
Communication Support for Dynamic Load Balancing
of Irregular Adaptive Applications

�

Andriy Fedorov and Nikos Chrisochoides
Department of Computer Science
The College of William and Mary

Williamsburg, VA 23185-8795�
fedorov,nikos � @cs.wm.edu

Abstract

In this paper we present a runtime system (Clam) that
provides support for one-sided communication, remote ser-
vice request, global address space in the context of mobile
user-defined data objects and transparent routing of mes-
sages to those objects. We describe the functionality of
Clam, the motivation and major design decisions behind its
implementation. The functionality provided by Clam proved
to be useful for dynamic load balancing support of adaptive
asynchronous and irregular applications, such as mesh gen-
eration. The design of Clam is based on our experience with
the previous implementation of the PREMA communication
subsystem. We found it necessary to re-evaluate the design
priorities set originally. In this paper we investigate these
design decisions and evaluate their impacts on the runtime
system.

1. Introduction

In this paper we present the design, implementation and
evaluation of Clam, a light communication layer for asyn-
chronous irregular and adaptive computations. Clam is a
runtime system that addresses the computation and commu-
nication requirements of applications like parallel Adaptive
Mesh Refinement (AMR). Our approach is based on a care-
ful balancing of the following issues: correctness, perfor-
mance, and ease-of-use. The preliminary results show that
the implementation is portable, intuitive, and introduces low
overheads over the underlying communication substrate.

The computations for adaptive applications like AMR
can be tightly or partially (loosely) coupled, or they can
be decoupled. Partially coupled applications can postpone

�
This work was partially supported by the National Science Foun-

dation grants ITR-0312980, NGS-0203974, ACI-0085969, EIA-9972853
and CCR-0049068.

processing of the incoming messages without delaying the
computation. Tasks within tightly coupled computations
communicate intensively and may have to wait for incom-
ing communication, or suspend until the previously posted
message is acknowledged by the partner task. Decoupled
computations have no dependencies between the parallel
tasks. The AMR applications also exhibit irregularity of the
workload and require dynamic load balancing. From our
experience, direct use of the existing low-level communica-
tion libraries is not desirable for such applications because
of high development and maintenance costs.

The Portable Runtime Environment for Mobile Appli-
cations (PREMA) framework has been created to support
development of AMR-like applications. Although the func-
tionality provided by Clam can be used directly by the ap-
plication, its main purpose is to serve the needs of the Im-
plicit Load Balancing library (ILB) [7] within PREMA. As
the communication component of the PREMA framework
Clam is superior to the previously used implementations [8,
12], which is evident from our analysis and evaluation. We
improved upon the previous system based on the lessons
learned from supporting and using that system for develop-
ment of mesh generation applications.

The main contributions of this paper are: (1) design of
a robust runtime system, which is based on (2) analysis
of the problems within the previous implementation of the
PREMA communication layer and (3) re-balance of the cor-
rectness, performance and ease-of-use trade-offs. We also
reconsider the correctness responsibilities of the application
and the runtime system.

The paper is structured as follows. Section 2 surveys the
previous work on communication support within PREMA
and motivates the new implementation. In Section 3 we de-
scribe the functionality, design and some implementation
details of the runtime system. Section 4 presents our exper-
imental evaluation. We conclude with the discussion and
directions for future work in Section 5.

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

Implicit Load Balancing
Library

Low−Level Communication Substrate
e.g. MPI or LAPI

Operating System

Adaptive Application

Explicit Load Balancing
Application Code

Mobile Object Layer (MOL)

Data Movement and Control Substrate
(DMCS)

Figure 1. The initial architecture of PREMA.

2. Related Work and Motivation

The original implementation of the communication layer
for PREMA consisted of the Data Movement and Con-
trol Substrate (DMCS) [8] and the Mobile Object Layer
(MOL) [12]. DMCS provided one-sided communication
and remote service request (RSR) functionality atop low-
level communication primitives of MPI or LAPI. MOL im-
plemented global address space for so called mobile objects.
A mobile object in MOL is a user-defined data structure
which can be migrated from one processor to another and
referenced independently of its current location. Through-
out the paper we refer to the initial implementation of the
PREMA runtime layer as the DMCS/MOL implementation.

The mobile object functionality serves as the basis for
the Implicit Load Balancing Library (ILB) [7], which uses
mobile object abstraction to implement schedulable objects
(SOs). A SO is the smallest unit of granularity managed by
the ILB. Using RSRs, the ILB module collects information
about the load distribution within the system. If the im-
balance is detected, local SOs can be migrated. The initial
structure of PREMA is shown in Figure 1.

It has been shown that the functionality provided by
PREMA has a number of advantages over similar load bal-
ancing systems [6]. Based on the experience within our
group, PREMA greatly simplifies the application design by
separating low-level systems and load balancing issues from
the developer [5, 7].

Clam has been designed to serve as the new commu-
nication layer for the PREMA framework. Below we
discuss some of the problems we discovered within the
DMCS/MOL implementation. For a comprehensive survey
of related work in the context of other runtime systems the
reader is referred to [5, 7].

Despite the initial intentions, the DMCS/MOL imple-
mentation failed to become independent of low-level com-
munication substrate. The implementation we were using
was built on top of MPI. This became problematic since
one of our projects requires running PREMA on top of
Globus [1]. The problems we encountered [3, 4] with the

Globus-based implementation of MPI (MPICH-G2) turned
out to be difficult to overcome and have not been resolved
in the two years since our initial reports [2]. This was the
primary motivation for the communication subsystem re-
design: to break the dependency on MPI. However, in the
process of the development of Clam we made a number of
other design decisions in order to consider the following
problems identified in the DMCS/MOL implementation:

1. lack of interoperability (MPI, C++, STL);

2. poor usability (duplication of functionality, overloaded
API);

3. DMCS/MOL “separation of concerns”: performance
issues;

4. complicated maintenance because of 1-3;

5. insufficient correctness guarantees (communication
deadlock).

3. Design and implementation issues

3.1. Functionality

Computation and communication volumes and patterns
for adaptive and irregular applications like AMR are vari-
able and unpredictable. One-sided communication sub-
stantially simplifies code development and maintenance
for such applications. The functionality of Clam can be
grouped as follows:

� remote memory operations: put and get;

� remote service request (RSR): invocation of an
application-defined function on a remote processor;

� mobile object functionality: creation, migration, and
communication with mobile objects.

The Clam runtime system supports SPMD model; each
processor is assigned a unique identifier maintained by
Clam. A user-defined set of functions, handlers, is regis-
tered with the runtime system. A handler can be invoked
remotely. There are four types of handlers: (1) memory op-
eration, (2) RSR (fixed number of arguments), (3) RSRN
(RSR that takes a buffer as an argument) and (4) mobile
object message handlers.

The communication operations provided by Clam are
non-blocking and asynchronous. The RSR functionality
is intended to support single-sided processor-to-processor
communication. This is required for: (1) load imbalance
information dissemination, (2) load redistribution, and (3)
application communication needs.

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

An application can associate what we call a mobile
pointer with any data object local to the processor’s mem-
ory. We also call the data structure which has a mobile
pointer associated with it a mobile object (we use these
terms as they were introduced earlier in [12]). The concept
of mobile pointers provides processor-to-data communica-
tion. The data structure associated with a mobile pointer
can be migrated to any processor following predefined Clam
procedures. While the RSR functionality allows an applica-
tion to invoke a handler on the specified processor, mobile
pointers allow the application to invoke a handler on a pro-
cessor where the targeted mobile object is currently located.
A request for such invocation is translated into a message to
the mobile object. The runtime system provides location-
independent routing of such messages to mobile objects.

The mobile object functionality provides support for ap-
plication adaptivity. The workload local to a processor can
be represented by the set of data objects in memory of that
processor (this is a particularly useful abstraction for AMR
applications). During load balancing, a local work-unit (ob-
ject) can migrate to the address space of a remote processor.
The computation is not decoupled in the general case: there
may be dependencies between work-units located on differ-
ent processors. Hence the requirement for the processor-to-
data communication support.

Clam implements the single-threaded execution model:
all handlers are executed during explicit polling, waiting
on barrier, or waiting for global communication completion
(quiescence detection [14]). Although the targeted applica-
tions are asynchronous, the synchronization and quiescence
detection operations provided by Clam are critical for the
initialization and termination detection procedures.

3.2. Design

In this section we identify and elaborate on a number of
design issues which we consider the most important within
the runtime system. As we show, there are multiple trade-
offs which we have to take into account.

Correctness Clam implements one-sided communica-
tion model with explicit polling. One of the most desired
correctness requirements is to provide deadlock-free com-
munication within this model. In the send/receive commu-
nication model deadlock prevention is the responsibility of
the application. In Active Messages (AM) [16, 20], dead-
locks are avoided by restricting the application communi-
cation freedom. We find both send/receive and AM mod-
els too restrictive to implement dynamic load balancing and
AMR applications. The only restriction which Clam puts
on the application is that the poll operation may not be in-
voked within a handler. This flexibility leads to a possibility
of memory exhaustion, thus a possibility of deadlock.

The deadlock prevention responsibilities are shared be-

tween the runtime system and the application code. It is
absolutely necessary to have the correct deadlock-free im-
plementation of the application. In our case, an application
bears the responsibility of careful use of Clam communica-
tion functionality which will not lead to deadlock. While
it is not feasible to completely eliminate the possibility of
deadlock in Clam, we consider it important to avoid it as
much as possible by using only the non-blocking low-level
communication functions within the runtime system.

Clam guarantees error-free data transmission, FIFO per-
processor ordering of incoming handlers execution and or-
dering of messages sent from a processor to the object.

Performance The runtime system overhead should be
low compared to the actual communication time. Also, with
changes in the configuration size, the ratio of runtime sys-
tem overhead to the total communication overhead on a par-
ticular processor should not change significantly, i.e., the
system should be scalable.

The runtime system performance is dependent on the de-
cisions made relative to the correctness and safety of the
implementation. As we mentioned above, it is important
to use non-blocking communication within the runtime sys-
tem. Because of this, additional data structures are required
to keep track of pending communication operations. Also,
blocking communication operations are known to be the
most efficient. The non-optimal communication mode is the
necessary price to pay for the desired level of correctness.

Another issue which affects performance is the number
of intermediate layers within the implementation. From one
hand, the “separation of concerns” principle simplifies the
logical view of the implementation and its maintainability.
However, it is possible that the overheads introduced by the
separation can be too high to justify the benefits. In Clam
we decided not to separate the mobile object from the RSR
functionality. In Section 3.3 we elaborate on the advantages
of this approach in detail.

Ease-of-use We believe that ease-of-use is one of the
crucial design considerations, as it affects the time required
to develop an application and the costs of its maintenance.
As observed in [19], there are users for which “a shorter
learning curve, ease of program design, development and
debugging are just as important as speedups”. Based on our
experience, this is very true for the parallel mesh generation
community.

Following are the aspects which we consider important
in achieving ease-of-use of a runtime system:

� flexibility provided to the application, appropriateness
of the model;

� clear and simple runtime system API (usability);

� variety of platforms where the runtime system can be
used (portability);

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

� interoperability of the runtime system with the existing
software (openness).

Based on our experience with AMR applications, the
one-sided communication model together with the data mo-
bility functionality has a number of advantages. This model
better addresses the needs of the targeted applications. Be-
cause of this, it requires less time and expertise from the
application developer. The best possible application per-
formance can be achieved using TCP, MPI or some simi-
lar low-level library directly. However, based on our expe-
rience, the required developer expertise, development and
especially maintenance costs make this approach unaccept-
able.

In Clam we attempt to refine the API of the DMCS/MOL
implementation. We do this by merging the functionality of
the two layers and by customizing the API based on our
previous experience with ILB (both DMCS and MOL were
developed years before ILB, which currently is the the main
“user” of Clam). At the same time, the Clam API is suffi-
cient for implementing explicit load balancing techniques
directly. While not particularly interesting from the outside
of PREMA, the API refinement is very useful for the system
maintenance and for the ILB development.

The runtime system portability defines the difficulty of
adapting to the changes in the runtime system environment.
As far as an application is concerned, most of the systems
issues are hidden within the runtime system. In order to be
portable, the runtime system should not be tightly depen-
dent on operating system (OS), low-level communication
substrate, compiler etc. We view the low-level communica-
tion substrate portability as the most important portability
feature.

It is appealing to use MPI as the universal communica-
tion platform for the runtime system: MPI implementations
are available on most OSs and support most of the intercon-
nects; there are numerous groups, which work constantly
on improving the quality of the industrial-strength imple-
mentations, adding new features and providing user sup-
port. While DMCS was supposed to be portable, the ac-
tual implementation was coupled with MPI. Nevertheless,
only a tiny subset of the functionality provided by MPI was
required (namely, initialization and point-to-point commu-
nication). The difficulties with porting DMCS on MPICH-
G2, which we described earlier, convinced us that the im-
plementation should not depend on MPI.

There is another reason not to be fully dependent on
MPI. The requirement of interoperability, or openness [19],
defines that it is desirable for an application programmer to
be able to use lower-level communication primitives. AMR
is usually a component of a composite end-to-end applica-
tion. The lack of interoperability from the AMR part can
affect the rest of the components within such application.
This is possible if the runtime system is implemented on top

Implicit Load Balancing
Library

Low−Level Communication Substrate Operating System

Adaptive Application

Clam

e.g. MPI or TCP

Explicit Load Balancing
Application Code

Figure 2. The positioning of Clam within
PREMA.

of MPI, while both the runtime system and MPI are used
by the application. Such scenario can lead to a deadlock
if there is pending MPI communication within the runtime
system [15].

Finally, the use of MPI as the only communication plat-
form of Clam would restrict its potential capabilities. In
particular, to the best of our knowledge, the existing im-
plementations of MPI use a single channel for communi-
cation between two processors. In PREMA, it may be de-
sirable to have multiple communication channels, as moti-
vated in [15].

3.3. Implementation

We have outlined the most important design considera-
tions we wanted to incorporate into the implementation of
Clam. Next, we describe how to meet these design require-
ments, the costs associated with it, and how the new imple-
mentation compares to DMCS/MOL.

The issue of correctness remains the same in Clam as
it was in DMCS/MOL. However, we identified a problem
with the initial implementation of the PREMA communica-
tion layer. Inside DMCS, all of the communication requests
to the runtime system translate into one or two sends, which
are matched by recvs on the destination processor. Specif-
ically, the first message carries information about the mes-
sage type. It is followed by the buffer in case of RSRN or
message request with a non-zero buffer. In DMCS a block-
ing MPI Recv() is used to receive the buffer. This approach
is deadlock-prone [20]. In the absence of applications at
the time when DMCS was developed this problem was not
noticed. In Clam all requests to the low-level communi-
cation subsystem are non-blocking. The improved correct-
ness comes at the price of additional data structures and de-
creased performance.

We address the issue of performance and ease of use by
merging the functionality of DMCS and MOL in Clam. The
previously taken approach implemented the mobile object
functionality on top of DMCS. This makes perfect sense
from the software engineering perspective. Unfortunately,

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

this decision led to the (1) duplication of functionality of
DMCS within the MOL API, thus duplication of the internal
data structures which serve the same function in DMCS and
MOL; (2) additional memory copies; (3) use of both DMCS
and MOL by ILB to improve performance. Based on our ex-
perience with DMCS/MOL, there are too few benefits and
too many concerns about the effectiveness of this separa-
tion to justify it. By merging the functionality of DMCS
and MOL we eliminate all of the aforementioned problems
and significantly reduce the size of the code to maintain.

The ease-of-use and portability were the important pri-
orities set for Clam. The initial motivation argument be-
hind the development of Clam was to implement a sys-
tem not dependent on MPI. In order to do this, we define
an Abstract Communication Interface (ACI) within Clam.
ACI is a small module which implements the necessary
communication primitives. All of the low-level details are
hidden within the ACI implementation. The Clam opera-
tions which require communication result in posting asyn-
chronous requests to the ACI module. We have developed
TCP and MPI implementations of ACI. The TCP ACI im-
plementation still uses MPI for the startup. We do not con-
sider it worthwhile to re-implement the startup and execu-
tion control functionality provided by LAM MPI, although
we may have to do this for the Globus port of Clam in the
future.

Clam is implemented in C (while DMCS/MOL in C++)
to improve the portability of the system. The C++ portabil-
ity issues arise because of the differences in C++ compilers
and STL implementations across different OSs. While these
difficulties can usually be resolved, C implementation can
eliminate them completely. The use of C++ in DMCS/MOL
was primarily motivated by convenient implementations of
the STL data structures. In Clam we use efficient data struc-
tures derived from the Linux kernel [10].

As a side-effect of the redesign decisions we have made,
the total code size was reduced from around 6000 lines of
DMCS/MOL to roughly 4000 of the Clam implementation
(yet, Clam provides some of the functionality, not present
in DMCS/MOL). The size of the static libraries compiled
with the Sun Workshop CC compiler with -g flag reduced
from 6.8 Mb of DMCS/MOL to roughly 0.6 Mb of Clam
(mostly because we do not use STL). These is a quantifiable
evidence of the improved maintainability (code size) and
usability (binaries size) of the runtime system.

We also addressed maintainability by implementing a
memory manager within Clam. This simplifies debugging
and improves memory usage patterns (we implemented a
restricted version of slab caching [9] within the Clam mem-
ory manager).

Clam implements six Location Management Policies
(LMPs) as a part of the mobile object functionality. An
LMP provides location-independent routing of messages to

i0

i1

i2

i3

i4

i5

i6

i7

s0

s1

s2

s3

s4

s5

s6

s7

65

1

7

0

5

2

3

4

6

1

0

7

5

2

3

4

6

0

1

5

7

2

3

4

6

0

1

3

2

7

5

4

6

0

1

3

2

4

5

7

6

0

1

2

3

4

5

6

7

 7

 1

 5

 0

 3

 2

 4

 6

1 2 3 4

Figure 3. Sorting network for eight inputs.

mobile objects. It was shown in [15] that there is no single
LMP which can give the best application performance for
all classes of applications. Compared with DMCS/MOL,
Clam provides the choice of LMP to applications.

4. Experimental Results

The experimental study was performed on the SciClone
Cluster of The College of William and Mary. We used Ty-
phoon (64 Sun Ultra 5, single UltraSPARC IIi 333/2MB,
256MB mem) and Whirlwind (64 Sun Fire V120, single Ul-
traSPARC IIe 650/512KB, 1GB mem) Solaris 9 subclusters.
The nodes within subclusters are connected with 100Mbps
FastEthernet. As the MPI implementation we used LAM
MPI 7.0 with usysv RPI.

4.1. Benchmarks

Synthetic microbenchmark Parallel network sort
benchmark, which we call netsort for historical reasons,
implements a bitonic sorting network. A sorting network is
a comparison network which specifies a sequence of com-
parisons for its input to produce a sorted sequence [13]. The
process of sorting a sequence of eight numbers using a sort-
ing network is illustrated in Figure 3. Through the series
of comparisons and exchanges, the input sequence i trans-
forms into the sorted sequence s. For the input 0 this results
in the sequence of comparisons with inputs 1, 3, 1, 7, 2 and
1. Each of the shaded regions corresponds to a stage. All the
comparisons within each stage can be done concurrently.
The reader is referred to [15] for the detailed description of
the benchmark implementation.

We used two versions of the netsort benchmark. In
netsortC all of the mobile objects are created on the
same processor, while in netsortD each processor cre-
ates an equal share of the mobile objects. The explanation
of the benchmark behavior can be found in [15]. For the
evaluation purposes, we are interested only in the relative
performance of the two implementations we compare.

It is important to note that the netsort benchmark
was developed with the purpose of simulating a commu-

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

nication intensive tightly coupled application, like the Opti-
mistic Delaunay mesh generation method [17]. The bench-
mark was not designed to achieve high performance and
speedups of parallel sorting. netsort does not use ILB;
it is built directly upon the mobile object functionality of
Clam or MOL.

Parallel Constrained Delaunay Triangulation
(PCDT) PCDT is a parallel mesh generation algorithm
based on Delaunay triangulation [18]. The reader is
referred to [11] for the detailed description of the algorithm
and for the definitions of the related terms.

The main difference of the PCDT algorithm from Delau-
nay triangulation is that the point cavity cannot expand be-
yond the predefined boundary. At the preprocessing stage of
PCDT, the problem is divided into a number of subdomains
satisfying certain boundary conditions. The subdomains
can then be triangulated almost independently on separate
processors. The process of subdomain triangulation con-
sists of selecting and changing “bad” triangles (i.e., those,
which do not satisfy certain geometric requirements) from
the initial triangulation. The recalculation of the subdomain
mesh can lead to modifications of the edges located on the
subdomain boundary. When a new point has to be inserted
on the boundary, a split message is sent to the neighboring
subdomain located on a remote processor.

The implementation of PCDT decomposes the initial do-
main and distributes resulting subdomains (as PREMA mo-
bile objects) among the processors, which mesh the sub-
domains concurrently. The ILB layer of PREMA provides
dynamic diffusion load balancing for PCDT. The coverage
of the load balancing algorithms implemented in ILB can
be found in [5–7].

4.2. Performance Evaluation

We conducted a series of tests both to compare Clam
with the DMCS/MOL implementation and to measure the
absolute overheads of Clam. The first test measures the
maximum achieved bandwidth over the 100 Mbps link us-
ing the ping-pong method. In this test Clam RSRN func-
tionality is used to invoke a remote function with a buffer
of variable size as an argument. The bandwidth for Clam is
measured for both the TCP and MPI ACI implementations.
The same test test is done for DMCS, MOL and pure MPI.
The results for small and large message sizes are shown in
Figure 4.

The results of the ping-pong test show that in most of
the cases Clam achieves better bandwidth than DMCS and
MOL. For small message sizes, LAM MPI performs best.
For large messages Clam implemented on top of TCP ACI
gives better performance than pure MPI. This is explained
by the three-way handshake protocol used by LAM MPI
for messages larger than 64Kb. The performance gain of

Clam over the similar functionality in MOL is over 20%.
The ping-pong data also shows that the overhead MOL adds
over the functionality of DMCS (the sources of this over-
head were described earlier). Both the MPI and TCP imple-
mentations of Clam outperform DMCS.

The second test was designed to evaluate the perfor-
mance of the mobile message functionality of Clam and
MOL. An object is created on processor 0, migrated to pro-
cessor 1, and a mobile message is sent to that object from
processor 0. When the message is received, a reply RSR is
invoked on processor 0 from the processor where the object
is located. The latency measured in this test is defined as
the time between sending a message to the mobile object
and receiving the reply. Next, the object migrates to pro-
cessor 2, and the procedure is repeated. Lazy Forwarding
LMP [15] is used both in Clam and MOL for this test, so
when the object is located on processor 2, each message
sent to it from 0 traverses through processor 1 to 2 (no lo-
cation updates; message forwarding is common for appli-

4K8K 16K 32K 64K 128K
message size, bytes

0

10

20

30

40

50

60

70

80

90
ba

nd
w

id
th

, M
b/

s

Clam TCP
MPI
Clam MPI
DMCS
MOL

128K 256K 512K 1M
message size, bytes

70

80

90

ba
nd

w
id

th
, M

b/
s

Clam TCP
MPI
Clam MPI
DMCS
MOL

Figure 4. Maximum achieved bandwidth for
small and large message sizes.

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

4K8K 16K 32K 64K 128K
message size, bytes

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

tim
e,

 s
ec

Clam
DMCS/MOL

1 hop

2 hops

3 hops

4 hops

Figure 5. Mobile object message latency test.

cations with frequent object migrations). The results of the
test are presented in Figure 5 (the object sequentially mi-
grates from processor 0 to 1, 2, 3 and 4). MOL has lower
latency only for small messages as it uses blocking (unsafe)
MPI Recv operation. Because of the structural deficiencies,
the DMCS/MOL latency over Clam slightly increases with
the number of hops.

The last two performance tests evaluate the overall ef-
fectiveness of Clam. Figure 6 plots the runtimes of the
netsort benchmarks implemented with Clam and MOL
(both Clam and MOL use the same Jump Update LMP [15]
for this test). The benchmarks use the messaging function-
ality of the runtime system extensively. The performance
of these operations is better in Clam, as shown in the pre-
vious experiment. The data also show that Clam is more
scalable. The results of the netsort test validate our de-
cision to merge the functionality of DMCS and MOL. The
significant difference in performance of netsortC and
netsortD is explained by the centralized/decentralized
creation of mobile objects [15].

Finally, Figure 7 gives the runtime breakdown for PCDT
which is using PREMA ILB functionality implemented on
top of Clam (in this test we had 512 subdomains of the 2-
D pipe cut model; the algorithm generated about 35 mil-
lion triangles; the subdomains were assigned area bounds
between 1.92e-2 and 0.26e-2). The overhead introduced
by Clam is within 5% of the execution time, while the to-
tal time was reduced by over 35% compared with the non-
balanced version.

5. Discussion and Future Work

We described the runtime system which provides com-
munication runtime support for dynamic load balancing of
irregular adaptive applications, like mesh generation. We

outlined the design and implementation decisions and the
lessons learned which we consider important for any simi-
lar runtime system. We presented a qualitative and quan-
titative evaluation and comparison of the runtime system
with the DMCS/MOL implementation previously used in
PREMA. Our comparison shows better performance, cor-
rectness guarantees, and improved maintainability of the
runtime system.

We learned from our experience with DMCS/MOL that
it is very difficult to foresee all of the problems, design
a good API and correctly balance the design priorities in
the absence of applications. This was the case at the time
DMCS was developed in mid-90s, when we had no AMR
software implemented. We learned a lot from the applica-
tions developed recently and improved the runtime support
based on that experience.

A number of ideas still remain to be realized within
Clam. We have to consider the multi-threaded implementa-
tion of the communication component and extend the range
of the ACI implementations. The experience with ILB
showed that it is necessary to be able to receive load bal-
ancing messages concurrently with the application compu-
tations [6]. Currently this is achieved by periodic polling
in a separate load balancer thread. The utility messages
are distinguished from the application messages using tags.
However, this turned out to be an unsatisfactory solution
for applications which generate high network traffic [15].
Congestion of the single processor-to-processor commu-
nication channel leads to late arrival of the load balancer
messages and thus outdated, ineffective load balancing de-
cisions. We plan to address this issue by providing an
API (within Clam) for creation of additional communica-
tion networks (not possible in MPI ACI, but can be done
with TCP), similarly to communication bundles in AM [16].

8 16 32 64
number of processors

0

10

20

30

40

50

60

70

80

tim
e,

 s
ec

netsortC, Clam
netsortC, DMCS/MOL
netsortD, Clam
netsortD, DMCS/MOL

Figure 6. Execution times of the netsort
benchmark with DMCS/MOL and Clam.

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
processor ID

0

10

20

30

40

50

60

70

80

tim
e,

 s
ec

application time
Clam overhead
MPI time + idle

no load-balancing

Figure 7. PCDT runtime breakdown (PREMA
diffusion load balancing).

This may help to eliminate the channel congestion problem
and the existing requirement for message tags.

While Clam is still under development, it is an open
project and can be obtained for research purposes by con-
tacting the authors.

Acknowledgments

The initial version of the netsort benchmark was de-
signed and implemented by Chris Hawblitzel. The PCDT
application was developed by Andrey Chernikov. Andriy
Fedorov thanks Kevin Barker for valuable discussions about
the DMCS/MOL implementation.

This work was performed using computational facilities
at the College of William and Mary which were enabled
by grants from Sun Microsystems, the National Science
Foundation, and Virginia’s Commonwealth Technology Re-
search Fund.

The authors are grateful to anonymous referees for the
constructive comments on the initial version of this paper.

References

[1] The Globus Project.
�
http://www.globus.org/ �

(06/10/2003).
[2] MPICH-G2 Mailing List Archives, April 2004.

�
http://www-unix.globus.org/mail_

archive/mpich-g/2004/04/msg00001.html �
(05/12/2004).

[3] MPICH-G2 Mailing List Archives, August 2002.
�
http://www-unix.globus.org/mail_

archive/mpich-g/2002/08/msg00009.html �
(05/12/2004).

[4] MPICH-G2 Mailing List Archives, May 2003.
�
http://www-unix.globus.org/mail_

archive/mpich-g/2003/05/msg00026.html �
(05/12/2004).

[5] K. Barker. Runtime Support for Load Balancing of Paral-
lel Adaptive and Irregular Applications. PhD thesis, De-
partment of Computer Science, The College of William and
Mary, 2004.

[6] K. Barker and N. Chrisochoides. An Evaluation of a Frame-
work for the Dynamic Load-Balancing of Highly Adaptive
and Irregular Parallel Applications. In Proceedings of Su-
perComputing’03, 2003.

[7] K. Barker, N. Chrisochoides, A. Chernikov, and K. Pin-
gali. A Load Balancing Framework for Adaptive and Asyn-
chronous Applications. IEEE Transactions on Parallel and
Distributed Computing, 15(2):183–192, 2004.

[8] K. Barker, N. Chrisochoides, J. Dobellaere, D. Nave, and
K. Pingali. Data Movement and Control Substrate for Paral-
lel Adaptive Applications. Concurrency: Practice and Ex-
perience, 14(2):77–101, 2002.

[9] J. Bonwick. The Slab Allocator: An Object-Caching Ker-
nel Memory Allocator. In USENIX Summer, pages 87–98,
1994.

[10] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly, 2nd edition, 2003.

[11] P. Chew, N. Chrisochoides, and F. Sukup. Parallel Con-
strained Delaunay Meshing. In Proceedings of 1997 Joint
ASME/ASCE/SES Summer Meeting, Special Symposium on
Trends in Unstructured Mesh Generation, 1997.

[12] N. Chrisochoides, K. Barker, D. Nave, and C. Hawblitzel.
Mobile Object Layer: A Runtime Substrate for Parallel
Adaptive and Irregular Computations. Advances in Engi-
neering Software, 31(8–9):621–637, 2000.

[13] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduc-
tion to Algorithms. MIT Press, 2nd edition, 2001.

[14] E. W. Dijkstra. Shmuel Safra’s version of termi-
nation detection, 1987. Manuscript EWD998-7,

�
http://www.cs.utexas.edu/users/EWD/

ewd09xx/EWD998.PDF � (11/02/2003).
[15] A. Fedorov. Location Management in a Mobile Object Run-

time Environment. MS thesis, Department of Computer Sci-
ence, The College of William and Mary, 2003.

[16] A. Mainwaring and D. Culler. Active Message Applications
Programming Interface and Communication Subsystem Or-
ganization. Technical Report Draft, University of California
at Berkeley.

�
http://now.cs.berkeley.edu/AM/

am-spec-2.0.ps � (02/11/2004).
[17] D. Nave, N. Chrisochoides, and P. Chew. Guaranteed-

Quality Parallel Delaunay Refi nement for Restricted Poly-
hedral Domains. In Proceedings of the 18th Annual ACM
Symposium on Computational Geometry, pages 135–144,
2002.

[18] J. R. Shewchuk. Tetrahedral Mesh Generation by Delaunay
Refi nement. In Proceedings of the 14th Annual ACM Sym-
posium on Computational Geometry, pages 86–95, 1998.

[19] A. Singh, J. Schaeffer, and D. Szafron. Experience with
Parallel Programming Using Code Templates. Concurrency:
Practice and Experience, 10(2):91–120, 1998.

[20] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser. Ac-
tive Messages: A Mechanism for Integrated Communication
and Computation. In 19th Annual Symposium on Computer
Architecture, 1992.

Proceedings of the 2004 International Conference on Parallel Processing Workshops (ICPPW’04)

1530-2016/04 $20.00 © 2004 IEEE

