
Practical and Efficient Point Insertion Scheduling Method
for Parallel Guaranteed Quality Delaunay Refinement∗

Andrey N. Chernikov
Computer Science Department

College of William and Mary
Williamsburg, VA 23185

ancher@cs.wm.edu

Nikos P. Chrisochoides
Computer Science Department

College of William and Mary
Williamsburg, VA 23185

nikos@cs.wm.edu

ABSTRACT
We describe a parallel scheduler, for guaranteed quality par-
allel mesh generation and refinement methods. We prove
a sufficient condition for the new points to be indepen-
dent, which permits the concurrent insertion of more than
two points without destroying the conformity and Delau-
nay properties of the mesh. The scheduling technique we
present is much more efficient than existing coloring meth-
ods and thus it is suitable for practical use. The condition
for concurrent point insertion is based on the comparison
of the distance between the candidate points against the
upper bound on triangle circumradius in the mesh. Our ex-
perimental data show that the scheduler introduces a small
overhead (in the order of 1–2% of the total execution time),
it requires local and structured communication compared
to irregular, variable and unpredictable communication of
the other existing practical parallel guaranteed quality mesh
generation and refinement method. Finally, on a cluster of
more than 100 workstations using a simple (block) decompo-
sition our data show that we can generate about 900 million
elements in less than 300 seconds.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; F.2.2 [Theory of Computation]: Analy-
sis of Algorithms and Problem Complexity—Nonnumerical
Algorithms and Problems; I.3.5 [Computing Methodolo-
gies]: Computer Graphics—Computational Geometry and
Object Modeling

General Terms
Algorithms, Performance, Design, Theory

∗This work was supported by NSF grants: CCR-0049086,
ACI-0085969, EIA-9972853, EIA-0203974, and ACI-0312980

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’04, June 26–July 1, 2004, Saint-Malo, France.
Copyright 2004 ACM 1-58113-839-3/04/0006 ...$5.00.

Keywords
Mesh generation, Delaunay triangulation, Parallel Scientific
Computing, COTS Software

1. INTRODUCTION
The prevention of catastrophic failures in health-care, trans-

portation and defense depends on our ability to understand
complex and dynamic phenomena like crack propagation in
fracture mechanics [9]. Parallel mesh generation is a crucial
building block for simulating such phenomena on parallel
computing platforms.

However, it takes about ten years to develop the basic the-
oretical and software infrastructure for sequential industrial
strength mesh generation libraries. Moreover, improvements
in terms of quality, speed, and functionality are open ended
and permanent. Thus, in order to be effective, the imple-
mentation of parallel mesh generation software should lever-
age the ever evolving and fully functional sequential mesh
generation libraries.

In this paper, we present a new provable scheduling al-
gorithm for parallel point insertion technique using off-the-
shelf sequential mesh generation software [30]. Specifically,
we focus on parallel circumcenter point insertion for parallel
guaranteed quality Delaunay mesh generation [31, 10].

Parallel mesh generation procedures decompose the orig-
inal mesh generation problem into N smaller subproblems
which are meshed concurrently using P (� N) processors.
The subproblems can be formulated to be either tightly or
partially coupled or even decoupled. The coupling of the
subproblems determines the intensity of the communication
and the degree of dependency (or synchronization) between
the subproblems. The scheduling method we present here is
partially coupled (i.e., loosely synchronous with bulk com-
munication) and balances trade-offs between domain decom-
position and communication.

The new point insertion scheduling method focuses on
three important challenges we need to address in order to
use commercial off-the-shelf (COTS) software for parallel
guaranteed quality mesh generation:

• stability of the parallel mesher (i.e., retain the same
high quality of elements that could be generated by
the state-of-the-art sequential meshing codes for the
same geometry);

• 100% code re-use (i.e., leverage the continuously evolv-
ing and fully functional off-the-shelf sequential mesh-
ers);

• simple decompositions of the original domain (i.e., avoid
reducing the parallel mesh generation problem into an-
other equally hard problem [23]).

The only practical parallel guaranteed quality mesh gener-
ation method until now was presented in [26], for polyhedral
domains. The algorithm in [26] maintains the stability of the
mesher by simultaneously partitioning and refining the inter-
face surfaces and volume of the subdomains [13]—a refine-
ment due to a point insertion might extend across subprob-
lem (or subdomain) boundaries (or interfaces). The exten-
sion of a cavity beyond subdomain interfaces is a source of
irregular and intensive communication with variable and un-
predictable patterns. Although the method in [26] can toler-
ate up to 90% of the communication—by concurrently refin-
ing other regions of the subdomain while it waits for remote
data to arrive—its scalability is of the order of O (log P),
P is the number of processors. Unfortunately, the concur-
rent refinement can lead to a non-conforming mesh and/or
a non-Delaunay mesh [26]. These non-conformities are re-
solved at the cost of setbacks which require algorithm/code
re-structuring [12].

Throughout this paper we call the method in [26] Opti-
mistic Delaunay (OD) method because it is based on spec-
ulative (optimistic) execution model [20] for tolerating high
communication latencies. The OD method satisfies the sta-
bility and simplicity of domain decomposition, but it does
not address the code re-use requirement. The lack of code
re-use not only makes this approach labor intensive and very
hard to maintain, but it affects its performance (i.e., scala-
bility) due to low single processor performance because of its
inability to leverage the highly optimized sequential codes
like Triangle [30] for 2D geometries and TetMesh-GHS3D [2]
and Gridgen [1] for 3D domains. In this paper, we extend
the work in [26, 12, 13] in two ways. First, we develop a
theory which guarantees mathematically that at each step
of the mesh refinement the points we choose to insert con-
currently will be independent, i.e., after they are inserted,
the mesh will still be conformal and Delaunay. This theory
leads to an efficient and practical parallel Delaunay refine-
ment scheduling algorithm. Second, the use of our theory
allows to eliminate the restructuring of serial mesh genera-
tion codes and, hence, permits to employ the COTS-based
approach to parallel Delaunay mesh generation using exist-
ing sequential Delaunay [31] and modified Delaunay [1, 2]
meshers.

In order to address the code re-use requirement and elim-
inate the communication and synchronization costs, in [23]
the authors present a Parallel Delaunay Domain Decou-
pling (PD3) method. The PD3 is based on the idea of de-
coupling the individual subdomains (subproblems) so that
they can be meshed independently with zero communica-
tion/synchronization and by re-using existing sequential mesh
generation codes. However, the construction of “proper”
decompositions that can decouple the mesh is an equally
challenging problem, since its solution is based on Medial
Axis [7, 19, 34, 3] which is very expensive and difficult to
construct (even to approximate) for complex 3-dimensional
geometries. Other, similar to PD3, attempts to parallelize
Delaunay triangulations [6] and implement parallel Delau-
nay mesh generation [17] were presented in the past. How-
ever, the method in [6] can not be used for parallel meshing;
recent attempts to extend it appeared in [21], but with zero
code re-use. On the other hand, the method in [17] can

not always guarantee the decoupling of the subproblems, in
these cases it uses re-partitioning and re-meshing.

All the methods above maintain the stability at some high
cost which prevents us from having industrial strength paral-
lel mesh generation codes today. Is it possible to have a prac-
tical and working parallel 3D mesh generation codes (today)
if we relax the stability requirement? To answer this ques-
tion we developed a 3D parallel advancing front technique
(PAFT) method [4] similar to one presented in [28] which
might generate “good” quality elements. We observed that
even if we relax the stability criterion the problem of paral-
lel mesh generation does not become easier. Our experience
with the PAFT even for simple 3D geometries suggests that
generic domain decompositions obtained from state-of-the-
art partitioning libraries can not always be meshed by state-
of-the-art sequential AFT meshers like Jmesh [27]1 . On the
other hand, simple block domain decompositions can create,
for the subdomains, artificial and arbitrarily small features
between the external boundary of the domain and the in-
terfaces of the subdomains that deteriorate the quality of
the elements. The scheduler we present here does not have
this problem, because the block domain decomposition is
used only for data distribution rather than for a geometric
domain decomposition.

Independently of the above efforts, Löhner and Cebral [24]
developed a parallel advancing front scheme, which is sta-
ble, has some code re-use, and addresses the domain de-
composition problem. They implement a “shift and regrid”
technique, where pre-computed shift distances (they depend
on the sequential meshing method2) are used. These dis-
tances work well in the case of advancing front meshing,
where there is a clear distinction between triangulated and
empty areas. However, Delaunay refinement, in addition to
maintaining a mesh which at all times covers the entire do-
main, also requires that all triangle circumcenters be empty
of mesh points.

Also, De Cougny, Shephard, and Ozturan [14] use an un-
derlying octree to aid in parallel mesh generation. After the
generation of the octree and template meshing of the inte-
rior octants, their algorithm connects a given surface trian-
gulation to the interior octants using face removal. The face
removal procedure eliminates problems due to the small dis-
tance between the interior quadrants and boundary faces,
by defining “an entity too close to the boundary triangu-
lation” [14] and “using the distance of about one-half the
octant edge length as the minimum works well” [14]. We
explore a somewhat similar approach in the context of De-
launay refinement and derive precise distances that are nec-
essary between the interiors and boundaries of concurrently
refined subdomains.

The difference between the proposed scheduling method
and the last two methods [14, 24] is that it does not rely on
re-partitioning. The re-partitioning has to take place in a
“guided” way which is not yet completely understood. The
key idea of a “guided” re-partitioning method is to gen-

1This is because the decomposition libraries [29] are de-
signed to solve the domain decomposition (DD) problem
for field solvers [11]. The DD problem from parallel mesh
generation has different requirements [23].
2In the case of an advance front method based on octree
they use min(0.5smin, 2.0dmin), where smin is the minimum
box size in which elements are to be generated, and dmin is
the minimum element size in the active front.

erate new subdomains whose interfaces are in the interior
of the subdomains of the previous partition and thus the
old interfaces are placed in the interior of the new subdo-
mains and therefore the regions around them can be meshed
without further communication. Of course, the “guided”
re-partitioning method itself requires communication. In-
stead, the proposed method uses a simple block decompo-
sition once, at the beginning of the parallel mesh genera-
tion. Like the re-partitioning methods in [14, 24], we have
to perform some communication between refinement phases,
but this communication happens before the re-meshing of a
block of data (subblock), thus off-the-shelf mesh generation
codes can be used unchanged. Unlike the De Cougny et.
al. and Löhner et. al. methods, we do not rely on equidis-
tribution for load balancing, but on overdecomposition and
a parallel runtime system we developed for dynamic load
balancing [4, 5].

Finally, Edelsbrunner and Guoy [16] studied the possibil-
ity of parallel insertion of independent points. They define
the prestar of point x as the difference between the closure
of the set of tetrahedrons whose circumspheres enclose x
and the closure of the set of remaining tetrahedra. They
define the points x and y as independent if the closures of
their prestars are disjoint. We start with proving a simi-
lar condition of point independence. The difference between
the independence condition in [16] and in this paper is that
our formulation is less restrictive: it allows the prestars (we
use the word cavity) to share a point. However, computing
the prestars (cavities) and their intersections for all candi-
date points is very expensive. That is why we do not use
coloring methods that are based on the cavity graphs and
we prove a lemma, which allows to use only the distance
between the points to check whether they are independent.
The minimum separation distance argument in [16] is used
to derive the upper bound on the number of inserted vertices
and prove termination, but does not ensure point indepen-
dence. In addition, we propose a simple block decomposi-
tion scheme for scheduling parallel point insertion for both
distributed and shared memory implementations. In [16],
a shared memory algorithm based on finding the maximal
independent set of points is used.

2. PARALLEL DELAUNAY REFINEMENT

2.1 Notation

Definition 1. Let V be a set of points in the domain Ω ⊂
�

2 , and T be a set of triangles whose vertices are in V . We
will call T = (V, T) a conformal3 triangulation [18] if the
following conditions hold:

1. The union of the vertices of all triangles in T is exactly
V .

2. The union of all triangles in T is exactly Ω.

3. There are no empty (degenerate) triangles in T .

4. The intersection of any two triangles is either the empty
set, a vertex, or an edge.

3The term which sounds similar, but has a different mean-
ing, is conforming triangulation, which is used in the context
of preserving constrained edges [32].

We will denote point number i as pi and the triangle with
vertices pi, pj , and pk as 4pipjpk. We will use letters a,
b, and c to refer to triangle’s side lengths (a ≤ b ≤ c) and
letters A, B, and C to represent triangle’s angle measures
(A ≤ B ≤ C). Let ©(4pipjpk) represent the circumcircle of
4pipjpk, �(4pipjpk) — its circumcenter, and r(4pipjpk)
— its circumradius. Also, let r̄, ρ̄, and ∆̄ be upper bounds
on circumradius, circumradius-to-shortest edge ratio, and
area of triangles, respectively.

2.2 Sequential Delaunay Refinement
The applications that use Delaunay meshes usually im-

pose two constraints on the quality of mesh elements: the
upper bound ∆̄ on the element area and the lower bound Ā
on the smallest angle. As shown by Miller, Talmor, Teng,
and Walkington [25] and Shewchuk [31], in two dimensions
the circumradius-to-shortest edge ratio ρ of a triangle can
be expressed in terms of its minimal angle A as

ρ =
1

2 sin A
. (1)

As the circumradius-to-shortest edge ratio is the metric that
is naturally optimized by the Delaunay refinement [25], we
will consider ∆̄ and ρ̄ as the parameters to the mesh gener-
ation algorithm.

Typically, a mesh generation procedure starts with con-
structing an initial mesh which conforms to the input ver-
tices and segments, and then refines this mesh until the con-
straints ∆̄ and ρ̄ are met. For sufficiently small values of ∆̄,
resulting in large fine meshes, most of the time is spent re-
ducing the area of the triangles. For example (Table 1), if
we run Jonathan Shewchuk’s Triangle [30] on the contour
of the letter “A”, which is supplied with the Triangle pack-
age, it takes 0.643 sec. to create a mesh of 130 405 triangles
respecting the 20◦ minimal angle bound (corresponding to
ρ̄ ≈ 1.41) and ∆̄ = 10−6. However, for the same model and
angle bound, it takes 24.641 sec. to create 5 232 435 triangles
if we set ∆̄ = 2.5·10−8 . Although asymptotically O (n log n)
time is required to triangulate n points (“Delaunay” phase),
while refining an existing mesh (“Quality” phase) is on av-
erage linear in the number of triangles produced, for fairly
large final meshes the latter time significantly dominates.

In this paper, we focus on parallelizing the Delaunay re-
finement (“Quality”) stage, which is usually the most memory-
and computation-expensive. The general idea of the Delau-
nay refinement is to insert points in the circumcenters of
triangles that violate the required bounds, until there are
no such triangles left. There are two main variations of the
point insertion procedure — the Lawson’s algorithm [22],
which uses edge flips, and the Bowyer/Watson algorithm [8,
33], which is based on deleting the triangles that are no
longer Delaunay and inserting new triangles that satisfy the
Delaunay property. These algorithms produce equivalent
results [31], thus, we will use only the Bowyer/Watson al-
gorithm for our analysis. The following definition, adapted
from [18], plays a major role in studying the Bowyer/Watson
algorithm:

Definition 2. Let the cavity CM(pi) of point pi with re-
spect to mesh M be the set of triangles in M, whose cir-
cumcircles include pi:

CM(pi) = {4pkplpm ∈ M | pi ∈ ©(4pkplpm)}.

Table 1: Running Jonathan Shewchuk’s Triangle [30] sequentially on the portrayal of the letter “A”, which is
supplied with the Triangle package. ∆̄ is the upper bound on triangle area, which already holds for the given
input (output) data. In all experiments, the bound on the circumradius-to-shortest edge ratio corresponds
to the default Triangle bound of 20◦ on the smallest angle.

Input Output Time, sec.
Triangles Points Segments ∆̄ Triangles Points Segments ∆̄ Delaunay Reconstr Quality

0 29 29 n/a 130 405 66 647 2 889 1 · 10−6 0.000 n/a 0.643
0 29 29 n/a 5 232 435 2 625 249 18 063 2.5 · 10−8 0.000 n/a 24.641
0 29 29 n/a 1 307 048 658 062 9 076 1 · 10−7 0.000 n/a 6.253

1 307 048 658 062 9 076 1 · 10−7 5 195 468 2 606 427 17 386 2.5 · 10−8 n/a 42.367 19.988
0 658 062 9 076 1 · 10−7 5 194 174 2 605 776 17 378 2.5 · 10−8 7.038 n/a 19.395

We will write simply C(pi) when M is clear from the context.
Also, we will denote BM(pi) to be the set of edges which
belong to only one triangle in CM(pi), i.e., external edges.

In the absence of external boundaries, the sequential De-
launay refinement algorithm, based on the Bowyer/Watson
point insertion procedure [8, 33], maintains a Delaunay mesh
M, and at every iteration performs the following steps:

1. Select a triangle from the queue of unsatisfactory tri-
angles.

2. Compute the circumcenter pi of this triangle.

3. Find CM(pi) and BM(pi).

4. Delete all triangles in CM(pi) from M.

5. Add triangles obtained by connecting pi with every
edge in BM(pi) to M.

This procedure maintains the following invariant:

Loop Invariant 1 (Delaunay Triangulation). The
condition that M is (i) conformal and (ii) Delaunay holds
both before and after the insertion of a point.

2.3 Theoretical Framework
The parallelization of the sequential Delaunay refinement

algorithm can be achieved by inserting multiple triangles’
circumcenters concurrently by several processors. In this
subsection, we propose a theoretical framework which allows
to select candidate circumcenters in such a way, that the
Delaunay triangulation loop invariant holds throughout the
run of the parallel algorithm, and, thus, all the qualities of
the sequential algorithm remain valid.

2.3.1 Maintaining the Delaunay Triangulation Loop
Invariant

We expect our algorithm to produce a conformal mesh,
i.e., it should not generate triangles whose edges intersect in
points other than the vertices of the mesh, or allow untrian-
gulated polygonal regions to emerge inside the domain. The
reason for a parallel algorithm to produce a non-conformal
mesh can be a concurrent retriangulation of two or more
cavities that have common triangles. Consider, for exam-
ple, Figure 1.

However, even if the cavities of two points do not have
common triangles, the Delaunay triangulation loop invari-
ant can still be violated due to the creation of non-Delaunay
triangles, i.e., triangles whose circumcircles are not empty
of mesh vertices. This can happen if two cavities have com-
mon edges (see Figure 2). The following Lemma provides a

p
9

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

Figure 1: If 4p3p6p7 ∈ C(p8) ∩ C(p9), then concur-
rent insertion of p8 and p9 results in a non-conformal
mesh. Solid lines represent the edges of the initial
triangulation, and dashed lines — edges created by
the insertion of p8 and p9.

sufficient condition for the simultaneous retriangulation of
two cavities to yield a conformal Delaunay mesh.

Lemma 1. If C(pi) and C(pj) have no common triangles
and do not share any triangle edges, then independent inser-
tion of pi and pj will result in a mesh which is both conformal
and Delaunay.

Proof. Since C(pi) and C(pj) do not intersect, the pro-
cessors that are working independently on retriangulating
C(pi) and C(pj) will not attempt to simultaneously delete
the same triangles or create overlapping triangles, thus, the
resulting mesh will be conformal.

To show that the mesh will also satisfy the Delaunay crite-
rion, we need to recall the Delaunay Lemma [15, 18], which
states that if the empty sphere criterion holds for every pair
of adjacent triangles, the triangulation is globally Delaunay.
The condition that C(pi) and C(pj) do not share any triangle
edges implies that every external edge of C(pi) and C(pj) is
incident upon some triangle which belongs neither to C(pi)
nor to C(pj). These external triangles together with the ones
created by the retriangulation of C(pi) and C(pj) will locally
satisfy the Delaunay property [31]. Hence, the mesh will be
globally Delaunay.

In practice, though, this Lemma may not be very useful,
since it requires the construction and comparison of cavities
for all candidate points. The next Lemma achieves a more
practical result.

p
10

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

Figure 2: If edge p3p6 is shared by C(p8) = {4p1p2p7,
4p2p3p7, 4p3p6p7} and C(p10) = {4p3p5p6, 4p3p4p5},
then the new triangle 4p3p10p6 can have point p8

inside its circumcircle, thus, violating the Delaunay
property.

p
9

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

Figure 3: If 4p3p6p7 ∈ C(p8) ∩ C(p9), then ‖p8 − p9‖ <
2r(4p3p6p7) < 2r̄.

p
10

p

p

pp

p
2 4

5

7

p
1

6

p
3

p
8

Figure 4: If edge p3p6 is shared by C(p8) = {4p1p2p7,
4p2p3p7, 4p3p6p7} and C(p10) = {4p3p5p6, 4p3p4p5},
then ‖p8 − p10‖ < 2r(4p3p6p7) + 2r(4p3p5p6) < 4r̄.

Lemma 2. Let r̄ be the upper bound on triangle circum-
radius in the mesh and pi, pj ∈ Ω. Then if ‖pi − pj‖ ≥ 4r̄,
then C(pi) and C(pj) do not intersect and have no shared
edges.

Proof. We will prove this Lemma by contradiction by
considering two cases:

(i) Suppose ‖pi − pj‖ ≥ 4r̄ and C(pi) ∩ C(pj) 6= ∅. Let
4pkplpm ∈ C(pi)∩C(pj) (see Figure 3). By the defini-
tion of cavity, pi ∈©(4pkplpm) and pj ∈©(4pkplpm),
hence ‖pi −pj‖ < 2r(4pkplpm) < 2r̄ < 4r̄, which con-
tradicts our assumption.

(ii) Suppose ‖pi − pj‖ ≥ 4r̄ and there exists an edge pkpl

which is shared by C(pi) and C(pj) (see Figure 4).
Let 4pkplpm ∈ C(pi) and 4pkplpn ∈ C(pj). Obvi-
ously, ‖pk − pi‖ < 2r(4pkplpm) and ‖pk − pj‖ <
2r(4pkplpn). From the triangle inequality it follows
that ‖pi − pj‖ < 2r(4pkplpm) + 2r(4pkplpn) < 4r̄,
which again contradicts the assumption.

Remark 1. The bound 4r̄ can be somewhat decreased by
further analysis based on the way ©(4pkplpm) and
©(4pkplpn) overlap in case (ii). However, the practical
value of the additional analysis is questionable.

Combined with Lemma 1, Lemma 2 allows to check in con-
stant time whether two points are independent, and, hence,
can be inserted concurrently.

2.3.2 The Circumradius Upper Bound Invariant
For Lemma 2 to be applicable throughout the run of the

algorithm, we need to prove another invariant:

Loop Invariant 2 (Circumradius Upper Bound).
The condition that r̄ is the upper bound on triangle circum-
radius in the entire mesh holds both before and after the
insertion of a point.

Next, we show that the execution of the Boyer/Watson
algorithm, either sequentially or in parallel, does not violate
Loop Invariant 2.

Let the reflection of circle ©(4pkplpm) about edge pkpl be
the circle ©′

pkpl
(4pkplpm) that has the same radius, whose

circumference passes through points pk and pl, and whose
center lies on the other side of edge pkpl from point pm. See
Figure 5.

Lemma 3. For any point pi inside the region ©(4pkplpm)\
©′

pkpl
(4pkplpm), r(4pkplpi) < r(4pkplpm).

Proof. Consider Figure 5. Let o′′ be the center of circle
©(4pkplpi), where pi is any point inside the shaded region
©(4pkplpm)\©′

pkpl
(4pkplpm). o′′ has to lie on the straight

line through o and o′. Let v be the point of intersection of
this straight line with edge pkpl (i.e. the midpoint of pkpl),
and u — with the circumference of ©(4pkplpi) inside the
shaded region. Let x = ‖u − v‖. We will express the radius
of ©(4pkplpi) as the function of x: r(4pkplpi) = f(x).

If the length of the edge pkpl is a, then by considering
the right triangle 4pkvo′′ and noting that ‖pk − v‖ = a/2,
‖v − o′′‖ = x − f(x), and ‖o′′ − pk‖ = f(x), we have:

f2(x) =
�
a

2 � 2

+ (x − f(x))2, or f(x) =
a2

8x
+

x

2
,

p
i

u v
o"o o’

p

p

p

k

l

m

Figure 5: The solid circumference represents
©(4pkplpm) with center in point o, and the dashed
circumference — ©′

pkpl
(4pkplpm) with center in

point o′. Point o′′ is the center of the variable-radius
circle, whose circumference passes through pk and
pl. We prove that for any point pi inside the shaded
region, r(4pkplpi) < r(4pkplpm).

p
i

p

p

p

k

l

m

p
n

Figure 6: 4pkplpm ∈ C(pi), 4pkpnpl /∈ C(pi), and
r(4pkplpm) > r(4pkpnpl).

where 0 < x < ∞.
f(x) is convex everywhere on 0 < x < ∞ since its second

derivative is positive:

f ′′ (x) =
a2

4x3
> 0 on 0 < x < ∞.

Because f(x) is continuous and convex on 0 < x < ∞
and it is equal to r(4pkplpm) when point u lies on the
circumference of ©(4pkplpm) and on the circumference of
©′

pkpl
(4pkplpm), it has values less then r(4pkplpm) if u

lies anywhere between these two circumferences.

Lemma 4. Let 4pkplpm ∈ C(pi) and 4pkpnpl /∈ C(pi).
Then r(4pkplpi) < max(r(4pkplpm), r(4pkpnpl)).

Proof. There are two cases:

(i) r(4pkplpm) > r(4pkpnpl). See Figure 6. pi has to lie
inside the region ©(4pkplpm) \ ©(4pkpnpl), which
in this case is a subset of the region ©(4pkplpm) \
©′

pkpl
(4pkplpm), and, according to Lemma 3,

r(4pkplpi) < r(4pkplpm).

p
i

p

p

p

k

l

m

p
n

Figure 7: 4pkplpm ∈ C(pi), 4pkpnpl /∈ C(pi), and
r(4pkplpm) ≤ r(4pkpnpl).

(ii) r(4pkplpm) ≤ r(4pkpnpl). See Figure 7. Again, pi

has to lie in the region ©(4pkplpm) \ ©(4pkpnpl),
which in this case is a subset of ©′

pkpl
(4pkpnpl) \

©(4pkpnpl), and, by Lemma 3,

r(4pkplpi) < r(4pkpnpl).

Since the Bowyer/Watson algorithm creates only trian-
gles of the form 4pkplpi, where there exist points pm and
pn such that 4pkplpm ∈ C(pi) and 4pkpnpl /∈ C(pi), by
Lemma 4, every new triangle in the mesh will have circum-
radius which is less than the circumradius of some existing
triangle, and, as a result, the maximal circumradius will not
increase. Hence, once the upper bound r̄ on triangle circum-
radius holds, it will be maintained throughout the execution
of the Bowyer/Watson algorithm.

2.3.3 Adjusting the Degree of Concurrency
We have shown how with a simple and inexpensive test

one can check whether two points (i.e., circumcenters) can
be inserted independently. Now it remains to provide a way
of finding enough independent circumcenters, so that all pro-
cessors can be kept busy inserting them. This task can be
accomplished by decreasing all triangle circumradii below
some value r̄ with the purpose of increasing the number of
pairwise independent circumcenters. Fortunately, this can
be easily done by applying the sequential Delaunay refine-
ment procedure as a preprocessing step. In this step, we use
the initial parameter ρ̄ and select parameter ∆̄ as

∆̄ =
r̄2

4ρ̄3
, (2)

where r̄ is computed based on the number of available pro-
cessors and the total area of the domain (see subsection 2.3.4).

Such preprocessing allows us to decrease the maximal cir-
cumradius of the triangles in a mesh automatically as a
result of decreasing the maximal circumradius-to-shortest
edge ratio and maximal area. In the rest of this subsection,
we prove equation (2).

We start by proving an auxiliary Lemma, which relates
the length of any side of a triangle to the sum of the cotan-
gents of adjacent angles and the triangle’s area.

Lemma 5. If a, b, c and A, B, C are the lengths of the
sides and the measures of the angles of a triangle respec-
tively, then

a2 = 2(cot B + cot C)∆,

where ∆ is the area of the triangle.

Proof. Directly follows from the well known formulas

cot A+cot B+cot C =
a2 + b2 + c2

4∆
, cot A =

b2 + c2 − a2

4∆
.

Now, we show how the smallest angle of a triangle bounds
the sum of the cotangents of the other angles.

Lemma 6. If A ≤ B ≤ C are the measures of the angles
of a triangle, then

cot B + cot C ≤ 1

sin A
.

Proof. Since A, B, C are positive and sum up to π, we
can denote

f(B) = cot B + cot C

= cot B + cot(π − A − B)

= cot B − cot(A + B),

where

0 < A ≤ B ≤ π − A

2
≤ C ≤ π − 2A, and A ≤ π

3
. (3)

f(B) has no points of local maxima which satisfy (3),
thus, it can reach its maxima only in the ends of the interval�
A, π−A

2 � . Direct substitution yields

f(A) =
1

2 sin A cos A
≤ 1

2 sin A 1

2

=
1

sin A

and

f � π − A

2 � = 2
1 − cos A

sin A
≤ 2

1 − 1

2

sin A
=

1

sin A

Hence,

f(B) ≤ 1

sin A
.

Finally, assuming the bounds ρ̄ and ∆̄ on the triangle area
and circumradius-to-shortest edge ratio respectively hold
over all triangles in a mesh, we find out the upper bound r̄
on the circumradius of triangles.

Lemma 7. Let a triangle with circumradius r and side
lengths a ≤ b ≤ c have circumradius-to-shortest edge ratio ρ
bounded by ρ̄: ρ = r/a < ρ̄, and area bounded by ∆̄: ∆ < ∆̄.
Then

r < 2(ρ̄)3/2 � ∆̄.

Proof. From ρ = r/a, or r = ρa, using Lemma 5 it
follows that

r = ρa = ρ � 2(cot B + cot C)∆

and Lemma 6 implies that

r ≤ ρ � 2
1

sin A
∆ = ρ � 2∆

sin A
. (4)

By substituting sin A from (1) into (4), we have:

r ≤ 2ρ3/2
√

∆ < 2(ρ̄)3/2 � ∆̄.

In other words, by preprocessing the mesh to the degree
that the bounds ρ̄ and ∆̄ hold, the bound

r̄ = 2(ρ̄)3/2 � ∆̄

is forced to hold.

2.3.4 Coarse Grain Partitioning
One possible way to break the meshing problem of the

entire domain into smaller independent subproblems is to
partition the domain into subdomains in such a way that
the circumcenters of triangles in each subdomain can be in-
serted concurrently with the circumcenters in any other sub-
domain. The partitioning and decoupling of subdomains can
be achieved by creating a special buffer zone around every
subdomain, so that the insertion of a point in one subdo-
main can modify the triangles only inside this subdomain
and its buffer zone, but the changes will not propagate to
other subdomains and their buffer zones. After refining the
subdomains, the buffer zones can be refined in a similar way.

As we have shown with Lemmas 1 and 2, if the distance
between two circumcenters is greater or equal to 4r̄, these
circumcenters can be inserted independently. It also ob-
viously follows from the proof of Lemma 2 (Figure 3) that
C(pi) can only include triangles whose circumcenters are less
than 2r̄ distance away from pi. This fact naturally leads us
to the following definition:

Definition 3. Let the buffer zone ZM(pi) of point pi with
respect to mesh M be the set of triangles in M whose cir-
cumcenters are within 2r̄ distance from pi:

ZM(pi) = {4pkplpm ∈ M | ‖pi −�(4pkplpm))‖ < 2r̄}.
If we consider a selected spatial region as a subdomain,

which is refined sequentially by one processor, then the layer
of triangles whose circumcenters are within 2r̄ from any cir-
cumcenter in the region, forms the buffer zone of the entire
region. Hence, if we impose a square grid D = {dij} with
cell side equal to 2r̄ over the entire domain, and for each
cell, dij , find the set of triangles with circumcenters inside
this cell, then all cells pairwise separated by at least two
cells in D can be refined concurrently. Upon the completion
of this phase the set of cells that served as buffer cells, are
selected for parallel refinement. The process continues until
there are no “bad” triangles left. It takes four refinement
phases to guarantee that there are no “bad” triangles left
(see Figure 8).

3. PARALLEL IMPLEMENTATION
For the experimental evaluation of our method, we trian-

gulated 1000 uniformly distributed random points selected
inside a unit square to obtain some initial mesh, and refined
it in parallel using Triangle [30] as a sequential mesher on
each processor. Triangle facilitates the use of a user-defined
function for deciding which triangles should be considered
“big” and queued for refinement. However, apparently, it
doesn’t provide a mechanism for the user to decide at run-
time which triangles are “bad” in terms of the circumradius-
to-shortest edge ratio or minimal angle. This fact caused us

to insert a test for the triangle circumcenter position inside
Triangle code and recompile it. We believe that in the future
releases of sequential mesh generation codes the facility for
defining user-supplied functions, which test the suitability
of both types of triangles, can be easily provided.

Another technical detail that we ran into while running
our tests, is the substantial difference in time required by
the Triangle to refine an existing triangulation and to con-
struct a fine triangulation from scratch. Contrary to our
expectations, building a fine triangulation anew turned out
to be much faster. For example (Table 1), in the case of let-
ter “A”, Triangle is about six times faster in retriangulating
a given set of points than in reconstructing the mesh data
structure from a list of triangles. That is why, when moving
a part of the mesh from one processor to another, we decided
to migrate only the set of points and boundary edges and
retriangulate them as necessary. Since the Delaunay trian-
gulation of a given set of points, provided that there are no
four cocircular points, is unique [31], this process will not de-
stroy the boundary conformity. In the presence of cocircular
points near the boundary, the enforcement of boundary seg-
ments causes the required edge flips. The side effect of this
optimization is the decrease in the size of network traffic.

Although our theory allows to assign as few as nine cells
of side length 2r̄ per processor, it turned out to be more effi-
cient to increase the level of preprocessing with the purpose
of allowing some overlap of the regions under refinement
with the regions that have already been refined. If such
overlap is not provided, the refinement in one region can
create badly shaped triangles in its already refined neigh-
boring regions, and vise-versa. Due to the high cost of data
migration and synchronization on a distributed memory sys-
tem, an iterative refinement process turned out to be pro-
hibitively expensive. Thus, we adopted the refinement and
communication schedule schematically depicted in Figure 8.
We set the overlap between the refinement regions equal to
2r̄, which is the maximum distance to which the effects of a
point insertion can propagate, and the refinement process is
now guaranteed to improve all “big” and “badly” shaped tri-
angles in four phases, alternated with communication. All
processors are arranged in a logical two-dimensional grid,
and each processor in position (i, j) communicates only with
its neighbors in positions (s, t), such that |i − s| ≤ 1 and
|j − t| ≤ 1.

In this paper, we do not address the question of dealing
with potential processor work load imbalance, since it has
been discussed elsewhere [4].

Finally, since we so far have not proved analogous prop-
erties of Delaunay refinement nearby the constrained edges,
we have extended the initial triangulation of the unit square
with an auxiliary layer of triangles into 4r̄ distance outward.

We have conducted our experiments on the Sciclone clus-
ter computing system4 at the College of William and Mary
using its two tightly-coupled subclusters: “whirlwind” —
64 single-cpu Sun Fire V120 servers (650 MHz, 1 GB RAM)
and “twister” — 32 dual-cpu Sun Fire 280R servers (900
MHz, 2 GB RAM). The results are summarized in Table 2.

The stability of our method follows from the fact that all

4This work was performed using computational facilities at
the College of William and Mary which were enabled by
grants from Sun Microsystems, the National Science Foun-
dation, and Virginia’s Commonwealth Technology Research
Fund.

cells eventually get refined with Triangle in such a way that
there are no zones with potentially bad elements left. Ex-
perimental results also show that the method exhibits very
good scalability: if the number of processors is increased
by more than 30 times, the total running time increases by
less than 3%. Finally, we didn’t have to write any mesh
generation code, since it was sufficient to call Triangle as a
library.

4. CONCLUSIONS
We introduced a point insertion scheduling method which

with a simple mesh decomposition scheme is used for par-
allel guaranteed quality Delaunay mesh generation on both
distributed and shared memory systems. We proved that
the scheduling method leads to stable and scalable guar-
anteed quality parallel mesh generation codes on a cluster
of workstations. Moreover, we demonstrated that the sched-
uler provides the ability to use fully functional and optimized
sequential meshers on each processor, i.e., we proved that a
COTS software alternative for parallel mesh generation is
possible with simple domain decompositions at the cost of
some communication.

Our future plans are to implement (using OpenMP) the
same scheduler on shared memory machines, for broader
use in game and health care industries. Also we plan to
develop a parallel and out-of-core mesh generation codes by
utilizing the absence of communication during subdomain
refinement phases. Finally, we are extending the method to
handle external and internal constrained segments/faces for
both two- and three-dimensional domains.

5. REFERENCES
[1] Gridgen.

http://www.pointwise.com/gridgen/index.shtml.
Accessed on Apr. 21, 2004.

[2] TetMesh-GHS3D V3.1 The fast, reliable, high quality
tetrahedral mesh generator and optimiser. White
paper.
http://www.simulog.fr/mesh/tetmesh3p1d-wp.pdf.
Accessed on Feb. 27, 2004.

[3] C. Armstrong, D. Robinson, R. McKeag, T. Li,
S. Bridgett, R. Donaghy, and C. McGleenan. Medials
for meshing and more. In Proceedings of 4th
International Meshing Roundtable, pages 277–288.
Sandia National Laboratories, 1995.

[4] K. Barker, A. Chernikov, N. Chrisochoides, and
K. Pingali. A load balancing framework for adaptive
and asynchronous applications. IEEE Transactions on
Parallel and Distributed Systems, 15(2):183–192, Feb.
2004.

[5] K. Barker and N. Chrisochoides. An evalaution of a
framework for the dynamic load balancing of highly
adaptive and irregular applications. In Supercomputing
Conference. ACM, Nov. 2003.

[6] G. E. Blelloch, G. L. Miller, and D. Talmor.
Developing a practical projection-based parallel
Delaunay algorithm. In 12th Annual Symposium on
Computational Geometry, pages 186–195, 1996.

[7] H. Blum. A transformation for extracting new
descriptors of shape. In Models for the Perception of
speech and Visual Form, pages 362–380. MIT Press,
1967.

(0) (1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10)

Block being refined

Block being sent

Block being received

Refined block

Legend

X

X
X
X
X
X
X X

X
X
X
X
X X

X
X
X
X
X

X
X
X

X
X

X

X
X
X
XX

X
X
XX

X
X
XX

X
X
XX

X
X
XX

X
X
X

X
X
X X

X
X

X
X
X
XX

X
X
X

X X

X
X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
X

Figure 8: A schedule of the parallel Delaunay refinement and communication on distributed memory. Each
phase (0)–(10) depicts the actions performed by a single processor. The smallest cells have side length 2r̄,
they are the atomic units of refinement. Since the refinement may leave fractions of big triangles, whose
circumcenters are outside the small cell, the refined cells sometimes are not shaded completely. The bigger
cells, which consist of 4 small cells, are the atomic units of data migration. The thick lines outline the
subdomain “assigned” to the given processor. A processor also holds parts of its neighbors’ meshes. Arrows
represent the direction of data migration.

Table 2: Scaled Speedup Evaluation
Number Total Number of Some Timings for a Single Processor Area

of Time, Elements, Prerefinement Total Refinement Communication and Filling in and Bound
Processors sec. Millions with Triangle Time with Triangle Synchronization Merging Cells ×10−8

4 293.7 23.8 0.24 218.7 32.7 39.9 5.00
9 294.7 58.8 0.44 220.0 35.4 40.3 2.22

16 295.4 109.3 0.71 218.8 37.1 40.0 1.25
25 296.8 175.4 1.05 219.1 39.1 40.8 0.80
36 293.4 255.0 1.43 218.6 36.1 40.0 0.56
49 294.5 352.6 1.88 217.7 37.5 40.7 0.41
64 300.1 470.7 2.49 221.0 40.7 41.5 0.31
81 296.2 587.8 3.04 216.6 46.2 41.1 0.25

100 300.3 738.9 3.69 218.4 46.5 41.5 0.20
121 293.7 873.5 4.42 210.3 53.6 40.9 0.17

[8] A. Bowyer. Computing Dirichlet tesselations.
Computer Journal, 24:162–166, 1981.

[9] B. Carter, C.-S. Chen, L. P. Chew, N. Chrisochoides,
G. R. Gao, G. Heber, A. R. Ingraffea, R. Krause,
C. Myers, D. Nave, K. Pingali, P. Stodghill,
S. Vavasis, and P. A. Wawrzynek. Parallel FEM
simulation of crack propagation—challenges, status,
and perspectives. Lecture Notes in Computer Science,
1800:443–449, 2000.

[10] L. P. Chew. Guaranteed-quality Delaunay meshing in
3D. In Proceedings of the 13th ACM Symposium on
Computational Geometry, pages 391–393, 1997.

[11] N. Chrisochoides, E. Houstis, and J. Rice. Mapping
algorithms and software environment for data parallel
PDE iterative solvers. Journal of Parallel and
Distributed Computing, 21(1):75–95, 1994.

[12] N. Chrisochoides and D. Nave. Parallel Delaunay
mesh generation kernel. Int. J. Numer. Meth. Engng.,
58:161–176, 2003.

[13] N. P. Chrisochoides. A new approach to parallel mesh
generation and partitioning problems. Computational
Science, Mathematics and Software, pages 335–359,
2002.

[14] H. L. de Cougny, M. S. Shephard, and C. Ozturan.
Parallel three-dimensional mesh generation.
Computing Systems in Engineering, 5:311–323, 1994.

[15] B. N. Delaunay. Sur la sphere vide. Izvestia Akademia
Nauk SSSR, VII Seria, Otdelenie Mataematicheskii i
Estestvennyka Nauk, 7:793–800, 1934.

[16] H. Edelsbrunner and D. Guoy. Sink-insertion for mesh
improvement. In Proceedings of the Seventeenth
Annual Symposium on Computational Geometry,
pages 115–123. ACM Press, 2001.

[17] J. Galtier and P. L. George. Prepartitioning as a way
to mesh subdomains in parallel. In Special Symposium
on Trends in Unstructured Mesh Generation, pages
107–122. ASME/ASCE/SES, 1997.

[18] P.-L. George and H. Borouchaki. Delaunay
Triangulation and Meshing. Application to Finite
Elements. HERMES, 1998.

[19] H. N. Gürsoy and N. M. Patrikalakis. An automatic
coarse and fine surface mesh generation scheme based
on medial axis transform: Part I algorithms.
Engineering With Computers, 8:121–137, 1992.

[20] D. A. Jefferson. Virtual time. In ACM Transactions
on Programming Languages and Systems, volume 7,
pages 404–425, July 1985.

[21] C. Kadow and N. Walkington. Design of a
projection-based parallel Delaunay mesh generation
and refinement algorithm. In Fourth Symposium
on Trends in Unstructured Mesh Generation, July 2003.
http://www.andrew.cmu.edu/user/sowen/usnccm03/agenda.html.

[22] C. L. Lawson. Software for C1 surface interpolation.
Mathematical Software, III:161–194, 1977.

[23] L. Linardakis and N. Chrisochoides. Parallel domain
decoupling Delaunay method. SIAM Journal on
Scientific Computing, Submitted Dec. 2003.

[24] R. Löhner and J. R. Cebral. Parallel advancing front
grid generation. In Proceedings of the Eighth
International Meshing Roundtable, pages 67–74, 1999.

[25] G. L. Miller, D. Talmor, S.-H. Teng, and
N. Walkington. A Delaunay based numerical method
for three dimensions: Generation, formulation, and
partition. In Proceedings of the Twenty-Seventh
Annual ACM Symposium on Theory of Computing,
pages 683–692. ACM Press, May 1995.

[26] D. Nave, N. Chrisochoides, and L. P. Chew.
Guaranteed–quality parallel Delaunay refinement for
restricted polyhedral domains. In Proceedings of the
Eighteenth Annual Symposium on Computational
Geometry, pages 135–144, 2002.

[27] J. C. Neto, P. Wawrzynek, M. Carvalho, L. Martha,
and A. Ingraffea. An algorithm for three-dimensional
mesh generation for arbitrary regions with cracks.
Engineering with Computers, 17:75–91, 2001.

[28] R. Said, N. Weatherill, K. Morgan, and N. Verhoeven.
Distributed parallel Delaunay mesh generation.
Computer Methods in Applied Mechanics and
Engineering, (177):109–125, 1999.

[29] K. Schloegel, G. Karypis, and V. Kumar. A unified
algorithm for load-balancing adpative scientific
simulations. Technical Report TR 00-033, Department
of Computer Science and Engineering, University of
Minnesota, http://www-
users.cs.umn.edu/ karypis/publications/partitioning.html,
May 2000.

[30] J. Shewchuk. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Proceedings
of the First workshop on Applied Computational
Geometry, pages 123–133, Philadelphia, PA, 1996.

[31] J. R. Shewchuk. Delaunay Refinement Mesh
Generation. PhD thesis, Carnegie Mellon University,
1997.

[32] J. R. Shewchuk. Lecture notes on Delaunay mesh
generation. 1999.

[33] D. F. Watson. Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytopes.
Computer Journal, 24:167–172, 1981.

[34] F.-E. Wolter. Cut locus and medial axis in global
shape interrogation and represenation. Technical
report, MIT, Department of Ocean Engeneering,
Design Laboratory, 1993.

