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ABSTRACT

In this paper we evaluate three conceptually different approaches
to mesh generation for deformable Finite Element Method (FEM)
registration of Magnetic Resonance (MR) images of brain volume.
Precise approximation of brain volume segmentations and good shape
of the mesh tetrahedra are the main requirements imposed by the
application. Our contributions are (1) application-motivated com-
parison and analysis of practical mesh generation implementations
and (2) open source implementation of a mesh generation algorithm
which we show delivers mesh quality comparable with the best com-
mercial software products available. The preliminary results indi-
cate, that our implementation provides a solid foundation for further
development of application-specific mesh generation tools.

1. INTRODUCTION

Applications which use Finite Element Method (FEM) have first to
discretize the modeled object into simple elements, like tetrahedra in
3D. This discretization, or mesh generation, is trivial to accomplish
only for simple geometries. The mesh generation problem is com-
plicated even more by the lack of complete understanding of exact
requirements to the mesh elements shape [1] and the error distribu-
tion over the domain of interest. Requirements for the mesh also
differ among FEM applications. Mesh generation has been studied
for decades, however, the problem is being continuously addressed
in the literature [2–6].

Deformable FEM registration proved to be an effective tech-
nique for warping preoperative MRI of different modalities to the
intra-operative MR images of low resolution [7, 8]. Unfortunately,
we failed to find a practical open source mesh generator for this
application. Numerous approaches to mesh generation for medical
imaging have been proposed [2, 3, 5, 6]. However, rarely algorithms
described in papers are evaluated on realistic datasets and are ac-
companied by efficient, if any, implementations (notable exceptions
include [5, 6, 9]). On the contrary, in this paper we do not propose
yet another mesh generation method, but attempt to evaluate exist-
ing solutions to the mesh generation and their applicability to FEM
registration of brain MRI.
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The main contribution of this paper is the evaluation and com-
parison of representative meshers which implement conceptually dif-
ferent approaches for a specific application: deformable FEM regis-
tration of MR images. We also contribute an open implementation
of one of the methods, which we show can deliver quality of the dis-
cretization comparable with the best commercial software products
for our application. The considered mesh generators were evaluated
on brain volume segmentations of MR images acquired during past
craniotomy cases at Brigham and Women’s Hospital [7].

We first discuss motivation and application requirements to mesh
generation in Section 2. Section 3 categorizes the most common
approaches to tetrahedral mesh generation. The selected represen-
tative implementations from each of these categories are presented
in Section 4. In Section 5 we outline our evaluation methodology
and present evaluation results. We conclude with the summary and
directions for future work in Section 6.

2. MOTIVATION AND REQUIREMENTS

Traditionally, mesh generation has been studied for visualization and
FEM applications. While for the first area the most important is to
deliver efficiently high quality renderings from meshes, FEM make
emphasis on the shape of the elements and truthful surface represen-
tation. Medical applications of mesh generation include tissue de-
formation modeling, FEM image registration, surgical planning and
visualization, compact shape representation, segmentation. We tar-
get FEM registration of preoperative brain volume MRI, fMRI and
DT-MRI images with the intra-operative MRI data [7, 8]. The most
notable difference from the engineering applications is in the repre-
sentation of the object of interest. Biological structures and organs
usually have smooth surfaces. It is not possible to derive the pre-
cise shape information from the imaging data, input may be noisy
and topologically incorrect. The FEM model may require smooth
mesh on the object outer and, if applicable, internal boundaries (e.g.,
separating healthy tissue and tumor).

Another set of FEM requirements concerns with the shape of
mesh elements. A number of quality metrics have been discussed
in [1]. In general, elements with very small and very large dihedral
angles should be avoided, as they may affect convergence and accu-
racy of the solver, or cause high interpolation errors. It is also de-
sirable to have adaptive mesh with smaller elements near the regions
of interest (e.g., closer to the object boundary). The requirements
imposed on mesh generation by FEM are highly dependent on a par-
ticular application [10]. Meshes which are used in FEM registration
for this application should be able to tolerate large deformations [7].
Finally, algorithms which can be parallelized [11] are preferred.
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3. OVERVIEW OF EXISTING APPROACHES

We categorize existing approaches to tetrahedral mesh generation
into the following three groups: (1) constrained Delaunay, (2) ad-
vancing front, and (3) adaptive space-tree methods. Next we de-
scribe in more detail each of the categories together with their strengths
and weaknesses.

Delaunay mesh is a triangulation which satisfies the Delaunay
criterion (the circumsphere of each edge, face and tetrahedron in
3D is empty). Delaunay triangulations minimize maximum min-
containment radius, and the circumradius to shortest edge ratio in
the final mesh (thus, maximum interpolation error) can be bounded
using Delaunay refinement [1].

Delaunay triangulation of a point set creates a mesh of the con-
vex hull of that set. Boundary of the object has to be recovered from
the convex hull using Constrained Delaunay Triangulation (CDT).
Existing CDT algorithms have limitations on minimum dihedral an-
gle in the object boundary and often require its explicit definition.
It also remains unsolved how to efficiently parallelize Delaunay re-
finement in 3D [11]. Small angles, which cannot be bounded in
Delaunay refinement, may negatively affect the solution quality of
iterative solvers [1].

Advancing Front tetrahedralization (AFT) is a mesh generation
heuristic which builds mesh starting from the triangulated boundary
of the object and moving toward its center [12]. While AFT does
not give any guarantees about the final mesh quality, in practice this
method has been shown effective.

Quality of AFT meshes depends on the surface mesh quality. It
is not trivial how to generate a good quality surface mesh from med-
ical data often defined as a possibly noisy cloud of points. The AFT
approach does not introduce any new points on the surface which
makes it perfect for parallelization with splitting the original object
domain in multiple subdomains. However, there is no robust so-
lution to the subdivision problem: it is difficult to guarantee good
geometric properties of subdomains in 3D [11].

Adaptive Space-tree tetrahedrization (AST) approaches are based
on a subdivision of the object space into a regular lattice adaptively
refined based on user-defined criteria. The main difficulty in all of
the AST methods is how to make the mesh conforming to the object
boundary [5, 10, 13].

The advantages of AST methods include relative simplicity of
the implementation and flexibility in input definition (no explicit sur-
face is required). It is usually possible to parallelize AST approaches
with minimum communication between processors.

None of the existing methods in 3D can produce guaranteed
quality mesh: Delaunay approaches suffer from slivers [1], while
other methods are heuristics. In practice, the quality of the final
mesh can be improved by applying mesh optimization and sliver ex-
udation techniques [14–17]. However, it has not been proven that
quality of the optimized mesh can be bounded.

4. CONSIDERED IMPLEMENTATIONS

In this section we describe some representative implementations from
each of the previously defined categories. These implementations
were used to evaluate the applicability of different approaches to
mesh generation in the context of FEM deformable registration.

TetGen is an open source implementation of Delaunay triangu-
lation and CDT in 3D [9]. TetMesh-GHS3D is a commercial mesher
supported by Simulog [18]. While the details of the algorithm are
not released, the supporting document says that the software ”uses
a Delaunay-type algorithm”. The software was not available to us

at the time of the study, however, we had access to some of the ret-
rospective neurosurgery cases described in [7] where GHS3D was
used. SolidMesh is a commercial package based on AFT [12]. The
SolidMesh binaries were kindly provided by Dr. David Marcum.

A number of AST methods have been developed recently for
medical applications [3–5, 10, 13], but very few implementations are
available. We found the crystalline mesh generation method based
on body-centric cubic lattice (BCC) [10] the most appropriate for
our application. Red green crystalline meshing [10] consists of two
phases: (1) construction of the candidate mesh, and (2) compression
of the candidate mesh to the object surface (this should not be con-
fused with “data compression”; here we use the original terminology
coined in [10]).

The first phase begins with building a regular BCC lattice which
encloses the object of interest. This initial lattice is Delaunay and
consists of tetrahedra which differ from equilateral tetrahedron as lit-
tle as possible with regular space tiling [10]. Next, the outside tetra-
hedra are discarded and the remaining lattice elements are adaptively
refined based on the application defined criteria. Red green refine-
ment propagation procedure ensures that the refined mesh is topo-
logically correct. The candidate mesh is selected by heuristically
discarding some boundary elements to simplify boundary compres-
sion phase. The process of refinement and candidate mesh selection
is guided by implicit representation of the object using its distance
map. The candidate mesh quality is guaranteed with aspect ratios
below 2.1 and dihedral angles between 30◦ and 60◦.

The second phase can be implemented using one of the two ap-
proaches. The first approach outfits the candidate mesh with a de-
formable FEM model [10]. The distance map is then used to set
the boundary condition on the surface nodes and push them to the
object surface. The second approach is also using the distance map
to move the mesh surface nodes to the object surface, followed by
element shape optimization.

Following are the observations which motivated our choice:

• the BCC lattice tetrahedra are as close as possible to the equi-
lateral tetrahedron [19], which is much better than the quality
of the elements generated by tesselating an adaptive octree,
for example, as in [4, 13];

• the mesh boundary compression is independent of the lattice
refinement procedure and can be easily substituted with a dif-
ferent implementation;

• the method was designed specifically for modeling large de-
formations, which is important for registering intra-operative
MR images (brain shift of centimeter scale has been observed
during some craniotomy procedures [7]);

• lattice-based regular topology and structure of the mesh gives
bounds on mesh connectivity and can be advantageous to the
FEM application;

• red green refinement can possibly be used to remesh local
regions of the mesh without remeshing the whole object;

• lower rate of quality degradation for physics- vs. optimization-
based boundary compression has been reported [10].

Unfortunately, the implementation of this method was not avail-
able to us. We have developed our own C++ implementation as a
collection of new classes within Insight Toolkit (ITK) [20]. It is to
the best of our knowledge that this implementation is the first at-
tempt to provide adaptive tetrahedral mesh generation within the In-
sight Toolkit (the code is available for download as a part of NAMIC
SandBox [21]).
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5. EVALUATION

The most important requirements imposed on mesh generation by
the application are (1) good shape of the tetrahedra (i.e., there are
no very small and very large angles) and (2) good surface approx-
imation. The current implementation of the FEM registration does
not require intra-operative generation of meshes, thus we rather con-
centrate on shape and surface approximation evaluation. It is worth
mentioning though, that the meshes for our study were generated
in less than 10 minutes with most of the time spent in the distance
transform computation.

The evaluation was done on three retrospective neurosurgery
cases previously used by Clatz et al. [7]. In each case the segmented
brain volume had to be meshed. The meshes used in [7] were gen-
erated with GHS3D software and were all less than 10K elements
which imposed additional mesh size constraint on the study. The
five sets of meshes we compared were created with

1. red green refinement, physics based FEM boundary compres-
sion, linear elastic model (rgm-p);

2. red green refinement, optimization based boundary compres-
sion using GRUMMP [17] (rgm-o);

3. GHS3D [18] (ghs);

4. CDT TetGen v.1.3.4 [9] (tg);

5. AFT SolidMesh [12] (sm).

Methods 4 and 5 from the list above require the surface bound-
ary to be explicitly defined. Our study concentrates on volume mesh
generation, thus we make an assumption that the problem of surface
reconstruction from medical data is solved and used the surfaces ex-
tracted from the volume meshes generated using method 2 as input
for methods 4 and 5.

First, we evaluate the quality of surface approximation for each
of the methods. We compute the Hausdorff distance from the trian-
gular surfaces reconstructed from segmented images using Marching
Cubes algorithm to the surface extracted from volume meshes. We
present the results of that evaluation in Table 1. Hausdorff distance
was computed using M.E.S.H. software [22]. Note, that we do not
evaluate surface approximation for tg and sm meshes, as their sur-
faces are identical to those of rgm-o meshes.

We evaluate the goodness of element shape using aspect ratio
(defined as |K|∞

2
√

6r
, where |K|∞ is the length of the longest edge, and

r is the radius of the tetrahedron in-circle) and minimum dihedral
angle of the tetrahedra. These quality metrics were calculated using
VTK 4.4 class vtkMeshQuality [23] and are shown in Table 2.
Perfect aspect ratio value is 1, and dihedral angles close to 0◦ or 90◦

and larger are considered bad.
Finally, we evaluate the change in quality of the meshes caused

by deformation. Aspect ratio and minimum dihedral angles in each
of the five meshes after the deformation are shown in Table 3.

The evaluation shows that for all of the cases surface approxima-
tion achieved by the mesher we have implemented is at least as good
as the approximation achieved by GHS3D, which is using March-
ing cubes followed by decimation to construct the triangular surface
mesh used to create the volume mesh [7]. Because of the adaptive
mesh structure rgm meshes have much more surface elements with
about the same number of tetrahedra (see Table 2). This also con-
tributes to a better surface approximation. The element shape quality
of the meshes generated with red green method is also comparable
and in some cases significantly better than ghs, as can be seen from
Table 2. CDT meshes generated with TetGen have quality compa-
rable with the ghs meshes, but they are much large and introduce
many small elements near the mesh surface.

Table 1. Surface approximation quality.

case method surf. faces Hausdorff distance
ID max mean RMS

rgm-o 1828 9.16 0.47 0.66
1 rgm-p 1868 8.73 1.54 1.88

ghs 1284 11.06 0.98 1.25
rgm-o 2000 6.48 0.55 0.75

2 rgm-p 2022 7.97 1.40 1.69
ghs 1284 10.37 1.00 1.34

rgm-o 1858 7.25 0.47 0.63
3 rgm-p 1896 7.07 1.48 1.81

ghs 1354 8.96 0.87 1.14

Table 2. Element shape quality evaluation.

case method tets aspect ratio min dih. angle
ID min/ave/max min/ave/max

rgm-o 7334 1.03/1.44/2.83 33.3/52.5/77.2
rgm-p 7565 1.02/1.36/2.56 25.8/55.6/75.6

1 ghs 7886 1.05/1.61/11.64 6.8/47.8/81.5
tg 21514 1.04/1.97/7.34 11.4/41.7/80.5
sm 8942 1.02/1.37/3.40 17.1/54.0/79.9

rgm-o 7473 1.02/1.48/4.09 30.7/52.0/79.3
rgm-p 7556 1.02/1.40/2.75 23.6/54.8/76.7

2 ghs 8202 1.05/1.62/6.68 11.1/47.7/83.3
tg 23907 1.04/1.97/6.24 13.8/41.8/81.8
sm 10266 1.03/1.36/3.45 17.6/54.1/80.6

rgm-o 7497 1.01/1.46/3.23 32.5/52.1/79.7
rgm-p 7743 1.01/1.37/4.27 14.3/55.4/77.0

3 ghs 8235 1.02/1.60/19.1 3.07/47.7/83.2
tg 23173 1.04/1.98/6.37 9.0/41.6/82.2
sm 9255 1.03/1.37/3.25 20.5/54.0/79.9

Table 3. Element shape quality evaluation following deformation.

case method aspect ratio min dihedral angle
ID min/ave/max min/ave/max

rgm-o 1.02/1.46/2.80 25.85/52.00/78.79
rgm-p 1.03/1.39/3.36 20.68/54.73/77.03

1 ghs 1.04/1.65/12.97 5.39/47.33/82.66
tg 1.04/2.06/104.52 0.41/40.92/82.29
sm 1.02/1.40/3.34 17.53/53.44/79.54

rgm-o 1.02/1.49/4.42 28.28/51.78/77.46
rgm-p 1.02/1.41/2.90 23.40/54.43/78.00

2 ghs 1.04/1.64/6.34 11.06/47.37/81.41
tg 1.04/2.07/15.60 4.71/40.97/84.61
sm 1.01/1.38/3.54 17.45/53.68/80.33

rgm-o 1.02/1.49/3.83 17.51/51.46/79.24
rgm-p 1.02/1.41/5.16 13.51/54.26/76.59

3 ghs 1.05/1.64/22.38 2.43/47.164/83.84
tg 1.05/9.91/171715 0.0004/40.02/83.84
sm 1.02/1.41/3.56 17.93/53.26/80.37

The changes of the mesh quality after deformation is most dras-
tic for Delaunay meshes (see case 3 in Table 3). This is explained
by the presence of small tetrahedra near the mesh surface where ele-
ments experience largest strains. On average, quality of the elements
for all of the methods decreases as the result of deformation. How-
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ever, for all of the methods (except tg, where we observed large
aspect ratios for cases 1 and 3) the deformed meshes preserve the
quality and would probably not require remeshing if they were de-
formed further. We have not observed significant difference in qual-
ity change between physics- and optimization-compressed red green
meshes.

We emphasize, that ghs and sm methods are in the commer-
cial domain, and that both sm and tg require (high quality) surface
mesh as input, while rgm is open source and operates directly on
segmentation data.

6. CONCLUSIONS

Tetrahedral mesh generation has been broadly explored in the past.
Most of the approaches have limitations which make them difficult
to apply for problems in medical image computing in particular.
Boundary fidelity and element shape are the most critical require-
ments for rapid, robust and accurate registration. We evaluated exist-
ing source-available and commercial mesh generators, and our own
open source implementation of the red green crystalline mesh gener-
ation approach, to assess their capability in this application domain.

Our implementation of the AST approach operates directly on
segmentations and generated meshes with boundary fidelity and mesh
element quality at least as good (and in some cases significantly bet-
ter) as of those produced by the state of the art implementations.

In the future we plan to extend the implemented AST method to
handle internal object boundaries and evaluate it for different medi-
cal applications and other registration approaches which may require
local remeshing and tissue removal. One of our immediate goals is
to evaluate how the simulation accuracy and convergence is affected
by the properties of a simplicial discretization. We believe further re-
search and quantitative mesh generation comparison in this domain
will be dramatically facilitated by the ease with which our results
may be reproduced as our implementation is available as open source
software.
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