
Tetrahedral Mesh Generation for Medical

Imaging⋆

Andriy Fedorov1,2,3, Nikos Chrisochoides1,2,3, Ron Kikinis2, and Simon
Warfield2,3

1 Department of Computer Science, College of William and Mary, Williamsburg, VA
23185, USA

2 Surgical Planning Laboratory, Brigham and Women’s Hospital, Harvard Medical
School, Boston, MA 02115, USA

3 Computational Radiology Laboratory, Brigham and Women’s Hospital, Children’s
Hospital, Harvard Medical School, Boston, MA 02115, USA

Abstract. We describe the open source implementation of an adap-
tive tetrahedral mesh generator particularly targeted for non-rigid FEM
registration of MR images. While many medical imaging applications re-
quire robust mesh generation, there are few codes available. Moreover,
most of the practical implementations are commercial. The algorithm
we have implemented has been previously evaluated for simulations of
highly deformable objects, and the preliminary results show its appli-
cability to the targeted application. The implementation we describe is
open source and will be available within Insight Toolkit.

1 Introduction

Finite Element Method (FEM) representations are widely used in medical imag-
ing to enable intraoperative registration [1, 2] and biomechanical modeling of
the tissue. The quality of geometric discretization is crucial for the effectiveness
of these applications. Although numerous mesh generation methods have been
described to date, there are few which can deal with medical data input. Even
fewer algorithms have been implemented and evaluated. Software packages that
can produce high quality meshes are usually commercial [3, 4].

In this paper we describe the on-going collaborative effort to produce open
source mesh generation code within Insight Toolkit (ITK) [5]. Our motivating
application is non-rigid image registration for preoperative planning and intra-
operative navigation during neurosurgical procedures.

The paper is structured as follows. In Section 2 we discuss existing approaches
to mesh generation. Section 3 describes the algorithm we have implemented. In
Section 4 we present our implementation. Finally, we evaluate the implementa-
tion in Section 5 and conclude in Section 6.
⋆ This investigation was supported in part by NSF grants ACI-0312980, EIA-0203974,

ITR 0426558, a research grant from the Whitaker Foundation, a research grant from
CIMIT, grant RG 3478A2/2 from the NMSS, and by NIH grants R21 MH67054,
R01 LM007861 and P41 RR13218.



2 Related work

The target application for our implementation is FEM-based non-rigid regis-
tration of intraoperative MRI images for brain tumor resection procedures [2]
and biomechanical simulation of the brain tissue deformation. The algorithm we
choose has to satisfy the following requirements: (1) it should work directly with
medical data (segmentations or greyscale images); (2) meshes must conform to
the region of interest and have good quality (e.g., we can use minimal dihe-
dral angle and aspect ratio [6] of a tetrahedron to evaluate its quality); (3) the
algorithm should be capable of producing adaptive meshes; (4) intraoperative
procedures require the algorithm to be very fast.

Both the bad quality and the large number of the mesh elements can nega-
tively affect the execution time of an FEM simulation [1, 6]. Coarse discretiza-
tion and poor shape of the elements can also introduce incorrect results and
numerical errors. Hence, it is desired to have adaptive meshes which which pro-
vide guaranteed quality discretizations. Only Delaunay-based tetrahedralizations
can produce meshes of guaranteed quality [7]. Unfortunately, Delaunay meshes
may contain slivers (nearly flat tetrahedra with well-separated points). Advanc-
ing front techniques (AF) start from the boundary triangulation advancing the
front inside the object. Bad quality tetrahedra may be introduced at the point
where the fronts collide. AF methods are also highly dependent on the quality of
surface discretization. Most of the practical techniques combine benefits of the
Delaunay and advancing front approaches [3].

We observe, that there is no well-established methodology for mesh genera-
tion in the medical community. The reader is referred to [1, 6, 8] for surveys of
existing approaches to mesh generation and their applicability to clinical appli-
cations. Implementations that produce high quality meshes are usually in the
commercial domain [3, 4].

3 Algorithm

The baseline algorithm which we have implemented was developed by Molino
for simulations of highly deformable objects [9]. The algorithm starts with build-
ing a uniform body-centric cubic lattice (BCC) enclosing the object, and applies
iterative adaptive refinement procedure to create the mesh. The mesh obtained
as the result of the adaptive refinement has guaranteed quality. Once the re-
finement procedure is complete, the topology of the candidate mesh is finalized.
The tetrahedra which are guaranteed to be completely outside the object are
discarded, as well as the tetrahedra which do not contain “enveloped” vertices.
The resulting mesh does not conform to the object surface. Physics based FEM
compression of the candidate mesh is used to align the mesh boundary. Both the
refinement and compression procedures are using a level set definition of the ob-
ject. At any point of space a scalar function φ(x) is defined as the signed distance
function with negative values for the interior and positive – for the exterior of
the object. For the details of the algorithm the reader is referred to the original



Binary image

Candidate volume mesh

Resulting volume mesh

BinaryMaskTo3DAdaptiveMeshFilter

VolumeBoundaryCompressionMeshFilter

Fig. 1. Mesh generation pipeline.

paper describing the method [9]. Although the algorithm we have selected does
not provide guarantees about the final mesh quality, Molino reports superior
quality of the mesh in presence of high deformations.

4 Implementation

The implementation is structured as two ITK [5] classes, and we take advan-
tage of a number of algorithms and tools implemented within ITK. We also
use PETSc [10] (linear solver), and robust geometric primitives implemented by
Shewchuk [11] (orientation test). Both of these codes are in the public domain.

The two main steps of the algorithm are (1) creation of the candidate mesh
(Mesher), and (2) compression of the mesh surface to the object boundary
(Smoother). We implemented these two stages as two separate ITK classes, as
shown in Figure 1. The Mesher class is inherited from ITK ImageToMeshFilter.
The input image is resampled to unit voxels, and then the distance and curvature
maps are computed on the resulting image. Starting from the initial BCC lattice,
at each resolution level all of the tetrahedra in the mesh are passed through the
set of subdivision tests. The subdivision tests implemented within the Mesher

filter check if a tetrahedron is crossing the object boundary, or is located in a
region of high surface curvature. These tests are facilitated by the image distance
and curvature maps. The API also allows to specify custom subdivision tests.

Once the tetrahedra which require subdivision are marked, we need to en-
sure that the mesh conforms to the object boundary. The mesh conformancy
checks are repeated iteratively until we do not have new edges split. We use an
edge-based data structure for mesh representation: each tetrahedra contains six
pointers to its edges, so that we can identify the subdivision configuration in
the constant time. After the specified number of refinement levels is reached, we
discard tetrahedra which are guaranteed to lie outside the object of interest or
which are not sufficiently interior to the object surface [9].

The Smoother filter is implemented as ITK MeshToMeshFilter. It accepts
the binary mask and the mesh which approximates that mask. The “candidate”
mesh is modeled as a physical body using FEM. We define the displacements
of the boundary vertices toward the object surface using the distance map, and
solve for displacements of the mesh vertices. The compression stage is performed
using either ITK FEM module, or PETSc linear solver. We show some example
cross-sections of the produced meshes in Figure 2.



Fig. 2. Cross-sections of the adaptive meshes produced by the implementation.

The code is being developed within NAMIC SandBox SVN repository, and
can be checked out using the following command: svn checkout http://www.

na-mic.org:8000/svn/NAMICSandBox/TetrahedralMeshGeneration.

5 Experimental results

There are at least three important requirements the application imposes: (1) the
resulting mesh should be of high quality; (2) the algorithm should be fast; (3) the
mesh should precisely approximate the meshed object. Therefore, we evaluate
the implementation along these lines.

The experiments were performed on an Intel Xeon workstation equipped with
two hyperthreaded 3.06GHz CPUs, cache size 512Kb, 3.31Gb physical memory.
The evaluation was done on three brain tissue segmentations from the retro-
spective neurosurgery cases. The datasets were selected from those used in [2],
so that for each of the segmentations we had a tetrahedral mesh produced with
the commercial software GHS3D [12].

Most of the running time is spent in data preparation: image resampling, dis-
tance transform and curvature calculation take approximately 5 minutes, while
the refinement and boundary compression is complete in 10-25 seconds depend-
ing on the mesh size. In order to evaluate the quality of the resulting meshes
we used tetrahedron aspect ratio and minimal dihedral angle [6]. The quality of
the surface approximation was evaluated using the symmetrical Hausdorff dis-
tance [13] 4 between the mesh surfaces produced by our implementation and
those extracted from the meshes generated by GHS3D. The results of the eval-
uation are summarized in Table 1.

The average Hausdorff distance is around 2 mm in all three cases. However,
the maximum distance value reaches 7 mm, which is not acceptable (we consider
the GHS3D mesh to be the “golden standard” for this comparison). At the
same time, the meshes produced by our implementation have significantly better
geometric properties in most cases. It is also important to note that the process

4 We used the open-source implementation of the method available at http://mesh.

berlios.de.



Fig. 3. Tetrahedral mesh generated with INRIA GHS3D (left) and the presented
mesher (right) for case 2; the color-coding displays Hausdorff symmetrical distance
between the two mesh surfaces.

of generating the mesh with GHS3D is quite complicated and involves multiple
steps, as described in [2]. Our implementation allows to intuitively control the
mesh size, operates directly on the medical data and does not use any commercial
components.

6 Conclusions

We presented an implementation of the mesh generation algorithm based on
adaptive refinement and FEM physics deformation. Our implementation is un-
der development within NAMIC SandBox and will be available as a package
within ITK. Preliminary evaluation shows applicability of the implementation
for the targeted clinical application. We will continue our work on this method in
order to obtain more experimental data, improve the surface approximation qual-
ity, and evaluate its applicability on other clinical applications. The presented

case # Size, tets Hausdorff distance, mm Aspect ratio Min dihedral angle

min ave max min ave max min ave max

1 0.0001 2.04 6.8

1, GHS3D 7886 1.05 1.6 11.64 6.8 47.8 81.5

1, RGM 7565 1.02 1.36 2.5 25.8 55.6 75.6

2, 0.0001 2.1 7.1

2, GHS3D 8202 1.05 1.62 6.7 11.16 47.7 83.3

2, RGM 7556 1.02 1.4 2.75 23.6 54.8 76.7

3 0.0001 1.74 7.14

3, GHS3D 8235 1.02 1.6 19.1 3.07 47.7 83.2

3, RGM 7743 1.01 1.37 4.27 14.36 55.4 77.05

Table 1. Quantitative comparison of the generated meshes (Red Green Mesher, RGM )
with the meshes produced by the INRIA GHS3D software.



implementation is the “pilot” code to analyze the viability of the approach.
The surface representation accuracy has to be improved, and we believe we can
achieve 1-2 mm accuracy of the segmentation approximation with our imple-
mentation. Although our mesher is very fast, we also plan to work on parallel
distributed and shared memory implementations of the mesher [14] to facilitate
parallel biomechanical simulations. Advanced biomechanical models may require
significantly larger meshes than those we used for our evaluation.

Acknowledgments We would like to thank Aloys du Bois d’Aische, Matthieu
De Craene, Matthieu Ferrant, Will Schroeder and Luis Ibanez for their help in
developing this implementation.

References

1. Ferrant, M., Nabavi, A., Macq, B.M., Jolesz, F.A., Kikinis, R., Warfield, S.K.:
Registration of 3D intraoperative MR images of the brain using a finite element
biomechanical model. IEEE TMI 20 (2001) 1384–1397

2. Clatz, O., Delingette, H., Talos, I.F., Golby, A.J., Kikinis, R., Jolesz, F.A., Ayache,
N., Warfield, S.K.: Robust non-rigid registration to capture brain shift from intra-
operative MRI. Accepted for publication in IEEE TMI (2005)

3. Simulog: Mesh generation. <http://www.simulog.fr/tetmesh> (2005)
4. Amira: Mesh generation. <http://www.amiravis.com> (2005)
5. ITK: Insight toolkit. <http://itk.org> (2005)
6. Timoner, S.: Compact Representations for Fast Nonrigid Registration of Medical

Images. PhD thesis, MIT (2003)
7. Shewchuk, J.R.: Tetrahedral mesh generation by Delaunay refinement. In: Pro-

ceedings of the 14th Symposium on Computational Geometry. (1998) 86–95
8. Goksel, O.: Ultrasound Image and 3D Finite Element based Tissue Deforma-

tion Simulator for Prostate Brachytherapy. MS thesis, The University of British
Columbia (2004)

9. Molino, N., Bridson, R., Teran, J., Fedkiw, R.: A crystalline, red green strategy for
meshing highly deformable objects with tetrahedra. In: Proceedings of the 12th
International Meshing Roundtable. (2003) 103–114

10. PETSc: Portable, extensible toolkit for scientific computation. <http://

www-unix.mcs.anl.gov/petsc/petsc-2/> (2005)
11. Shewchuk, J.R.: Fast robust predicates for computational geometry. <http://

www-2.cs.cmu.edu/~quake/robust.html> (2005)
12. Simulog: GHS3D. <http://www.simulog.fr/mesh/gener2.htm> (2005)
13. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: MESH: Measuring error between sur-

faces using Hausdorff distance. In: Proceedings of the IEEE International Confer-
ence on Multimedia and Expo 2002 (ICME). Volume I. (2002) 705–708

14. Chrisochoides, N.: A survey of parallel mesh generation methods. To appear
in Numerical Solutions of Partial Differential Equations on Parallel Computers,
Eds. M. Bruaset, P. Bjorstad, A. Tveto, <http://www.cs.wm.edu/~nikos/pmesh_

survey.pdf> (2005)


