
A Case Study of Optimistic Computing
on the Grid: Parallel Mesh Generation

Nikos Chrisochoides�, Andriy Fedorov, Bruce B. Lowekamp and Marcia Zangrilli
Computer Science Department
College of William and Mary

Williamsburg VA 23185
fnikos, fedorov, lowekamp, mazangg@cs.wm.edu

Craig Lee
The Aerospace Corporation lee@aero.org

January 28, 2003

Abstract

This paper describes our progress in creating a case study
on optimistic computing for the Grid using parallel mesh
generation. For the implementation of both methods we
will be using a Portable Runtime Environment for Mobile
Applications (PREMA) which is extended to provide sup-
port for optimistic control using grid performance moni-
toring and prediction.

Based on the observed performance of a world-wide
grid testbed, we will use this case study to develop a
methodology for estimating target operating regions for
grid applications. The goal of this project is to generalize
the experience and knowledge of optimistic grid comput-
ing gained through mesh generation into a tool that can be
applied to tightly coupled computations in other applica-
tion domains.

1 Introduction

Computational grids offer a vast pool of computational
and storage resources which can be utilized by large-scale
engineering and scientific computing applications. Mesh
generation is an integral part of many important engineer-

�Corresponding author

ing and scientific computing applications. The projected
memory and the time it will take to generate and partition
a 3-dimensional billion elements mesh on a single work-
station or even on a single supercomputer is expected to
be prohibitively large compared to the analysis phase of
scientific computing simulations. Although mesh genera-
tion is not a natural application for the Grid, its strategic
importance for multi-scale simulations and its memory re-
quirements are forcing us to consider the task of generat-
ing 3-dimensional meshes on the Grid. In this project we
evaluate alternative options for performing this task. In
addition we use mesh generation as a case study to exam-
ine the feasibility of porting tightly-coupled applications
like mesh generation on the Grid. Our approach is based
on algorithm re-structuring for tolerating long, variable,
and unpredictable communication and synchronization la-
tencies.

In this project we will evaluate two different mesh gen-
eration approaches and we will perform the following
tasks:

� Develop a runtime infrastructure that enables an ap-
plication to interact with its performance environ-
ment while facilitating quick prototyping, experi-
mentation, and evaluation.

� Explore how optimistic execution and other tech-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

niques must be controlled to scale-up and enable an
application to work in its grid “operating region.”

� Develop and evaluate new network measurement
techniques and performance models that cover a
wide spectrum of communication characteristics
needed by mesh generation methods to implement
properly grid-aware applications.

In the rest of the paper we introduce the concept of op-
timistic computation and the behavior that an application
must exhibit to benefit from it. This application behav-
ior is tied to the concept of an “operating region” for grid
applications based on “keeping the pipes full” and match-
ing the computation/communication ratio to the environ-
ment. We then introduce parallel mesh generation meth-
ods which can be reconceived as optimistic computations.
These methods can be supported by a specialized run-time
system (see Section 4) that incorporates grid performance
monitoring. We conclude in Section 5.

2 Optimistic Computation for Grid
Environments

Figure 1: Cost trade-offs between strict control and opti-
mistic control.

Optimistic parallel computation is very similar to op-
timistic parallel simulation [8]. In that work, multiple
end-hosts simulate in parallel and exchange time-stamped
events. If a host receives an event with a time-stamp ear-
lier than its current simulated time, i.e., “in its past”, then
it must roll-back its simulation to the earlier time and
start again. This requires that an end-host do incremen-
tal state saving to enable roll-backs, and possibly send
anti-messages that undo the effect of messages sent to

other end-hosts during the rolled-back period. The crit-
ical trade-off that determines the advantage of optimistic
simulation is the overhead of roll-backs (frequency and
severity) versus the benefit of more loosely coupled, par-
allel simulations that have reduced synchronization and
communication delays. This is a fundamental trade-off
that applies to all optimistic computation. Optimistic ex-
ecution can be used to tolerate synchronization and com-
munication latencies but allows inconsistent results to be
computed.

This trade-off is illustrated in Figure 1. A strictly syn-
chronized application has some overhead due to this syn-
chronization and communication control. An optimistic
computation will have some overhead for consistency
checking using validation messages. Since consistency
validation can proceed independently, these messages can
be sent asynchronously and also be pipelined. When an
inconsistency is detected, however, roll-back must occur
which could be a more heavyweight and synchronous op-
eration. For optimistic computation to be advantageous,
the following inequality must hold:

Costvalidation +Costroll�back� Coststrict�control (1)

The costs of validation and roll-back should be much less
than the cost of strict control. If the costs are similar, or
greater, then there will be no advantage, or even a disad-
vantage. Cost will typically be defined in terms of execu-
tion time but this cost could be broken down into commu-
nication time, synchronization delays, and also discarded
work.

For grid environments, a key issue is “how much op-
timism is enough”? Optimistic application must have
some type of independent parameter, or “control-knob,”
that determines the amount of optimism. Clearly over-
optimistic execution will suffer excessive roll-backs while
under-optimistic execution will not improve parallel per-
formance by not being able to tolerate much of com-
munication and synchronization latencies over the Grid.
Hence, an application should only generate just enough
optimistic parallelism to compensate for the current net-
work bandwidth and latency without wasting too much
work.

This notion can be used to define an operating region
for grid applications [12]. Using a simple pipeline model
of work units arriving at a host, we can make assump-
tions of the work unit size and compute time it requires at

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the host. Using a snapshot (see Section 4.2) of a global
grid’s network bandwidth and latency, we can bound per-
formance regions that represent the number of threads an
application must generate, the size of the work units, and
their computational time in order to (1) “keep the pipes
full,” and (2) match the computation/communication ra-
tio. While this pipeline model elides many application is-
sues (such as explicit synchronization and data dependen-
cies, and a distribution of work unit sizes), it nonetheless
gives us a potential mechanism whereby we can monitor
the current grid communication performance and control
an application’s behavior to stay within a targeted oper-
ating region.

Thus, a major goal of this project is to integrate such a
control model into PREMA. This optimistic control mod-
ule will utilize grid performance monitoring tools to eval-
uate the current environment and then determine how the
application behave, e.g., how aggressively it should do
optimistic cavity expansion. The next section describes
briefly two of the three parallel mesh generation tech-
niques we consider in this project —due to lack of space
we will describe in our presentation the “control knob”
parameters that can be used to control the behavior of
some of the meshers.

3 Parallel Mesh Generation

Most of the traditional parallel mesh generation meth-
ods explore concurrency at a coarse-grain level using
stop-and-repartition methods which are based on global
synchronization—a major source of overhead for large-
scale parallel machines (see Figure 2) and the Grid. Also,
traditional parallel mesh generation methods solve the
mesh generation and partitioning problems separately—
leading to an unnecessary and expensive memory access
overheads for large scale parallel machines and the Grid,
since parallel mesh generation is NOT a computation in-
tensive application. Moreover the boundary (interfaces)
of the subproblems are fixed —for some algorithms this
affects the stability of the parallel mesh (i.e., distributed
meshes should retain the high quality of elements and par-
tition properties of the sequentially generated and parti-
tioned meshes).

In [17] we presented the first provable 3-dimensional
(3D) parallel guaranteed quality Delaunay mesh

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
nodes

0

200

400

600

800

1000

1200

1400

tim
e,

 s
ec

on
ds

Jmesh
Communication
Synchronization
Idle

Figure 2: Performance data from generating 168K tet
mesh using parallel advance front technique for crack
propagation [18] on 128 processor Sun cluster. The
graph depicts the cycles spend in communication (due to
data movement) and global synchronization due stop-and-
repartition load balancing. It also shows the actual com-
putation time spend on the advance front mesh generation.

(PGQDM) generation and refinement algorithm/software
for polyhedral domains. The PGQDM mathematically
guarantees the generation of tetrahedra with circumradius
to shortest edge ratio less than 2, as long as the angle
separating any two incident segments and/or facets is be-
tween 90Æ and 270Æ. The PGQDM kernel is based on the
parallelization and re-structuring of existing sequential
algorithms [19] for the meshing of the external boundary.
In PGQDM we use concurrency as a mechanism to
control optimism required to tolerate long, variable
and unpredictable communication and synchronization
latencies.

The PGQDM algorithm: (1) explores concurrency at
both coarse-grain and fine-grain levels in order to tolerate
communication and local synchronization latencies, (2)
couples the mesh generation and partitioning problems
into a single optimization problem in order to eliminate
redundant memory operations (loads/stores) from and to
cache, local & remote memory, and disks, (3) allows the
submesh interfaces induced by an element–wise partition-
ing of an initial mesh of the domain to change as the mesh
is refined in order to mathematically guarantee the qual-
ity of the elements. These change in the interfaces are the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

source of setbacks in PGQDM.
In this project we will study the trade-offs between

speculative execution and setbacks in PGQDM in the
context of the Grid. Although it is desirable to tolerate
communication and synchronization and we can currently
mask 80% to 90% (in some instances even more) of the
communication latency [5] on a CoWs, , it is ideal to
reduce communication and synchronization into a single
communication phase at the end with minimum possible
data exchange, especially for grid applications. Moreover
it will be very practical if we could achieve this objective
without re-structuring the sequential algorithms/software.
Next we present our preliminary results in this direction
from a 2-dimensional (2D) parallel mesh guaranteed qual-
ity Delaunay mesh generation.

Parallel Domain Decoupling Delaunay Mesh Genera-
tion In order to eliminate communication and synchro-
nization and maximize code re-use and be able to lever-
age from the ever evolving and mature technologies in se-
quential meshing we developed the Parallel Domain De-
coupling Delaunay (PD3) method [14]. PD3 works for
2D domains and we are working to extend it for 3D do-
mains while the PGQDM is working for both 2D and 3D
domains.

The PD3 based on the idea of decoupling the indi-
vidual submeshes so that they can be meshed indepen-
dently with zero communication and synchronization. In
the past similar attempts to parallelize Delaunay triangu-
lations and implement Delaunay based mesh generation
presented in [3, 6]. However, in [14] we solve some of
the drawbacks and improve upon the previously published
methods.

The two-dimensional triangulation algorithm presented
in [3] assumes that all points are known at the beginning
of the triangulation. This is not a practical assumption
for mesh generation and refinement, because new points
are inserted on demand in order to improve element qual-
ity, perform mesh refinement, and recovery of boundary
edges and faces. In contrast, the Parallel Projective Delau-
nay Meshing (P 2DM) method [6] is suitable for mesh-
ing, but it might suffer much more severe setbacks com-
pared to what we observe in PGQDM. The setbacks are
in the form of discarding the complete mesh. This might
happen (at any time) when the sequentially generated sep-

Figure 3: a) Initial boundary conforming mesh used to
compute the Medial Axis Transformation (left) which in
turn is used to achieve high quality domain decomposition
(right).

Table 1: Preliminary data on the number of elements
and execution time (in seconds) for generating very large
meshes using 1 to 128 processors.

Procs 1 32 64 128
Domains 12 384 768 1200
elems 19M 600M 1.2B 1.6B

Dec. Time 0.20 0.54 1.27 3.08
Mesh Time 124.18 135.04 135.81 106.31
Total time 124.38 135.58 137.08 109.39

arators fail to be Delaunay admissible for some of the
newly inserted points.

The construction of decompositions that can decouple
the mesh and the proof that these decompositions lead
to stable parallel meshes is a challenging problem. We
use a domain decomposition method which is based on
the partition of a weighted graph and an approximation
of the Medial Axis Transformation (see Figure 3). Be-
fore the construction of the graph, the initial mesh is pre-
processed in order to prevent the creation of “bad” an-
gles [14] between either the interfaces themselves or be-
tween the interfaces and the external boundary of the do-
main. Then the pre-processed mesh is used to construct
a dual weighted graph of the sides of the triangles. This
graph is simply connected and its partition provides a de-
composition of the domain.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

After the decomposition of the domain, the PD3 con-
structs a “zone” around the interfaces of the submeshes.
In [14] we prove that Delaunay meshers will not insert any
new points within this zone i.e., the sequential Delaunay
mesh on the individual submeshes it can terminate with-
out inserting any new points on the interfaces and thus
eliminate communication and code modifications of the
sequential codes. So the problem of parallel meshing is
reduced into a “proper” domain decomposition and a dis-
cretization of interfaces. Of course one has to show that:
(1) the domain is not over-refined because of a predefined
discretization and (2) the quality of the elements is main-
tained. Our preliminary experimental data indicate (see
Table 1) that over-refinement is not a major factor of in-
efficiency for decomposition in the order of thousands of
subdomains and for the geometries we tested our method.
Similarly the high quality of the elements is preserved.

4 Portable Runtime Environment
for Mobile Applications

PREMA’s design objective is to assist application devel-
opers to implement parallel adaptive codes in an evolu-
tionary way starting from well tested and fine-tuned se-
quential codes (preferable written in C or C++ program-
ming languages) and transform them into parallel and
grid-aware ones.

PREMA’s communication layer is the Data Move-
ment and Control Substrate (DMCS) which implements
one-sided low-latency communication. DMCS is im-
plemented on top of MPI for CoWs and the Grid (us-
ing Globus-based MPICH-G2 [7] implementation). No
significant overhead has been observed in the prelimi-
nary comparison of MPICH-G2/DMCS performance over
regular MPICH/DMCS implementation (see Figure 4).
DMCS adds a small overhead (less than 3% in the case of
MPI libraries and less than 10% for low latency systems
like LAPI) to the communication operations provided by
the underline communication system. In return DMCS
provides a flexible and easy to understand application pro-
gram interface for one-sided communication operations
including get=put ops and remote procedure calls [2].

The second communication component is the Mobile
Object Layer (MOL). MOL supports global name space

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
log2 of message size, bytes

0

1

2

3

4

5

6

7

8

9

10

11

12

b
a
n

d
w

id
th

,
M

B
/s

e
c

MPICH
DMCS/MPICH
MPICH-G2
DMCS/MPICH-G2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
log2 of message size, bytes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1e+05

la
te

n
c
y

,
m

ic
ro

s
e
c

MPICH
DMCS/MPICH
MPICH-G2
DMCS/MPICH-G2

Figure 4: Bandwidth and latency for asynchronous,
blocking one-sided communication primitive of DMCS
on top of MPICH for CoW and the Grid.

in the context of data (submesh) or object mobility [4].
Specifically, MOL uses global pointers to implement a
global logical name space and supports automatic mes-
sage forwarding in order to ease the implementation
of dynamic load balancing for adaptive applications on
CoWs and the Grid. MOL is implemented on top of
DMCS and adds another 10% to 15% overhead. In return
the application programmer can perform data (submesh)
or object migration, for load balancing, without changing
a single line of code.

Location management policy (LMP) is a crucial part of
the MOL implementation. LMP consists of rules for per-
forming searches, updates, and search-updates of the ob-
jects location information. There are different strategies
for each of these three operations [10]. Our preliminary
results show that the choice of the LMP can significantly
affect the performance of the application in some cases.
Figure 5 depicts performance data from 1-way and 2-way
SMP nodes using different LMPs for parallel bitonic sort
where sorted elements move on each iteration. As a part
of our research, we are going to evaluate the properties of
different LMPs in a Grid environment. We will also ex-
plore how the knowledge about the topology and dynamic
properties of the network (bandwidth and latency) can be
used to improve the overall efficiency of the LMP.

The third layer implements the dynamic Load Balanc-
ing Library (LBL) on top of DMCS and MOL. LBL uses
the abstraction of a Schedulable Object (SO) to represent
application-defined data objects like the submeshes, for
parallel mesh generation. The SO is the smallest unit of

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

8 16 24 32 40 48 56 64
number of processors

20

30

40

50

60

70
ti

m
e
,

s
e
c
o

n
d

s

Lazy Forwarding
Jump-Update Forwarding
Path Compression Forwarding
Home-Based

8 16 24 32 40 48 56 64
number of processors

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

ti
m

e
,

s
e
c
o

n
d

s

Home-Based
Jump Update Forwarding
Path Compression Forwarding
Lazy Forwarding

Figure 5: Performance of parallel bitonic sort on 1-way
(left) and 2-way (right) SMP nodes using four different
LMPs and MPILAM implementation of DMCS.

granularity that is managed by the runtime system. Bal-
ancing processors’ workload or memory (in the case of
adaptive refinement) results in moving one or more SOs.
The SOs are migrated automatically by the Load Migra-
tor which is responsible for un-installing, moving, and in-
stalling SOs using MOL so that messages to them will
automatically forwarded. The decision making for which
SO and where to migrate is handled by the Scheduler. The
Scheduler supports a wide spectrum of load-balancing
methods and it is described in detail in [1]. In the next ver-
sion of the LBL, modules like the Wren network monitor
system will provide to the scheduler network information
it needs for effective dynamic load balancing.

4.1 An Optimistic Control Module

Making effective use of optimistic algorithms for mesh
generation is only possible if the algorithms can be ad-
justed to the right level of optimism. If the control knob
is set too high, incorrect optimistic assumptions may be
made when the communication would be less costly. If
the knob is set too low, the application will wait for com-
munication to complete when it could be performing op-
timistic computations that may be useful for the overall
computation.

PREMA is being extended with an Optimistic Control
Module (OCM) that is illustrated in Figure 6. The OCM
interfaces with the application and with other middleware
modules to acquire the information that is necessary to
control the optimistic behavior. On a given host, a mesh

generation code will build a local submesh that has one or
more boundaries with submeshes on other hosts. PREMA
will maintain a “pipe” connection between each submesh
pair. For each connection, the network performance will
be monitored such that the current bandwidth and round-
trip time (RTT) will be available to the OCM. From this,
simple, one-way latency and the bandwidth-delay product
can be derived. Simultaneously the DMCS will monitor
the number and size of messages sent and received by the
application. The application itself will monitor the pro-
cessing time per message and the number of setbacks and
the associated processing time that was wasted.

With this information, the OCM can apply a control
model designed to keep the application within the oper-
ating region as closely as possible. In the case of mesh
generation, this control model will determine the number
of interface threads the application should use, the num-
ber of parallel cavity expansions that can be underway,
and the frequency that cavities can be created. Clearly
many classical control issues become relevant here. This
is a control loop where hysteresis may have to be applied
to prevent oscillations or over-compensations. Another
possibility is the use of exponential averaging over a time
series of data.

We must also note that while each submesh pair has
a unique channel between them, multiple channels may
share the same network interfaces and network links. In
this case, the control model may have to correct for the
optimistic behavior across boundaries derived from point-
to-point performance measurements that share physical
infrastructure. It is also possible that the OCM could pro-
vide per boundary control information to the application,
or it could provide aggregate control information across
all boundaries. Once basic implementation is complete,
these issues will be explored.

4.2 The Wren Measurement System

Setting the control knob to the correct level requires
knowledge of the bandwidth and latency available in the
environment the application is using. NWS [20] and Re-
mos [15] are two systems that provide network measure-
ments and predictions to applications. However, the grids
we are focusing on and the needs of this application do
not lend themselves well to either system’s measurement
approaches.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Figure 6: The optimistic control module for PREMA.

The grid environments the application will run on con-
sist of a variety of clusters interconnected by LAN and
WAN networks. The application’s control knob must be
tuned appropriately for each cluster and for each WAN
connection—one setting will not work for the entire ap-
plication. Therefore, we must have latency and bandwidth
information available for connections within each cluster
as well as between each cluster. NWS is well-suited to
performing measurements between the clusters, but will
not work as well running within a cluster while our appli-
cation is running. Remos can monitor utilization within
the cluster while the application is running, but cannot
measure latency or monitor the actual performance an ap-
plication can achieve running over the cluster.

We are developing the Wren network measurement sys-
tem to provide the information needed to set the con-
trol knob for optimistic applications. Wren will combine
active and passive measurements to effectively and effi-
ciently monitor the communication performance of the
cluster whether an application is running or not. Fur-
thermore, Wren utilizes network topology information we
gather to partition the grid into clusters with different net-
work performance parameters, which the application re-
quires to set the optimism control knob and LMPs as ap-
propriate as performance and other machine characteris-
tics vary within each cluster.

4.2.1 Passive Measurements at Runtime

Other projects have also looked at passive monitoring of
application data [9, 11]. In the development of Wren,
we are looking to expand on these approaches by using

both active and passive measurements, as well as relying
on measurement portability to allow different measure-
ment techniques to be chosen according to available traf-
fic, while preserving what appears to be a series of the
same probe to other applications and services.

There are already significant results that indicate that
it is possible to predict the value of one form of network
measurement with another [16, 20]. To implement the
passive approach at runtime on the machines used in the
clusters, we are instrumenting the network stack within
the 2.4 series of Linux kernels. The connection, sequence
numbers, and flags of each packet are recorded with a
timestamp as the packet is transferred to or from the net-
work interface. This information is then made available
to the user level through an interface in the /proc filesys-
tem. Our implementation minimizes the overhead im-
posed at kernel level during program execution, and hope-
fully allows analysis to be scheduled when the application
is waiting for data. The overhead imposed by the user-
level code is minimal, and the data can be transferred to
another machine for processing, as necessary.

We have implemented several different techniques for
calculating available and achievable bandwidth using this
instrumentation. The simplest is the bulk-transfer bench-
mark, where we observe the amount of data TCP suc-
cessfully sends over a given interval of time, duplicating
the functionality of traditional user-level probes within the
kernel. These techniques are accurate as long as the ap-
plication is sending sufficient data. Our other techniques
are based on variants of the packet dispersion techniques.
We have implemented techniques using either instrumen-
tation at one or both ends, using data packets or ACK
packets depending on which ends instrumentation is avail-
able. Figure 7 illustrates the correlation in the numbers
produced by the different techniques in our implementa-
tion.

4.2.2 Topology-Based Steering

Part of the development of Wren focuses on using topol-
ogy information collected for LANs and WANs to mini-
mize the number of probes that must be sent to measure
the inter-cluster network’s performance. Using the topol-
ogy knowledge to reduce the number of active probes sent
will allow more frequent measurements of the path while
still reducing the invasiveness of the traffic by decreas-

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

2

4

6

8

10

10 20 30 40 50 60 70

M
ea

n
A

va
il.

 B
W

 (
M

bi
ts

/s
ec

)

Time (sec)

packet pair sender-only
packet pair sender-receiver

receiver benchmark
sender benchmark

sender TCP window

Figure 7: Available bandwidth calculated using different
techniques for a pair of hosts exchanging data at full rate
across a WAN.

ing the number of pairs of machines exchanging measure-
ments.

Wren acquires the LAN topology information from Re-
mos and uses that information to group the hosts into
cliques consisting of the hosts attached to each edge
switch. Wren will then group the cliques by measuring
the network between the switches to determine if each
clique should be merged, effectively considering it a sin-
gle cluster, or left separate, indicating to the application
that different control-knob settings will be required for
each clique.

The combination of using passive measurements to ob-
serve the performance of the network while the mesh gen-
eration is running and using the topology to partition the
grid used into clusters which require separate settings of
the control knob allows us to optimize the performance
of the mesh generation application over all of the ma-
chines it uses. The information collected allows the con-
trol settings to be updated as needed at runtime and for
load-balancing or migration to optimize the application’s
performance. Although our application runs across the
WAN, it still requires accurate information about each
cluster and LAN to achieve optimal performance.

5 Summary

We have reported on a comprehensive middleware ap-
proach to support optimistic computation in grid environ-
ments in the specific context of mesh generation. We
note that optimistic computation is one of several grid
programming paradigms [13] that could be employed to
make tightly coupled applications more amenable for grid
execution. Hence, while we expect to see significant ben-
efits for mesh generation, the ultimate goal is to generalize
this approach such that it can be used, when appropriate,
in other application domains.

6 Acknowledgments

This research is supported in part by ACI-0203974. In ad-
dition Chrisochoides’ research is supported in part by Ca-
reer Award grant No. CCR-9876179, ITR grant No. ACI-
0085969, and RI grant No. EIA-9972853. Lowekamp’s
research is supported in part by the ARPA and Rome
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-96-1-0287. The data of the
Figure 2 and Table 1 were collected with the assistance of
K. Barker, A. Chernikov, and L. Linardakis. This work
was performed in part using computational facilities at
the College of William and Mary which were enabled
by grants from Sun Microsystems, the National Science
Foundation, and Virginia’s Commonwealth Technology
Research Fund.

References

[1] K. Barker, N. Chrisochoides, A. Chernikov, and
K. Pingali. Architecture and evaluation of a load
balancing framework for adaptive and asynchronous
applications. IEEE Trans. Parallel and Distributed
Systems,, Under revision, 2003.

[2] Kevin Barker, Nikos Chrisochoides, Jeff Dobbelaer,
Démian Nave, and Keshav Pingali. Data movement
and control substrate for parallel, adaptive applica-
tions. Concurrency and Computation Practice and
Experience, 14, 2002.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

[3] G. Blelloch, J. Hardwick, G. Miller, and D. Tal-
mor. Design and implementation of a practical paral-
lel delaunay algorithm. Algorithmica, 24:243–269,
1999.

[4] Nikos Chrisochoides, Kevin Barker, Demian Nave,
and Chris Hawblitzel. Mobile object layer: A run-
time substrate for parallel adaptive and irregular
computations. Advances in Engineering Software,
31(8-9):621–637, 2000.

[5] Nikos Chrisochoides and Démian Nave. Parallel de-
launay mesh generation kernel. IJNME, To appear
in 2003.

[6] J. Galtier and P. L. George. Prepartitioning as a way
to mesh subdomains in parallel. In Special Sympo-
sium on Trends in Unstructured Mesh Generation.
ASME/ASCE/SES, 1997.

[7] http://www.globus.org/mpi.

[8] D.A. Jefferson. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):404–
425, July 1985.

[9] Guojun Kin, George Yang, Brian R. Crowley, and
Deborah A. Agarwal. Network characterization
server (NCS). In HPDC11. IEEE, August 2001.

[10] Pattabhiraman Krishna, Nitin H. Vaidya, and Dhi-
raj K. Pradhan. Location management in distributed
mobile environments. In Proceedings of the 3rd In-
ternational Conference on Parallel and Distributed
Information Systems (PDIS), pages 81–88, Wash-
ington, DC, 1994. IEEE Computer Society.

[11] K. Lai and M. Baker. Nettimer: A tool for measur-
ing bottleneck link bandwidth. In In Proceedings of
USENIX Symposium on Internet Technologies and
Systems, 2001.

[12] C. Lee and J. Stepanek. On future global grid com-
munication performance. 10th IEEE Heterogeneous
Computing Workshop, May 2001.

[13] C. Lee and D. Talia. Grid programming models:
Current tools, issues and directions. In Berman,
Fox, and Hey, editors, Grid Computing: Making the

Global Infrastructure a Reality. Wiley, 2003. To ap-
pear.

[14] L. Linardakis and N. Chrisochoides. Parallel delau-
nay domain decoupling method for planar geome-
tries. Algorithmica, To be submitted in 2003.

[15] Bruce Lowekamp, Nancy Miller, Dean Suther-
land, Thomas Gross, Peter Steenkiste, and Jas-
pal Subhlok. A resource monitoring system for
network-aware applications. In Proceedings of the
7th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC), pages 189–
196. IEEE, July 1998.

[16] Bruce Lowekamp, David O’Hallaron, and Thomas
Gross. Direct queries for discovering network re-
source properties in a distributed environment. In
Proceedings of the 8th IEEE International Sympo-
sium on High Performance Distributed Computing
(HPDC), pages 38–46. IEEE Computer Society, Au-
gust 1999.

[17] D. Nave, N. Chrisochoides, and P. Chew.
Guaranteed-quality parallel delaunay refinement for
restricted polyhedral domains. In Proceedings of
8th ACM Symposium on Computational Geometry,
pages 135–144, 2002.

[18] J. B. Cavalcante Neto, P. A. Wawrzynek, M. T. M.
Carvalho, L. F. Martha, and A. R. Ingraffea. An al-
gorithm for three-dimensional mesh generation for
arbitrary regions with cracks. EwC, 17(1):75–91,
2001.

[19] Jonathan Richard Shewchuk. Delaunay Refinement
Mesh Generation. PhD thesis, Carnegie Mellon Uni-
versity, School of Computer Science, May 1997.
Available as Technical Report CMU-CS-97-137.

[20] Martin Swany and Rich Wolski. Multivariate
resource performance forecasting in the network
weather service. Baltimore, MD, November 2002.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

