intervention during the
distributed non-rigid registration phase. We were able
to reduce the involvement and mundane work of the
research personnel of the hospital during an IGNS pro-
cedure and save (in addition to improvements from dy-
namic load balancing) up to 30 minutes. We present
detailed performance evaluation data in Section 5.

2 Image guided neurosurgery

Neurosurgical resection is the primary therapeutic in-
tervention in the treatment of cerebral gliomas [Black
1998]. The goal of tumor resection is maximal removal
of neoplastic tissue from the patient brain while incur-
ring minimal damage to healthy structures and regions.
The resection procedure is greatly complicated by the
inability of the human eye to distinguish abnormal from
healthy tissue for certain kinds of tumors. At the same
time, data collected with MRI techniques often permit
good approximation of the tumor location and bound-
aries. The advantages of MRI include high resolution
of images and absence of known negative side effects on
patients health. MRI gives information not only about
the location of tumors, but recent advances in MRI al-
low to identify some of the functions certain parts of the
brain fulfill [Golby et al. 2002], and about the connec-
tivity between different parts of the brain [Talos et al.
2002]. As an example, Figure 3 depicts different struc-
tural and functional data derived with MRI overlapped
with the high-resolution greyscale image. Functional
MRI (fMRI) studies allow to identify most important
regions of brain (e.g., those responsible for motor or
speech activity). Such areas should be carefully avoided
during the surgery as much as possible. Diffusion Ten-
sor MRI (DT-MRI) help to identify major fiber tracts,
which connect cortex (grey matter) areas of brain. This
is important, because partial disability of the patient
can result not only from the damage of cortex, but also
because of the disruption of the white matter connectiv-
ity. Depending on the complexity of the case, some or all
of this information is usually collected before the surgery
in order to identify as precise as possible the location of
tumor, and to prepare the intervention strategy so that
the most important healthy parts of the brain remain
intact.

Unfortunately, as we have mentioned earlier, significant
deformation of brain is possible during the course of
the surgery. In order for pre-operative data to be use-
ful, it has to be deformed to account for intra-operative
changes. The forces which act on the brain matter dur-
ing surgery as well as the biomechanical properties of
the live tissue are hard to derive, which complicates di-
rect modeling of tissue deformation. Most approaches
are displacement-based . Sparse displacement field is de-
rived with intraoperative imaging, and is used to guide
the volume deformation, e.g., by using a patient-specific
biomechanical model for such regularization. One of
the approaches to acquire the sparse displacement field
is to use open MR scanner, which allows to perform
the surgery while the patient is being placed within the
open magnet. One such scanner shown on Figure 3 in
the inventory of Brigham and Women’s Hospital (BWH)
is used regularly for image guided prostate biopsy and
neurosurgery cases [Warfield et al. 2005]. Images ob-
tained with open scanner are not as high resolution
as preoperative images, and may be noisy. Functional
and Diffusion Tensor MRI [Golby et al. 2002; Talos
et al. 2002] (see Figure 3, left) cannot be collected intra-
operatively, because of procedure time and scanner reso-
lution constraints. However, low resolution brain scans
can be obtained relatively quickly and become handy
for measuring the amount of residual tumor tissue dur-
ing neurosurgical resection, which are completed within
open MR scanner.

As the tumor is being resected progressively, and the
surgeon is approaching the neighboring healthy tissue,
more brain deformation occurs. Consequently, discrep-
ancy between the pre-operative images and the reality is
increasing. The research currently underway at BWH is
attempting to use intra-operative MR data to track the
brain shift and use this information for non-rigid regis-
tration of multi-modal preoperative [Ferrant 2001; Clatz
et al. 2005] data. However, the registration results can
be useful only if they are delivered to surgeons as soon as
possible after the acquisition of an intra-operative scan:
delays must be minimal during the open skull surgery.
In the next section we concentrate on the computational
challenges of the non-rigid registration approach [Clatz
et al. 2005].

3 Computational aspects of non-rigid
FEM registration

The approach to non-rigid registration which has been
implemented, optimized and evaluated in this paper has
previously been described in [Clatz et al. 2005; Archip
et al. 2006]. The reader is encouraged to study those pa-
pers as they contain the detailed discussion and math-
ematical formulation of the implemented algorithm. In
the present paper we focus only on computational chal-
lenges of the method, and give a brief outline of the
algorithm for the sake of completeness. The registra-
tion algorithm consists of three main steps [Clatz et al.



Figure 3: Left: MRI slice overlayed with fMRI activation regions, DT-MRI tractography, and segmentations of tumor
and other intra-cranial areas; right: 0.5T open MR scanner (Signa SP, GE Medical System, Brigham and Women’s
Hospital).

2005].

1. The patient-specific model has to be generated. In
the context of the application, the patient-specific
model corresponds to the coarse mesh of segmented
intra-cranial cavity of a patient. The segmenta-
tion [Archip et al. 2006] is prepared based on pre-
operative imaging data. Once the patient is placed
in the open magnet, the position of his/her head
is fixed and does not change during the course of
the surgery. Rigid registration [Archip et al. 2006]
is used to rigidly align the pre-operative data with
the patient’s position.

2. Sparse displacement field is estimated from the
intra-operative scan using block matching. It is
computed based on the minimization of the corre-
lation coefficient between regions, or blocks, of the
pre- and intra-operative images.

3. A finite element model of the intra-cranial cav-
ity with linear elastic constitutive equation is ini-
tialized with the sparse displacement field. Ap-
proximation and interpolation formulations of the
registration problem are combined in an iterative
hybrid method which was described by Clatz et
al. in [Clatz et al. 2005]. This combined approach is
robust enough to tolerate and reject outliers in the
beginning, and at the same time has been proven
to converge toward the interpolation formulation.

The result of this three step non-rigid registration is a
displacement field, which for each voxel1 of the floating
image defines a displacement vector which maps it to
the corresponding voxel of the fixed image.

While addressing the computational issues of the reg-
istration procedure, it is important to understand the
separation of time-critical components of the computa-
tion. In the context of the application we define the

1Voxel, short for “volume pixel” is the smallest distin-
guishable component of a 3D image.

Table 1: Execution time (sec) of the different phases for
the non-rigid registration procedure (see Figure 9).

ID Phase

A B C C
′

D
1 7.41 170.25 17.06 15.95 189.67
2 1.43 53.21 38.8 32.23 144.54
3 1.17 97.26 43.98 33.62 134.79
4 1.32 116.89 32.47 32.40 156.65
5 1.07 151.55 27.51 26.08 145.39
6 1.3 109.33 27.91 27.01 142.7
7 2.46 116.89 32.53 29.08 159.49

response time as the time between the acquisition of
the intra-operative scan of the deformed tissue and the
final visualization of the registered preoperative data on
the console in the surgery room. All of the steps, which
may be solved before the fixed image is acquired, have
to be separated and pre-computed, so that the response
time is minimized. We present the timeline of a typical
surgery scenario in Figure 9.

Intra-cranial cavity has to be segmented [Archip et al.
2006] from the high resolution MRI of the patient be-
fore the surgery. On the surgery day, once the first
intra-operative scan is acquired (before the resection
starts), the pre-operative data has to be rigidly reg-
istered. According to the transformation matrix ob-
tained from the rigid registration [Archip et al. 2006],
segmented intra-cranial cavity mask has to be updated,
so that no intra-operative segmentation of the registered
data is required. Next we generate a coarse tetrahedral
mesh [Fedorov et al. 2006] model of the intra-cranial
cavity. The block matching part of the algorithm is
initialized and the relevant blocks are selected. As evi-
dent from Figure 9 and Table 1, initialization is a time-
consuming part of the method. However, the time be-
tween the acquisition of the first intra-operative scan
and the beginning of the resection is usually more than
an hour, which is sufficient to complete the initialization
(see Figure 9).



Once the intra-operative image which shows brain shift
is acquired, we can proceed with the deformation com-
putation. Note, that the rigid component of the defor-
mation (translation and rotation) has already been elim-
inated by rigid registration of the preoperative data. We
seek to find a deformation field, which for each voxel of
the preoperative (floating) image identifies its mapping
within the intraoperative (fixed) image. Block matching
is a well-established method in computer vision [Bierling
1988]. This method is based on the assumption that de-
formations result in translation for some portions of the
image, and that these translations are relatively small.
We first subdivide the floating image into blocks of fixed
size, as shown in Figure 4, left. Given such a block, we
need to find the most similar block in its neighborhood.
The search is performed within the fixed image, and is
constrained by the search window of fixed size around
the block (see Figure 4, right). The location of the block
within its window which maximizes its cross-correlation
with the corresponding window volume is selected as
the candidate displacement.

The displacement resulting after block-matching require
additional processing to reject outliers, because of the
noise present in the image, and the reader is referred
to [Clatz et al. 2005] for the details of iterative outlier
rejection scheme. The final displacement can be applied
to the preoperative fMRI and DT-MRI data.

Block matching calculation is the most time-consuming
computational component of the registration procedure.
It is also straight-forward to parallelize: matches for
different blocks of the image can be computed inde-
pendently in parallel provided the processing elements
(PEs) are initialized with the fixed and floating images.

4 Real-world enabled non-rigid FEM
registration

Neurosurgeries at BWH are performed regularly within
open MR scanner at the discretion of the neurosur-
geon. The scanner is used mostly for adjusting the pre-
determined resection path and tracking residual tumor
tissue during the course of the intervention. Non-rigid
registration of the pre-operative MRI is not a part of
existing FDA approved protocols, but is indeed a very
promising direction of future improvement of the pro-
cedure. It is hard to evaluate its usefulness without
practical experience with near to real-time delivery of
the results to neurosurgeons during the course of inter-
vention, and this is exactly what we aim to provide at
this point. The details of the IGNS procedure have been
previously presented in [Archip et al. 2006]. In this sec-
tion we address the challenges which we have to address
in order to make this clinical study possible.

The evaluation of the implementation of the non-rigid
registration method presented in [Clatz et al. 2005] on
seven cases indicates that the execution time is dom-
inated by the sparse displacement field computation.

Figure 4: Highlighted is a block of the floating image
on the left and the corresponding window of the fixed
image on the right.

Figure 2 depicts the breakdown on the execution time
of our original implementation on the dedicated W&M-
HPC workstation which is similar to the BWH-HPC
platform at BWH, where the high execution times were
observed first. The execution time can be improved by
utilizing parallel computational resources. However, by
moving the application from a homogeneous and small
number of dedicated computers to large scale hetero-
geneous and time-shared clusters, we have to address
three practical problems: (1) load-balancing, (2) fault-
tolerance, and (3) ease-of-use.

4.1 Multi-level distributed block matching

Our initial goal was to introduce minimal changes to the
original implementation presented in [Clatz et al. 2005].
However, it was more important to solve the practical
problems, otherwise the code could not be usable dur-
ing IGNS. As we show in the subsequent sections, this
was not possible to achieve with the simple approach
we have tried, and major rethinking and restructuring
of the initial code was required. In this section we give a
high level overview of the new distributed block match-
ing implementation. The benefits of our approach will
be evident from the subsequent sections.

The processing required by the block matching is em-
barrassingly parallel. In order to find a match for a
given block, we need the block center coordinates, and
the areas of the fixed and floating images bounded by
the block matching window [Clatz et al. 2005]. The
fixed and floating images are loaded on each of the pro-
cessors during the preprocessing step, as shown in Fig-
ure 9. The total workload is maintained in a work-pool
data structure. Each item of the work-pool contains the
three coordinates of the block center (total number of
blocks for a typical dataset is around 100,000), and the
best match found for that block (in case the block was
processed; otherwise that field is empty). We use the
master-worker computational model to distribute the
work among the PEs.

However, because of the scarce resource availability we
have to be able to deal with computational clusters
which belong to different administrative domains. In



order to handle this scenario, we use hierarchical multi-
level organization of the computation with master-
worker model within each cluster and work-stealing for
inter-cluster load balancing. We select a separate mas-
ter node within each cluster. Each master maintains a
replica of the global work-pool, and is responsible for
distributing the work according to the requests of the
nodes within the assigned cluster, and communicating
the progress of work completion to the other master(s).
We use MPI for intra-cluster communication with the
master node, and TCP sockets for inter-cluster work-
pool synchronization (we assume there are open ports
in the firewalls of the computing clusters).

Adjustable parameters of our model are (i) the amount
of work (number of blocks) which is assigned by a mas-
ter to a processor in response to a work request; (ii) fre-
quency of the synchronization communication between
masters to keep the work-pool replicas coherent. At one
extreme, we can completely eliminate the communica-
tion by static assignment of work to all the nodes in the
beginning of the computation, while on the other ex-
treme we can request work one block at a time, and syn-
chronize work-pools after completing each match calcu-
lation. These parameters were adjusted experimentally.
In the next section we explore different approaches to
work assignment, and elaborate on how the hierarchi-
cal model allows us to address the practical problems
associated with the implementation.

4.2 Load balancing

Load balancing is one of the primary concerns during
the parallel block matching phase of the algorithm. The
work can be assigned to the PEs in the beginning by
distributing block centers and the two input images.
Communication is required only for the collection of the
results in order to assemble the final solution. The com-
putation is highly scalable. As evident from Table 2, we
see a significant reduction in the runtime as we increase
the number of processors involved. However, the same
Table shows that the reduction is not proportional to
the number of processors we use, because the scalabil-
ity of our application is hindered by load imbalances.

Table 2: Execution time (sec) of sparse displacement
field computation with static work distribution on WM-
SciClone cluster.

ID Number of processors
40 80 120 160 198 240

1 377.82 199.96 142.14 110.53 91.33 60.84
2 173.41 101.49 158.08 89.72 52.75 29.70
3 316.20 159.34 105.50 81.40 65.28 53.54
4 407.82 218.86 150.56 113.17 93.67 71.17
5 353.96 183.20 127.19 105.06 83.43 57.09
6 298.97 151.16 104.72 81.30 64.13 49.53
7 300.99 151.48 105.10 80.11 64.37 49.49

The imbalance of the processing time across different
nodes involved in the computation is caused by our

inability or difficulty to predict the time required per
block of data on a given architecture. If we have
that processing time information before we start block
matching, we can perform balanced assignment and
minimize the idle time. First, there are data-dependent
sources of load imbalance. Block matching is performed
only for those blocks, centers of which are located within
the segmented mask. Computational costs of block
matching are lower for windows which are partially out-
side the segmentation compared to those which are com-
pletely internal. However, the small fraction of blocks
located near by the boundary has a small impact on
the overall imbalance. The platform-dependent sources
of imbalance are more challenging. They are caused by
the heterogeneous nature of the PEs we use. Also, some
of the resources may be time-shared by multiple users
and applications, which affect the processing time in an
unpredictable manner.

The static load balancing approach uses fixed data equi-
distribution of work among the processors of a single
or multiple clusters. This approach is not applicable
for heterogeneous and time-shared environments. A
straightforward extension of the static equi-distribution
assignment should take into account the difference in
processing time for blocks on different platforms. Ex-
perimental data we have collected confirmed, that the
CPU clock speed is a good predictor for the processing
time of a single block in a heterogeneous environment.
We implemented heterogeneous static load balancing,
which assigns blocks proportionally to the CPU clock
speed. Figure 5 depicts the execution of the non-rigid
registration using heterogeneous assignment and (retro-
spectively) the intra-operative image from case 7.

However, static work assignment of any kind is effec-
tive only when we are able to predict the processing
time for a unit of work, which is difficult to accom-
plish if the computation is performed in a time-shared
environment. The time-critical nature of the computa-
tion forces us to utilize all possible computational re-
sources which might be available during the course of
the surgery. At least a portion of the high end worksta-
tions available on time-shared clusters are usually un-
derutilized. Also, we cannot rely on the availability of
the dedicated cluster resources during the surgery given
the statistics on wait times as shown on Figure 6. A ded-
icated cluster can only be made available for the sole use
of our computation if we ask the system administrator
to intervene, in which case from 2 to 5 days are required
to drain the job queues. Such an advance notice is not
always available. Furthermore, the resources are under-
utilized during the wait time, and the surgery may even
be canceled in the last moment. This suggests, that
in order to deliver the registration results in a timely
fashion we need to employ all available dedicated and
time-shared resources; their efficient utilization requires
dynamic load balancing.

Multi-level dynamic load balancing method which we
adopted for parallel block matching is different from
the static multi-level graph partitioning methods pre-
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Figure 5: Processing time breakdown, 144 nodes of WM-SciClone and 29 nodes of WM-CSLab. Static weighted
work assignment (left, 615 sec) is not effective in time-shared environment of WM-CSLab. Dynamic load balancing
alleviates this problem (right, 35 sec).
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Figure 6: Average wait-in-queue time statistics, as ob-
served over last 4.5 years on WM-SciClone cluster.

sented in [Abou-Rjeili and Karypis 2006], and is closer
to the hierarchical partitioning approaches described
in [Teresco et al. 2005; Faik 2005]. We use initial
rough estimation of the combined computational power
of each cluster involved in the computation (based on
CPU clock speed) for the weighted partitioning of the
work-pool and initial assignment of work. However,
this is a rough “guess” estimation, which is adjusted
at runtime using a combination of master/worker and
work-stealing [Blumofe et al. 1995; Wu 1993] methods.
As we described earlier, each master has a copy of the
global work-pool, which are identical in the beginning
of the computation. The portion of the work-pool as-
signed to a specific cluster is partitioned in meta-blocks
(a sequence of blocks), which are passed to the cluster
nodes using the master-worker model. As soon as all the
matches for a meta-block are computed, they are com-
municated back to the master, and a new meta-block is
requested. In case the portion of the work-pool assigned

to a master is processed, the master continues with the
“remote” portions of work (i.e., those, initially assigned
to other clusters). As soon as the processing of a “re-
mote” meta-block is complete, it is communicated to
all the other master nodes to prevent duplicated com-
putation. As apparent from Figure 5, this approach
works nicely even when we have clusters which operate
in the time-shared mode, and gives good balance of work
within a particular cluster and between the clusters.

4.3 Fault tolerance

As we have shown in the previous sections, non-rigid
registration and especially its block matching compo-
nent, are computationally demanding. Our goal is to
show that the results can be delivered intra-operatively.
We think it is absolutely necessary to provide at least
minimum fault tolerance in the code in order to min-
imize the possibility of any delay after the deformed
intra-operative image is acquired.

Although our implementation is not restricted to two
computational clusters, only W&M CSLab computers
(further referred to as WM-CSLab) and the W&M Sci-
Clone cluster [College of William&Mary 2006] (fur-
ther referred to as WM-SciClone) were available and
used for the purposes of our study. We perform data
pre-processing sequentially on the fastest machine at
the WM-CSLab, parallel block matching uses combined
computational facilities of the WM-CSLab and WM-
SciClone, and the sequential FEM solver is executed
sequentially on the fastest machine at WM-CSLab (the
web server is executed on a separate machine, which
is not the fastest machine available; this is happening
because of the site-specific technical details). Our im-
plementation is completely decoupled, which provides
the first level of fault tolerance, i.e., if the failure takes
place at any of the stages, we can seamlessly restart
just the failed phase of the algorithm and recover the
computation.



Figure 7: The Graphical User Interface (GUI) of the
web-service for the parallel and distributed non-rigid
registration application.

The communication between different clusters is han-
dled via TCP sockets. In case of a hardware problem
on one of the clusters, the rest of the unaffected sites can
continue with the execution —a monolithic code which
uses a conventional MPI implementation, would crash
in case of a single node failure.

The second level of fault tolerance concerns with the
parallel block matching phase. It is well-known that the
vulnerability of parallel computations to hardware fail-
ures increases as we scale the size of the system [Fagg
and Dongarra 2000]. We would like to have a robust
system which in case of failure would be able to con-
tinue the parallel block matching without recomputing
results obtained before the failure. This functionality
is greatly facilitated by maintaining the previously de-
scribed work-pool data-structure which is maintained
on both CSLab and WM-SciClone master nodes.

The work-pool data-structure is redundantly replicated
on the separate file-systems of these clusters, and has a
tuple for each of the block centers. A tuple can be ei-
ther empty, if the corresponding block has not been pro-
cessed, or otherwise it contains the three components
of the best match for a given block. The work-pool
is synchronized periodically between the two clusters,
and within each cluster it is updated by the PEs in-
volved. Based on the statistical data collected over the
last four years, most of the failures are caused by the
power outages, which are happening mostly because of
the inclement weather, and glitches related to air condi-
tioning in machine rooms. Campus-wide power outage
is a rare occurrence, and as long as one of the clusters
remains operational, we are able to sustain the failure
of the other computational site.

Both the frequency of work-pool updates within each
cluster and the intra-cluster synchronization is an ad-
justable trade-off between the communication time and
a possibility of duplicate block processing (this may hap-
pen, if a block has been processed in one site, but the
work-pool update has not yet been propagated). How-
ever, note that frequent synchronization of work-pools
can be done by a separate background thread not in-
volved in the computation, and the communication la-
tencies associated with intra-cluster updates can be gen-
erally hidden by employing non-blocking communica-
tion feature of existing communication libraries. Over-
all, these side effects are negligible compared to the ben-
efits we gain by our ability to save the computation
state.

4.4 Ease of use

We developed a client web-service using Apache Axis
implementation of SOAP [Apache Software Foundation
2006], Java for portability and a simple GUI for ease-of-
use (see Figure 7). The client is responsible for gather-
ing input information from the computational radiolo-
gist (e.g., input file and execution options), performing
the remote invocation of service functions and deliver-
ing the results. In addition, it will perform sanity and
compatibility checks of the input data to avoid errors at
later time on the server-side.

5 Evaluation

The performance evaluation is based on non-rigid regis-
tration of seven image datasets acquired at BWH. Two
of these seven registration computations were accom-
plished during the course of surgery, while the rest of the
computations were done retrospectively. The surgery
for case 6 was postponed in the last moment due to pa-
tient’s health complications, and the analysis was per-
formed retrospectively. All of the intra-operative com-
putations utilized WM-SciClone, which was reserved in
advance for the neurosurgery use.

Experimental Setup The 4-processor clusters where
we run the original PVM code are: (1) at BWH, a 2-way
Dell Precision Workstation 650, Intel(R) Xeon(TM)
3.06GHz and and a 2-way 3.20GHz processors both with
1MB Level 3 cache 512KB L2 cache and 3.5GB RAM
(referred as BWH-HPC throughout the text) and (2) at
W&M a Dell PowerEdge 6600 4 HT processors (8 hyper-
threads) with Intel(R) XEON(TM) MP CPU 1.50GHz,
512KB L2 cache 16GB RDRAM (referred as WM-HPC
throughout the text). All the experiments for the new
implementation we present here were performed in eight
clusters: (1) a cluster of 30 Dell Precision 360n single-
core cpu @ 3 to 3.6GHz and 1GB SDRAM 333MHz
which is used from CS students for class assignments
and projects (WM-CSLab) and (2) WM-SciClone clus-
ter of W&M [College of William&Mary 2006] (WM-



SciClone). These clusters belong in different admin-
istrative domains.

SciClone is a heterogeneous cluster maintained at Col-
lege of William and Mary. It is arranged as seven sub-
clusters which can be used individually or together.
The extensive details of hardware configuration and
structure of SciClone are available elsewhere [College
of William&Mary 2006]. We used all but Typhoon sub-
clusters of SciClone.

The networks of College of William and Mary and BWH
(subnet of Harvard University) are connected with a
high performance Internet2 backbone network [Inter-
net2 consortium 2006] with the slowest link having
bandwidth of 2.5 Gbps, which facilitates quick trans-
fer of intra-operative data.

In all cases gcc 3.3 was used for compilation.

Discussion The original PVM implementation (being
the first prototype) was structured to prove the concept
of the method [Clatz et al. 2005], rather than being used
intraoperatively for non-rigid registration. Its utility
during neurosurgery was hindered by the high execution
time on our local resources at BWH. This problem has
been addressed very successfully in this paper using a
number of optimizations. The quantitative results are
summarized in Tables 3 and 4.

Portability of the code has been improved. Original im-
plementation used PVM [Belguelin et al. 1993] that is
not widely supported nowadays. The new implementa-
tion is based on MPI [Snir and Gropp 1998]. From port-
ing the code from BWH-HPC cluster at BWH to the
dedicated 240 processor WM-SciClone at W&M we im-
proved the performance of the application by 3.5 times
(see first and second rows of the Table 3). One would
expect a linear improvement (i.e., 60 times) due to the
scalable nature of the algorithm. However, this was not
feasible due to the following three reasons: (1) mono-
lithic design of the original implementation, i.e., it was
designed to run on the same static configuration from
the beginning to the end; (2) the fastest of the 240 pro-
cessors of WM-SciClone is much slower (in terms of
CPU speed) than the nodes of BWH-HPC and WM-
CSLab, and (3) presence of work load imbalances.

Decoupling of the pre-processing phase from intra-
operative image registration. This allowed us to: (1) ex-
ecute the sequential pre-processing phase on the fastest
available workstation available and (2) mask latencies
caused by MPI initialization of the parallel component
of the implementation. As a result we were able to re-
duce the response time of the non-rigid registration on
average by more than 12 minutes (see second and third
rows of Table 3 and Figure 9). The maximum improve-
ment we observed so far was more than 16 minutes (case
1).

Multi-level dynamic load balancing over multiple clus-
ters reduced the execution time by more than 14 min-
utes when we used 240 processors and the decoupled
implementation of the code (compare the second row

Figure 8: Parallel blockmatching scalability on the
NCSA TeraGrid site.

with the fourth and fifth rows of Table 3). The flexi-
bility we achieved from the portability of the code and
these two optimizations (decoupling and dynamic load
balancing) together reduced the absolute response time
of the parallel block matching code alone by two orders
of magnitude; on WM-HPC we can complete this step
in 1225 seconds (case 1) and 2890 seconds (case 7) while
with all the computational resources of multiple clusters
we could possibly utilize, we complete it in less than 30
seconds (see Figure 5 and Table 4). These experimen-
tal data indicate, that we gain about 50% improvement
in the performance of the application due to dynamic
load balancing i.e., we can achieve the same performance
with half of the resources; for hospitals where space is
at premium this is a very important result.

Web-services became an option after the decoupling
and implementing the functionality to handle platform-
dependent aspects of heterogeneous and time-shared
clusters; the use of web-service and hence the elimi-
nation of the human factor from the loop reduced the
response time by roughly 20 minutes. Originally, the
initialization involved two teams, one at BWH and an-
other at W&M and four different administrative do-
mains, taking up to 30 minutes of time. With the use of
GUI-interfaced web-services, the time to start the appli-
cation at BWH and initiate its execution at W&M was
reduced to 75 seconds 2, which is the bare-minimum cost
for data transfer and I/O for the application. Compu-
tations for Case 7 (run retrospectively) took less than
7 minutes (as measured between the time the data was
submitted for computation from BWH until the result
was received back from W&M). This is an improvement
in the response time by 13 to 15 times.

Fault-tolerance became very important attribute of the
code, since by increasing the hardware components and
the complexity of the distributed computing environ-
ment we use, we increase the chances for failures. Our
implementation can safely run the registration proce-

257s to send the images from BWH to W&M and 18s to
retrieve the output at BWH from W&M. These data vary
due to network traffic, but consistently we observe them to
be below 2 minutes total.



Table 3: Execution time (sec) of the intra-surgery part of the implemented web-service at various stages of develop-
ment.

Setup ID
1 2 3 4 5 6 7

WM-HPC, using original
PVM implementation 2556.4 2619.1 2803.3 3711.6 3083.8 3048.9 3961
WM-SciClone (240 procs),
no load-balancing 1361.1 985.43 949.13 1112.4 1011.22 996.1 1126.0
Pre- and post-processing
on single CS node, BM on
WM-SciClone (240 procs),
no load-balancing 397.03 252.72 304.39 331.95 347.54 302.82 333.69
Pre- and post-processing
on single CS node, pre-
processing in advance, BM
on WM-SciClone (240 procs),
dynamic load-balancing 206.73 183.34 178.77 189.12 172.9 170.61 192.02
Pre- and post-processing
on single CS node, pre-
processing in advance, BM
on WM-SciClone (240 procs)
and WM-CSLab(29 procs), dynamic
2-level load-balancing 200.82 169.7 163.6 179.34 163.87 161.22 179.41

dure on several clusters in different locations at a mod-
est overhead of 6% over the non-fault-tolerant version,
and deliver results of the computation even in case of
the failures of all but one cluster involved.

We have also evaluated our implementation on the
Mercury nodes of the NCSA TeraGrid site [TeraGrid
Project 2006]. The 64-bit homogeneous platform avail-
able at NCSA allows for high sustained computational
power and improved scalability of the code (we attribute
this to gcc optimization on this particular platform).
We show the scalability results in Figure 8. We be-
lieve TeraGrid has a great potential for this applica-
tion. However, we observed that reservation of large
number of nodes may involve significant wait time (from
hours to more than a week), which complicates the use
of the TeraGrid resources for intra-operative computa-
tions: resources should be available on a short notice.

Table 4: Execution time (sec) of sparse displacement
field computation with dynamic work distribution on
WM-SciClone cluster.

ID Number of processors
40 80 120 160 198 240

1 200.84 107.77 77.67 63.41 54.65 33.27
2 103.65 77.62 125.95 111.62 36.89 17.06
3 217.70 109.74 75.45 56.62 47.33 38.80
4 242.35 125.64 91.23 70.19 57.80 43.98
5 189.17 100.95 73.00 57.73 49.75 32.47
6 152.13 81.20 57.97 45.65 37.49 27.51
7 150.81 78.98 57.35 45.91 37.21 27.91

6 Conclusions

In this paper we use parallel and distributed comput-
ing as a utility to provide a faster and more effective
decision making support for a time-critical application:
Image Guided Neurosurgery. The work described in
this paper showed, for the first time, the feasibility of
near real-time image fusion for brain MRI using land-
mark tracking across the entire image volume. This
became possible because we were able to achieve: (1)
the reduction of the execution time of the parallel block
matching from 2890 seconds at BWH to less than 30
seconds at W&M (for the last intra-operative non-rigid
registration case); (2) effective use of a large number of
processors, with dynamic load balancing, we improved
the performance of our original code for parallel block
matching by 50%; (3) the reduction of the overheads as-
sociated with manual initialization and transfer of data
from BWH from 20-30 minutes to about 60 seconds;
(4) ease-of-use; and (5) the first fault-tolerant and web-
service based non-rigid registration code using landmark
tracking across the entire volume.
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Chakravorty, S., and Kalé, L. 2004. A fault toler-
ant protocol for massively parallel systems. In Pro-
ceedings of the 18th International Parallel and Dis-
tributed Processing Symposium.

Chrisochoides, N. 2005. Numerical Solution of Par-
tial Differential Equations on Parallel Computers.
No. 51 in Lecture Notes in Computational Science
and Enginering. Springer-Verlag, December, ch. Par-
allel Mesh Generation, 237–264.

Clatz, O., Delingette, H., Talos, I. F., Golby,
A. J., Kikinis, R., Jolesz, F. A., Ayache, N.,
and Warfield, S. K. 2005. Robust non-rigid reg-
istration to capture brain shift from intra-operative
MRI. IEEE Transactions on Medical Imaging 24, 11,
1417–1427.

College of William&Mary, 2006. SciClone Cluster
Project. http://www.compsci.wm.edu/SciClone/,
accessed 23 April 2006.

Decker, T. 2000. Virtual data space - load balanc-
ing for irregular applications. Parallel Computing 26 ,
1825–1860.

Devine, K., Hendrickson, B., Boman, E., John,
M. S., and Vaughan, C. 2000. Design of dynamic
load-balancing tools for parallel applications. In Proc.
of the Int. Conf. on Supercomputing.

Elnozahy, E. N. M., Alvisi, L., Wang, Y.-M., and
Johnson, D. B. 2002. A survey of rollback-recovery
protocols in message-passing systems. ACM Comput-
ing Surveys 34, 3, 375–408.

Fagg, G. E., and Dongarra, J. 2000. FT-MPI:
Fault tolerant MPI, supporting dynamic applications
in a dynamic world. In Proceedings of the 7th Eu-
ropean PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message
Passing Interface, Springer-Verlag, 346–353.

Faik, J. 2005. A Model for Resource-Aware Load Bal-
ancing on Heterogeneous and Non-Dedicated Clus-
ters. PhD thesis, Rensselaer Polytechnic Institute,
Troy.

Fedorov, A., Chrisochoides, N., Kikinis, R., and
Warfield, S. K. 2006. An evaluation of three
approaches to tetrahedral mesh generation for de-
formable registration of MR images. In Proceedings of
IEEE International Symposium on Biomedical Imag-
ing: From Nano to Macro (ISBI 2006), 658–661.



Ferrant, M. 2001. Physics-based Deformable Model-
ing of Volumes and Surfaces for Medical Image Regis-
tration, Segmentation and Visualization. PhD thesis,
Universite Catholique de Louvain.

Friedman, R., Goldin, M., Itzkovitz, A., and
Schuster, A. 1997. Millipede: Easy parallel
programming in available distributed environments.
Software-Practice and Experience 27, 8 (August),
929–965.

Golby, A. J., Poldrack, R. A., Illes, J., Chen, D.,
Desmond, J. E., and Gabrieli, J. D. 2002. Mem-
ory lateralization in medial temporal lobe epilepsy
assessed by functional MRI. Epilepsia 43, 8, 855–863.

Internet2 consortium, 2006. Internet2 home
page. http://www.internet2.edu/, accessed 23
April 2006.
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Figure 9: Timeline of the image processing steps during IGNS using the new non-rigid registration application (see
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