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ABSTRACT
Given the importance of parallel mesh generation in large-scale

scientific applications and the proliferation of multilevel SMT-
based architectures, it is imperative to obtain insight on the interac-
tion between meshing algorithms and these systems. We focus on
Parallel Constrained Delaunay Mesh (PCDM) generation. We ex-
ploit coarse-grain parallelism at the subdomain level and fine-grain
at the element level. This multigrain data parallel approach targets
clusters built from low-end, commercially available SMTs. Our ex-
perimental evaluation shows that current SMTs are not capable of
executing fine-grain parallelism in PCDM. However, experiments
on a simulated SMT indicate that with modest hardware support
it is possible to exploit fine-grain parallelism opportunities. The
exploitation of fine-grain parallelism results to higher performance
than a pure MPI implementation and closes the gap between the
performance of PCDM and the state-of-the-art sequential mesher
on a single physical processor. Our findings extend to other adap-
tive and irregular multigrain, parallel algorithms.

1 INTRODUCTION
As modern supercomputers integrate more and more processors

into a single system, system architects tend to favor hybrid, multi-
level designs since such designs seem to be at the sweetspot of the
cost/performance tradeoff. Most machines in the Top500 list [29]
are clusters, often consisting of small-scale SMP nodes. The recent
commercial success of simultaneous multithreaded (SMT) proces-
sors [16, 19, 31] introduces one additional level in parallel architec-
tures, since more than one threads can co-execute on the same phys-
ical processor, sharing some or all of its resources. The efficient
exploitation of the functionality offered by these hybrid, multilevel
architectures, introduces new challenges for application developers.
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Applications that expose multiple levels of parallelism, at differ-
ent granularities, appear as ideal candidates for the exploitation of
the opportunities offered by hybrid multiprocessors. However de-
velopers have to target both macro-scalability, across processors or
nodes and micro-scalability, across the multiple execution contexts
of each physical processor.

This paper focuses on the implementation of parallel mesh gen-
eration algorithms which are essential in many scientific computing
applications in health care, engineering, and sciences. In real-time
computer assisted surgery, like image-guided neurosurgery [34] the
accuracy and speed are critical; the non-rigid registration of intra-
operative MRI data has to complete in the order of few minutes.
In direct numerical simulations of turbulence in cylinder flows with
sudden drop of drag force around Reynold numbersRe= 300,000,
on the other hand, high accuracy and a lot of main memory are es-
sential; the size of the mesh is in the order ofRe9/4 [17] which, with
an adaptive mesh refinement, is reduced to a few billions. Our study
provides a thorough understanding of the mapping of mesh genera-
tion codes on current parallel systems and their interaction with the
hardware, as well as guidelines for next generation software and
hardware developers, in order to unleash the computational power
of SMTs and clusters of SMTs. It is a step towards meeting the
time and quality constraints set by real-world applications. More-
over, the results of our study are valid in the context of not only
finite element mesh generation methods, but also in the context of
other asynchronous multigrain, parallel algorithms.

The three most widely used techniques for parallel mesh gener-
ation are Delaunay [13], Advance Front, and Edge Subdivision. In
this paper, we use the Delaunay technique because it can mathemat-
ically guarantee the quality of the mesh. Specifically, we focus on
constrained Delaunay triangulation [7] and we explore concurrency
at three levels of granularity: (i)coarse-grainat the subdomain
level, (ii) medium-grainat the cavity level and (iii)fine-grainat the
element level. We investigate a multigrain parallelization approach
for clusters built from: (1) conventional, single-thread, single-core
processors, (2) low-end, commercially available SMTs and (3) sim-
ulated SMTs using modest and realistic architectural extensions for
fine-grain synchronization and thread spawning.

Most of the existing parallel mesh generation methods [4, 8, 10,
12, 14, 15, 18, 21, 24, 25, 36] use only a coarse-grain approach, with
only one exception [22]. In [22] the authors evaluate three single-
grain approaches based on either a coarse-grain algorithm using
the MPI programming paradigm or fine-grain shared-memory algo-
rithms for ccNUMA and multithreading. The fine-grain approach
uses: (i) coloring of triangles, (ii) low-level locks instead of element
coloring, or (iii) a combination (hybrid approach) of edge-coloring



and low-level locks. Coloring approaches for Delaunay mesh gen-
eration methods are very expensive because they require the com-
putation of the cavity graph1 each time a set of independent points
(or cavities) are inserted (or triangulated). We evaluate the effect of
low-level locks in Section 3.

Coarse-grain methods decompose the original mesh generation
problem into smaller subproblems that are solved (meshed) in par-
allel. Subproblems are formulated to be either tightly or partially
coupled, or even decoupled. The coupling of subproblems deter-
mines the intensity of the communication and the degree of syn-
chronization between the subproblems.

Our multigrain approach (PCDM) is based on a coarse-grain, par-
tially coupled algorithm, in order to achieve scalability at the node
level and a finer-grain tightly-coupled approach in order to explore
concurrency at the chip level. The concurrency at the chip level is
used to improve the single processor performance of PCDM and
bring it closer to the performance of Triangle, the state-of-the-art
sequential Delaunay mesh generation software [26].

Our experimental evaluation shows that current SMTs are not ca-
pable of exploiting fine-grain parallelism in PCDM due to synchro-
nization overhead and lack of hardware support for light-weight
threading. However, we find using simulation that modest and re-
alistic hardware extensions for thread synchronization and schedul-
ing allow the multi-grain implementation of PCDM to both achieve
higher single-processor performance than sequential PCDM and
outperform the coarse-grain, single-level MPI implementation if
more than one processors are available.

A major limitation of the fine-grain parallelization of PCDM is
that it can effectively use up to two or three2 hardware execution
contexts. This motivates a future direction to explore a medium-
grain, optimistic parallelization strategy which increases the granu-
larity and concurrency of PCDM within each subdomain. A prelim-
inary analysis of this parallelization strategy shows that it can effec-
tively exploit the hardware on current and emerging multithreaded
processors in order to attain performance benefits.

The main contribution of this paper is the identification of condi-
tions under which a multilevel, multigrain, parallel mesh generation
code can effectively exploit the performance potential of current
and emerging multithreaded architectures. Our study also raises the
level of understanding for developing efficient parallel algorithms
and software for asynchronous, adaptive and irregular applications
on current and emerging parallel architectures.

The rest of the paper is organized as follows. In Section 2 we
describe both the sequential and the parallel approach for PCDM.
In Section 3 we present the implementation of the: (1) coarse-grain
approach on an UltraSPARC cluster with 64 uniprocessor nodes
and (2) the fine-grain approach on: (i) a hybrid, 4-way, Intel Xeon
HyperThreaded shared memory multiprocessor and (ii) a simulated
multi-SMT system with processors configured similarly to the Intel
HyperThreaded processor and additional functionality for the effi-
cient execution of fine-grain parallel work on the processor’s exe-
cution contexts. Section 4 summarizes the paper.

2 PARALLEL DELAUNAY M ESHING
Typically, a mesh generation procedure starts with the construc-

tion of an initial mesh which conforms to the input vertices and
segments, and then refines this mesh until the stopping criteria
(bounds) on triangle quality and size are met. Parallel finite ele-
ment codes require “good” quality of elements. The definition of
quality depends on the field solver and varies from code to code.

1In the cavity graph each cavity is represented by a vertex and
two adjacent cavities represent an edge.

2For 2- and 3-dimensional meshes respectively.
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Figure 1. (a) A coarse-grain decomposition of the pipe cross-
section into 32 subdomains. (b) Medium-grain parallel ex-
pansion of multiple cavities within a single subdomain. (c)
Fine-grain parallel expansion of a single cavity (C pi) by con-
current testing of multiple triangles (4(pkpl pm), 4(pmpnps),
4(pspt pk)).

In this paper we use geometric criteria like triangle area (∆̄) and
circumradius-to-shortest edge ratio (ρ̄). Guaranteed quality Delau-
nay methods insert points (pi) in the circumcenters of triangles that
violate the required qualitative criteria, until there are no such tri-
angles left. We use the Bowyer-Watson algorithm [5, 35] to update
the triangulation. The algorithm deletes triangles that are no longer
Delaunay and inserts new triangles that satisfy the Delaunay prop-
erty. It identifies the set of triangles in the mesh whose circumcir-
cles include the newly inserted pointpi . This set is called acavity
(C pi). The triangles in the cavity of the “bad” quality triangle are
deleted and the cavity is retriangulated by connecting the endpoints
of external edges ofC pi with the newly inserted pointpi .

The sequential Delaunay refinement algorithm can be paral-
lelized at three levels of granularity, which are depicted in Figure 1
and described in the following paragraphs.

2.1 Coarse Grain Parallelism
In the coarse-grain parallel implementation, an initial mesh of the

domain is created first. Then, the mesh is partitioned intoN À P
subdomains, whereP is the number of processors (Fig. 1a). Finally,
subdomains are mapped to processors. The dynamic load balancing
of the coarse-grain approach has been studied and is out of the scope
of this paper. It can be handled by libraries or runtime systems [3].

The domain decomposition procedure described above createsN
subdomains, each of which is bounded by edges of the initial coarse
triangulation. The edges and their endpoints that are shared be-
tween two subdomains are duplicated. The interfaces (subdomain
boundary edges) are treated as constrained segments, i.e., as edges
that need to be in the final mesh and can not be deleted. By the defi-
nition of constrained Delaunay triangulation, points inserted at one
side of interfaces have no effect on triangles at the other side; thus,
no synchronization is required during the element creation process.
The case when the new point happens to be very close to a con-
strained edge is treated separately. Following Shewchuk [27], we
use diametral lenses to detect if a segment is encroached upon. A



segment is said to beencroached uponby point pi if pi lies in-
side its diametral lenses. Thediametral lensesof a segment is the
intersection of two disks, whose centers lie on the opposite sides
of the segment on each other’s boundaries, and whose boundaries
intersect in the endpoints of the segment. When a point selected
for insertion is found to encroach upon a segment, another point is
inserted in the middle of the segment instead. As a result, inter-
process communication is tremendously simplified: the only mes-
sage between processes working on neighbouring subdomains is of
the form, “split this interface” and is sent when a newly inserted
point encroaches upon the interface edge.

2.2 Fine-Grain Parallelism
The innermost level of parallelism is exploited by allowing mul-

tiple threads to cooperate during the expansion of a single cavity.
The procedure of cavity expansion lasts from 4 to 6µsec per cavity
on a modern 2 GHz Intel Xeon processor. However, millions of
cavity expansions are required for the generation of a typical mesh.
As a result, cavity expansion actually accounts, in average, for 58%
of the total execution time of the mesh generation code. Algorith-
mically, the expansion is similar to a breadth-first search of a graph.
The neighbors of the offending triangle are initially enqueued at the
tail of a queue. At each step, one element is dequeued from the
head of the queue and is subjected to theINCIRCLE() test. If the
test is successful, i.e., the circumcenter of the offender resides in-
side the circumcircle of the examined triangle, the neighbors of the
examined triangle are also enqueued at the tail of the queue and the
triangle is deleted. The expansion code terminates as soon as the
queue is found empty.

Table 1. Average queue length and average cavity population
(in triangles) for three different inputs, when meshes of 1M or
10M triangles are created.

key pipe cylinder
1M 10M 1M 10M 1M 10M

Queue Length 2.053 2.058 2.052 2.058 2.053 2.058
Cavity Population 4.828 5.074 4.830 5.066 4.841 5.069

Table 1 summarizes statistics from the execution of fine-grain
PCDM for three input sets from real-world problems: A key, a
rocket engine pipe (depicted in Fig 1a), and a cylinder structure
used for undersea oil exploration. For each input set we create two
meshes, one consisting of 1 million and one consisting of 10 million
triangles. We evaluate the average queue length and cavity popula-
tion – in terms of triangles – throughout the execution of the algo-
rithm. Both metrics prove to be independent of the input set used3.
Cavity population increases slightly as we move to finer meshes,
with more triangles. The average queue length, on the other hand,
is steadily slightly above 2. Since concurrently executing threads
work on different elements of the queue, the fine-grain parallelism
of PCDM can be exploited by SMT processors with two execution
contexts per physical processor package.

2.3 Medium-Grain Parallelism
The medium-grain parallelism available in PCDM is exploited

by using multiple threads in order to expand multiple cavities at the
same time. Bad-quality triangles, i.e., triangles that do not satisfy
the qualitative constraints set by the user, are organized in a queue.
Each thread dequeues a bad-quality triangle and expands its cavity.

3The execution time of PCDM is also independent of the input
set. It depends solely on the number of triangles in the final, refined
mesh. Due to space limitations, we will only provide results from
the key input set throughout the rest of the paper.

As soon as each cavity has been calculated, its triangles are deleted
and the cavity is retriangulated. In order to preserve the conformity
of the mesh, the algorithm has to ensure that there are no conflicts
between concurrently expanded cavities. In other words, concur-
rently expanded cavities are not allowed to share triangles. In case
a shared triangle is detected, only one of the cavities in which the
triangle participates can be retriangulated. The other cavities are
canceled and are re-expanded later.

We have experimentally evaluated the degree of medium granu-
larity concurrency exposed by PCDM. More specifically, we have
applied PCDM on the key data set and created a mesh with 1 mil-
lion triangles. We have performed five experiments, attempting to
concurrently expand 32, 64, 128, 256 or 512 cavities. These experi-
ments simulate the parallel execution with 32, 64, 128, 256 and 512
threads respectively. In each experiment we recorded the number
of bad-quality triangles available throughout the execution. More-
over, we recorded the percentage of cavity expansions that finished
without conflicts. The product of the available bad-quality triangles
and the percentage of successful expansions at each time snapshot
provides a statistical estimation of the available parallelism.
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Figure 2. Statistical estimation of the available parallelism
throughout the execution life of a medium-grain PCDM, when
32 to 512 processors are used. The lower and upper curves cor-
respond to the minimum and maximum estimation respectively.

The results are depicted in Figure 2. The upper and lower curves
in the diagram correspond to the maximum and minimum estimated
degree of parallelism across all 5 experiments. Even in the worst
case scenario, i.e., if we consider the minimum estimation of the
degree of parallelism and the maximum number of threads (512),
medium-grain PCDM exposes enough parallelism to efficiently ex-
ploit all 512 execution contexts. Throughout the execution life of
the application, the expected degree of parallelism is less than the
number of threads only during the expansion of the last 1000 cav-
ities, namely when the mesh has already been refined enough to
almost totally conform with the qualitative criteria set by the user.
It should also be pointed out that – in the worst case scenario – an
average of 400 expandable cavities correspond to each thread. Con-
sidering an expansion time of 4 to 6µsec per cavity, the granularity
of the available work chunks ranges between 1.6 and 2.4 msec.

The percentage of successful cavity expansions is highly depen-
dent on the selection of the initial bad-quality triangles. Bad-quality
triangles which are closely situated in the 2D plane tend to be also
close in the queue. However, concurrently expanding the cavities
of neighboring triangles often ends up in collisions, which result
to a percentage of canceled cavity expansions often higher than
30%. A simple strategy of randomly selecting triangles from the
queue though, significantly reduces the percentage of collisions in



the range of 6% to 10%. We intend to evaluate even more sophisti-
cated strategies, which guarantee non-conflicting cavity expansions
by limiting the minimum distance between concurrently targeted
triangles, according to the dynamically changing qualitative char-
acteristics of the mesh [6].

A fully optimized, parallel, medium-grain implementation of
PCDM was not available at the time of writing this paper, in order
for us to compare it fairly against the coarse-grain, fine-grain and
dual-grain (coarse and fine) implementations of PCDM. However,
our preliminary experiments show that the medium-grain sequen-
tial implementation’s performance is, without extensive optimiza-
tions, within a small factor (two to three) of the performance of
Triangle. Based on these results and our preliminary analysis of the
concurrency and granularity of tasks in the medium-grain PCDM
algorithm we expect this algorithm to be appropriate for processors
with more than two execution contexts and for systems in which the
fine-grain implementation suffers excessive overhead due to syn-
chronization and thread management. Tuning and evaluating the
implementation of this algorithm on multithreaded processors is the
first priority of our future work.

3 PCDM M APPING ON CURRENT AND
EMERGING PARALLEL ARCHITECTURES

In the following paragraphs we discuss the exploitability and
mapping of PCDM to three parallel architectures with heteroge-
neous characteristics. More specifically, we experimented on:

• An homogeneous, commodity, off-the-self (COTS) cluster.
The cluster integrates 64 single-processor nodes based on Ul-
traSPARC IIi+ CPUs, clocked at 650 MHz, with 1 GB main
memory each. All nodes are interconnected with a 100 Mbps
Ethernet network. The experiments on the cluster evaluate the
scalability of PCDM when its coarse-grain parallelism is ex-
ploited using a message passing programming model (MPI).

• A hybrid, 4-way, shared memory multiprocessor, based on In-
tel Xeon HyperThreaded (HT) processors. Intel HT proces-
sors are the most wide-spread commercial processors offer-
ing an early implementation of simultaneous multithreading.
They allow up to two threads to potentially execute concur-
rently on the same processor, sharing a common set of re-
sources such as execution units, cache, TLB, etc. As long as
the threads do not have conflicting resource requirements they
execute in parallel. If, however, this is not the case, their exe-
cution is serialized. Each processor runs at 2.0 GHz. The sys-
tem has 2 GB of memory and runs the Linux 2.4.25 kernel.
We evaluate both the scalability of the MPI-based, coarse-
grain parallelization across physical processors, as well as the
efficiency of a fine grain parallelization targeted to the two
execution contexts available on each processor package.

• Driven by shortcomings we identified in the low-level sup-
port offered by Intel HT processors for the exploitation of
fine-grain parallelism, we also experiment on simulated SMT
processors. These SMTs are configured similarly to Intel HT
processors, with roughly equal amount of resources. How-
ever, they offer a few modest hardware extensions which al-
low the efficient execution of fine-grain parallel work on the
processor’s execution contexts. It is realistic to expect that
some or all of these hardware extensions will be available in
emerging SMT processors. Each simulated processor has two
CPU cores, which share internal processor blocks as well as
L1, L2, and L3 caches. We consider 1-, 2- and 4-way shared
memory multiprocessor configurations based on the simulated
SMT processor, with 2 GB of main memory.

3.1 Execution on a COTS Cluster
We have executed PCDM on a COTS cluster, using 1 to 64

processors. The domain to be meshed is divided in 1024 subdo-
mains, i.e., the meshing problem is divided in 1024 partially cou-
pled subproblems. We performed two sets of experiments. In the
first set we execute PCDM on a varying number of processors and
produce a fixed size, refined mesh, consisting of 10 million trian-
gles. We calculate the fixed speedup as the ratioTseq(W)/Tpar(W),
whereTseq(W) andTpar(W) are the sequential and parallel execu-
tion time respectively for the specific problem size (W = 10million
triangles). We compare the parallel execution time with both the
execution time of PCDM on a single processor and the execution
time of Triangle [26], the best known sequential implementation
for Delaunay mesh generation which has been heavily optimized
and manually fine-tuned. This experiment set focuses on the execu-
tion time improvement that can be attained for a specific problem
size, by exploiting the coarse-grain parallelism of PCDM.

In the second experiment set we scale the problem size lin-
early with respect to the number of processors. The problem
size equals approximately 10M triangles per processor. In other
words, the problem size gradually increases from 10 to 640 mil-
lion triangles. We now calculate the scaled speedup as the ratio
P×Tseq(W)/Tpar(P×W). Once again, we use as a reference the
sequential execution times of both PCDM and Triangle. The second
set outlines the ability of the parallel algorithm to efficiently exploit
more than one processors in order to tackle problem sizes that are
out of the reach of sequential algorithms due to both computational
power and memory limitations.
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Figure 3. Fixed and scaled speedups of the coarse-grain PCDM
on a 64 processor cluster. The speedups have been calculated
using as a reference either the single-processor execution time
of PCDM or the execution time of the best known sequential
mesher.

Fig. 3 summarizes the experimental results from both sets. The
diagram also depicts the optimal speedup, as well as the problem
size used in the scaled experiment set.

PCDM scales very well, in both experiment sets, when the se-
quential PCDM execution time is used as a reference. For up to
16 processors the speedup is actually superlinear, due to the fact
that in the parallel experiments the total cache and main memory
available to the application is proportional to the number of proces-
sors. For cluster configurations with 32 or more processors the
attained speedup is lower than the optimal. It measures up to 51
and 47 on 64 processors for the scaled and fixed experiment sets
respectively. This can be attributed to both an increase in commu-
nication requirements and load-balancing issues. More specifically,
as more subdomains are meshed in parallel, more points are intro-
duced at the boundaries of subdomains, thus sending messages to



processors which mesh immediately neighboring subdomains. At
the same time, given that the number of subdomains is fixed to 1024
in our experiments, the increase in the number of processors results
in a reduction in the number of subdomains corresponding to each
processor. There are thus fewer opportunities to compensate for a
subdomain with computational requirements deviating significantly
from the average.

Speedups are lower if the execution time of Triangle is used as
a basis for comparison. The speedups attained on 64 processors
for the fixed and scaled experiments are 18 and 20 respectively.
This can be attributed to the fact that the heavily optimized code
of Triangle is 2.58 times faster than the sequential PCDM code on
the specific single-processor nodes. Due to its focus on parallelism,
PCDM is not susceptible to the same degree of optimizations as
Triangle. In the rest of the paper we focus on the exploitation of
the multilevel parallelism opportunities offered by PCDM as well
as of the multiple hardware contexts available in modern SMTs, in
order to close the gap in the single processor performance between
PCDM and Triangle.

We have repeated our experiments with similar results on an het-
erogeneous, 128 processor cluster. The experimental results indi-
cate that PCDM keeps performing well and scales up to 128 proces-
sors. However, due to the heterogeneity of the cluster, no formal
quantitative metrics can be reported beyond that general trend.

3.2 Execution on a Hybrid, SMT-based
Multiprocessor

As a next step, we evaluated the performance of PCDM on com-
mercially available hybrid SMPs, which are based on simultane-
ous multithreaded (SMT) processors. More specifically, we experi-
mented on a 4-way system built of Hyperthreaded Pentium 4 Xeon
processors. Table 2 outlines the configuration of the system.

Table 2. Configuration of the Intel HT Xeon-based SMP sys-
tem used to evaluate the fine-grain implementation of PCDM
on current SMT processors.

Processor 4, 2-way Hyperthreading, Pentium 4 Xeon, 2 GHz
Cache 8 KB L1, 64B line / 512KB L2, 64B line / 1MB L3, 64B line
Memory 2 GB RAM

We used the two execution contexts available on each processor
in order to exploit the finest granularity of parallelism available in
PCDM. In other words, both execution contexts work in parallel to
expand the cavity of the same, bad-quality triangle. Each execution
context accommodates one kernel thread. Kernel threads are cre-
ated once and persist throughout the life of the application. Each
thread is bound to a specific execution context and is not allowed to
migrate. The two kernel threads that are bound on the same proces-
sor have distinct roles: Themasterthread has the same functional-
ity as the typical MPI process used to process a subdomain of the
original domain. Theworker thread assists themasterduring cav-
ity expansions, however it is idling when themasterexecutes code
unrelated to cavity expansion.

3.2.1 Implementation Issues
We applied only limited, local optimizations in order to minimize

the interaction between the threads executing on the two execution
contexts of each processor, thus reducing the contention on shared
data structures. More specifically, we substituted the global queue
previously used for the breadth first search on the triangles graph
with two separate, per execution context queues. As soon as an
execution context finishes the processing of a triangle, it attempts
to dequeue another, unprocessed triangle from its local queue. If
the queue is empty, it attempts to steal a triangle from the queue

of the other execution context. Every triangle whose circumcircle
includes the circumcenter of the bad-quality triangle (INCIRCLE()
test), has to be deleted. Such triangles are pushed in a local, per
execution context stack and are deleted in batch, after the cavity is
expanded. Their neighbors, which also have to be subjected to the
INCIRCLE() test, are enqueued in the local queue of the execution
context. Despite the fact that the introduction of per thread queues
reduces the interaction between threads, the requirement of work
stealing necessitates the use of locks for the protection of queues.
The functionality of these locks is similar to the low-level locks
proposed in [22]. However, the locks are only contended when
both threads access concurrently the same queue, one attempting to
access its local queue and the other to steal work. Moreover, con-
tention on a lock does not result to memory traffic on the system
bus and activation of the cache-coherence protocol, since both con-
tending threads execute on the same processor and share all levels
of the cache hierarchy. An alternative queue implementation could
employ lock-free techniques. However, lock-free data structures
outperform lock-based ones only in the presence of multiprogram-
ming or when access to shared resources is heavily contended [20].
None of these conditions holds in the case of fine-grain PCDM.

In order to both guarantee the correctness of the algorithm and
to avoid performing redundantINCIRCLE() tests, it must be ensured
that the same triangle is not subjected to the test more than once
during a cavity expansion. This is possible, since up to three paths
– one corresponding to each neighbor – may lead to the same trian-
gle during the breadth-first search of the triangles graph. In order
to eliminate this possibility, the data structure representing each tri-
angle is extended with atag field. Threads check thetag field of
triangles before processing them and try to set it using an atomic,
non-blockingtest and set operation. If the atomic operation fails
or thetag has already been set, the triangle is discarded and is not
subjected to theINCIRCLE() test.

3.2.2 Experimental Evaluation
We performed three sets of experiments on a 4-way SMP, in or-

der to evaluate the ability of Intel Hyperthreaded (HT) processors to
exploit parallelism available in PCDM. More specifically, we first
experimented with a version of PCDM which exploits both the fine
and the coarse granularities of parallelism (MPI+Fine). The fine
granularity is exploited by the two execution contexts available on
each HT processor. At the same time, every pair of threads exe-
cuting on each physical processor corresponds to an MPI process.
Multiple MPI processes – on multiple processors – are used to ex-
ploit the coarse granularity. We also experimented with the MPI-
only implementation of PCDM. In this case, all the execution con-
texts are used to execute MPI processes. The latter work on dif-
ferent subdomains of the problem, i.e., at the coarse granularity
level. We have executed 2 versions of the MPI-only experiments:
MPI processes are either spread to as many physical processors as
possible (Diff Procs) or are packed together on different execution
contexts of the same processor (Same Proc). If for example 4 exe-
cution contexts are used, in the first version they are spread across
4 different processors, whereas in the second version threads are
executed on the 4 execution contexts of 2 physical processors.

Figure 4 depicts the speedup with respect to a sequential PCDM
execution. In all cases we are producing meshes of 10 million tri-
angles for the key input set. On the specific system, Triangle is
2.3 times faster than the sequential PCDM. The multilevel PCDM
code (MPI+Fine) does not scale well. In fact a slowdown of 1.44
occurs as soon as a second thread is used to take advantage of the
second execution context of the HT processor. The performance
is improved as more physical processors are used (4 and 8 execu-
tion contexts), however 4 physical processors are required before
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Figure 5. Number of stall cycles (with respect to the single-
threaded PCDM execution) and average stall latency.

PCDM outperforms Triangle.
The performance of the MPI-only version, when MPI processes

are spread across processors (Diff Procs) is significantly better. The
use of just 2 execution contexts yield performance close to that of
Triangle. When 4 execution contexts are used, PCDM is signifi-
cantly faster than Triangle. However, packing MPI processes on as
few physical processors as possible (Same Proc) results in perfor-
mance penalties. The speedup lies between that of theDiff Procs
andMPI+Fine versions. The exploitation of the second execution
context on a single physical processor results in a speedup of 1.21.
4 execution contexts, on 2 physical processors are necessary in or-
der to match the performance of Triangle.

We used the hardware performance counters available on Intel
HT processors, in order to identify the reasons that lead to per-
formance penalties whenever two execution contexts per physical
processor are used. We focused on the number of stalls, the corre-
sponding number of stall cycles, as well as the number of retired
instructions in each case. We measure the cumulative numbers of
stall cycles, stalls and instructions from all threads participating in
each experiment. The results are depicted in the diagrams of fig-
ures 5 and 6 respectively. Ratios have again been calculated with
respect to the sequential PCDM execution.

The number of stall cycles (Fig. 5) is a single metric that provides
insight into the extent of contention between the two threads run-
ning on the execution contexts of the same processor. It indicates
the number of cycles each thread spent waiting because an internal
processor resource was occupied by either the other thread or by
previous instructions of the same thread. The average per stall la-
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Figure 6. Number of retired instructions, with respect to the
single-threaded PCDM execution.

tency, on the other hand, indicates how much performance penalty
each stall introduces. The stall cycles suffered during the sequen-
tial execution are 4.3 billion. Whenever two threads share the same
processor, the stall cycles are from 3.56 to almost 4 times more.
However, resource sharing has also a negative effect on the aver-
age latency associated with each stall. The average latency is 10
cycles when there is one thread per physical processor. When two
MPI processes share the same processor it raises to approximately
15 cycles. If two threads that exploit the fine-grain parallelism of
PCDM are located on the same processor the average latency ranges
between 11.3 and 11.9 cycles.

Interesting information is also revealed by the number of retired
instructions (Fig. 6). Whenever 2 MPI processes are used (2 execu-
tion contexts in theDiff Procscase and 4 execution contexts in the
Same ProcandMPI+Fine cases), the total number of instructions is
maximized. We have traced the source of this problematic behavior
to the internal implementation of the MPI library, which attempts
to minimize response time by performing active spinning whenever
a thread has to wait for the completion of an MPI operation. Active
spinning produces very tight loops of “fast” instructions with mem-
ory references that hit into the L1 cache. If more than two proces-
sors are used, the cycles spent spinning inside the MPI library are
reduced, with an imminent effect on the number of instructions.

Another interesting observation is that the multilevel version of
the algorithm (MPI+Fine) results in more instructions than the
Same ProcMPI-only version. The reason is again active spinning.
Unfortunately Intel HT processors do not offer an efficient hard-
ware mechanism for fine control on the suspension and resumption
of a thread running on an execution context. The mechanisms of-
fered by the operating system are too heavy-weight for applications
with extremely fine-grain parallelism, such as PCDM. The cost of
a suspend/resume cycle using OS primitives equals the cost for the
expansion of several hundreds of cavities. As a consequence, when-
ever theworker thread idles, it actively spins on triangle queues
waiting for work, thus issuing a large number of instructions. In
fact the extent of active spinning inMPI+Fine code is significantly
higher than in the MPI-only versions of the algorithm. This ex-
plains the lower average stall latency of theMPI+Fine implemen-
tation: Many stalls are caused by instructions issued in the context
of spinning loops. However these instructions retire quickly and do
not introduce high latencies.

A significant side-effect of active spinning is the performance
penalty suffered by computational threads that share the same
processor with spinning threads. Both threads share a common
set of processor resources, such as execution units and instruction
queues. The instructions issued by the spinning threads tend to fill



the queues, thus delaying potentially useful instructions issued by
the other execution context. Our experimental evaluation indicates
a slowdown of more than 25% when a PCDM thread is executed
together with an active spinning thread on the same physical CPU.

As explained in section 2.2, attention has been paid to minimize
interaction between two PCDM threads working on the same cavity
expansion. A detailed profiling indicated, though, that up to 23% of
the cycles is spent on synchronization operations. Synchronization
is limited among two threads and memory references due to syn-
chronization operations always hit in the cache. However, the mas-
sive number of processed triangles results in a high percentage of
cumulative synchronization overhead. Moreover, the full-software
implementation of mutual exclusion algorithms introduces active
spinning at the entrance of protected code regions, should access to
these regions be contended.

Another fundamental reason that prohibits Intel HT processors
from efficiently supporting fine-grain parallelism is the lack of
hardware support for light-weight threading. Such support in-
cludes hardware primitives for efficient thread spawning and join-
ing, queuing of hardware threads and dispatching to the execution
contexts of the processor. The lack of such support forces program-
mers to implement similar functionality in software. As a result, the
PCDM implementation organizes unprocessed triangles in queues
and uses kernel threads as “virtual processors” which dispatch and
process triangles. If adequate hardware functionality were avail-
able, unprocessed triangles would be naturally translated to hard-
ware threads, rendering all the aforementioned software support
unnecessary. Such an implementation would also eliminate prob-
lems identified earlier, such as active spinning whenever theworker
thread is idling, synchronization for access to the queues etc.

3.2.3 Alternative Exploitation of Execution Contexts
in SMTs - Speculative Precomputation

As is the case with most pointer-chasing codes, PCDM suffers
from poor cache locality. Previous literature has suggested the use
of speculative precomputation (SPR) [9] for speeding up such codes
on SMTs and CMPs [9, 33]. SPR exploits one of the execution con-
texts of the processor in order to precompute addresses of memory
accesses that lead to cache misses and preexecute these accesses,
before the computation thread. In many cases, the precomputation
thread manages to execute faster than and ahead of the computation
thread. As a result, data are prefetched timely into the caches.

We have evaluated the use of the second hyperthread for indis-
criminate precomputation, by cloning the code executed by the
computation thread and stripping it from everything but data ac-
cesses and the memory address calculations. The precomputation
thread successfully prefetched all data touched by the computation
thread. However, the execution time was higher than that of the 1
thread per CPU or 2 computation threads per CPU versions. Intel
HT processors do not provide mechanisms for low overhead thread
suspension / resumption. As a result, when the precomputation
thread prefetches an element, it performs active spinning until the
next element to be prefetched is known (as a result of the algorithm
execution by the compute thread). However, active spinning slows
down - as reported earlier - the computation thread by more than
25%. We tried to suspend/resume the precomputation thread us-
ing the finest-grain sleep/wakeup primitives available by the OS. In
this case, the computation thread does not suffer a slowdown, how-
ever the latency of a sleep/wakeup cycle spans the expansion time
of hundreds of cavities. An additional problem is that the maxi-
mum possible runahead distance between the precomputation and
computation thread is equal to the degree of concurrency, namely
approximately 2 in the fine-grain 2D case. This precludes the use
of the precomputation thread in batch precompute/sleep cycles.

3.3 Hardware Support for Fine-Grain
Multithreading

The previous discussion revealed weaknesses in the design of
current, commercially available SMTs, that do not allow the effi-
cient exploitation of fine-grain parallelism. In this section we dis-
cuss a set of potential architectural extensions, similar to extensions
that have already been proposed for fine-grain and speculative mul-
tithreaded processors, and project the impact that these architectural
optimizations will have on performance. We focus on hardware
support for synchronization and thread management, since emerg-
ing processor architectures can easily provide realistic support for
almost zero-cost synchronization and thread spawning/joining.

3.3.1 Extensions for Fine-Grain Synchronization
The problem of synchronization latency on multithreaded

processors has been addressed in earlier work. Fine-grain synchro-
nization on a word-by-word basis can be enabled by a full/empty
bit, an architectural feature used first in the Tera MTA [2, 28], by
special-purpose synchronization registers, such as those found on
Cray XMP, and by other mechanisms. In this work we consider
the use of a lock-box [30], as an efficient mechanism for synchro-
nization, which can be implemented with modest hardware cost.
A lock-box is a small buffer in the processor with one entry per
thread, including the lock address, the address of the locking in-
struction and a valid bit. On a failed attempt to acquire a lock with
a read-modify-write instruction, the acquiring thread blocks and is
flushed from the processor. On a release, the address of the lock
is compared – with a parallel, associative search – against all the
contents of the lock box. If a match is found, the matching thread
is woken up. We estimate the latency of the entire critical path of a
critical section using the lock box to 10 cycles, following the design
suggestions in [30].

3.3.2 Extensions for Fine-Grain Thread Spawning
Several multithreaded processor designs, including simultaneous

multithreaded processors with embedded support for dynamic pre-
computation [9], threaded multipath execution processors [32] and
implicitly multithreaded processors [23], support automatic thread
spawning in hardware. Besides multiple hardware contexts and
program counters, this hardware support includes a mechanism
for communicating the live-in register values to a newly spawned
thread, and instructions to spawn and join threads. Some designs
allow thread spawning in the context of the same basic block, while
others extend this mechanism to support function calls issued on
separate hardware contexts [1]. Although many of the related stud-
ies assume negligible thread spawning latencies, communicating
register values requires extra processor cycles, and in some cases,
register spilling to memory. Related studies estimate the latency
between 2 and 10 cycles depending on the assumptions [1, 23, 32].
In this work, we simulate a hardware thread spawning mechanism
which supports register communication between threads executing
across basic blocks and function boundaries. We conservatively
assume a latency of 10 cycles for thread spawning. This latency
includes register communication and potential queuing of threads.

3.3.3 Experimental Evaluation of Hardware
Extensions

We have used a multi-SMT simulator based on SimICS [11], to
evaluate the impact of limited, realistic hardware support for thread
execution and synchronization on the performance of the fine-grain
implementation of PCDM. Table 3 shows the parameters of our
multi-SMT simulator. We simulated the functionality of a lock box



and a hardware thread spawning mechanism. Notice that, whenever
possible, our simulated system is configured with exactly the same
amount of resources offered by our real multi-SMT platform. This
allows us to isolate the impact of our hardware extensions to the
performance of the fine-grain parallel execution.

Table 3. Simulation parameters for the multi-SMT system used
to evaluate the fine-grain implementation of PCDM on emerg-
ing microprocessors.

Processor 4, 2-way Hyperthreading, Pentium IV ISA, 2 GHz
Cache 8 KB L1, 64B line size,

2-cycle hit, 7-cycle miss penalty
512KB L2, 64B line size, 14-cycle miss penalty
1MB L3, 64B line size, 120-cycle miss penalty

Memory 2 GB RAM
Thread-spawning latency 10 cycles
Lock critical path latency 10 cycles

We conducted complete system simulations – including system
calls and OS overhead – using different levels of hardware support,
with the multilevel implementation of PCDM, which exploits the
fine and coarse granularities of parallelism. We executed the code
with no hardware support for thread spawning and synchronization
(labeledSW), with hardware support for thread spawning only (la-
beledHWT ), with hardware support for synchronization only (la-
beledHWL ) and with hardware support for both thread spawning
and synchronization (labeledHWT+HWL ). The codes were exe-
cuted on 1, 2 and 4 simulated Hyperthreaded processors, with the
Pentium IV ISA. The multithreaded version uses both execution
contexts of each physical processor to process triangles during cav-
ity expansion operations. If hardware support for threading is pro-
vided, one hardware thread is created and used for the processing of
each triangle. On software threading versions, 2 kernel threads are
created per physical processor and process triangles from queues. If
hardware support for synchronization is available, it is used for both
the protection of queues and the tagging of processed triangles. We
compared the fine-grain PCDM against the MPI implementation.
The latter was executed with two MPI processes per simulated Hy-
perthreaded processor (Same Procconfiguration).

Figure 7 shows the total number of cycles (top chart) and the
number of cycles normalized to the execution cycles of the MPI
version (bottom chart) of PCDM. The reported results are from the
complete execution of the program, creating a mesh of 1 million tri-
angles4 for the key input set. The results indicate that the fine-grain
threaded implementation of PCDM imposes additional overhead,
compared with the pure-MPI implementation. With no hardware
support, the fine-grain multithreading overhead has a dramatic im-
pact, yielding code which is 2.5 times slower than the MPI code,
on a single HT processor. This overhead is purely attributed to the
lack of hardware support and drops rapidly with hardware exten-
sions for fine-grain multithreading. On one HT processor, hard-
ware support for fast synchronization reduces the execution time
of PCDM by 42%. Hardware support for thread spawning reduces
the execution time by 17%. With the two hardware mechanisms
combined, execution time drops by 53%, showing an almost per-
fectly cumulative effect of the improvements due to hardware sup-
port for synchronization and threading. Compared to the MPI code,
the fine-grain threaded code is 17% slower, assuming full hardware
support. However, it should also be noted that the use of both exe-

4We had to experiment with a smaller problem size to limit the
duration of the simulations. We simulated a few representative con-
figurations with the larger problem size and found that the results
agreed completely with the results obtained with the small problem
size. The fine-grain implementation was at least 10% faster than
the monolithic MPI implementation in all cases.
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Figure 7. Execution cycles under different levels of hardware
support (top diagram). Execution cycles under the same S/W
and H/W configurations, normalized with respect to the pure
MPI version on the same number of execution contexts (bottom
diagram).

cution contexts of each processor in combination with the hardware
support results in code that is 20% faster than the sequential PCDM.

Interesting observations can be made by investigating the scala-
bility of the two implementations. For the fine-grain implementa-
tion, the threading overhead is constant and does not increase with
the addition of more processors, since there are always 2 threads
per MPI process. As Fig. 7 conveys, the scalability of all fine-grain
threaded implementations on one to four Hyperthreaded processors
is good and the parallel efficiency is more than 87% in all cases.
On the contrary, the MPI implementation does not scale well on
multiple Hyperthreaded processors, and achieves only up to 62%
efficiency. As more MPI processes are used, the overhead due to
the communication between different processors and active spin-
ning increases linearly. The fine-grain version does not suffer from
these phenomena and the only performance penalty it incurs is due
to thread management. This penalty is however mitigated with the
hardware implementation.

Overall, the hybrid version utilizing fine-grain multithreading
within each processor scales better and achieves higher perfor-
mance than the monolithic MPI version, as work is distributed
over more Hyperthreaded processors. On 2 and 4 Hyperthreaded
processors, the hardware-assisted fine-grain version (HWL+HWT )
outperforms the MPI-only version by 15% and 20% respectively.
Therefore, the combination of the coarse- and fine-grain parallelism
extracted from PCDM succeeds in better utilizing system resources.

We expect more aggressive hardware mechanisms for thread
management and synchronization to be present in the upcoming
generations of multithreaded processors. For example, the IBM



Power5 [16] includes dynamic thread switching in hardware to re-
lease the resources of threads holding locks and accelerate the exe-
cution of locks by redistributing the resources of the processor be-
tween critical and non-critical threads. More aggressive support
will be a natural aftereffect of advances in technology and the need
to meet the requirements of applications with fine-grain parallelism.

4 CONCLUSIONS
As multithreaded processors become more widespread and par-

allel systems are being built using these processors, it is impera-
tive to investigate the interaction between applications and these
processors in more detail. Adaptive and irregular applications are
a challenging target for any parallel architecture, therefore inves-
tigating whether multithreaded processors are well suited for such
applications is an important undertaking. Our paper makes contri-
butions towards this direction, focusing on mesh generation algo-
rithms. Fast, high quality mesh generation is a prerequisite for a
multitude of real-world medical and engineering applications.

Earlier work [22] has indicated that the Tera MTA, a fine-grain
multithreading architecture which uses 128 concurrent instruction
streams to mask memory latency was very well suited for fine-grain
parallelization and scaling of unstructured applications. Architec-
tures such as the MTA compete in the supercomputing arena against
more conventional designs with less execution contexts, such as
most commercially available SMTs. The work in this paper in-
dicates that conventional parallelization strategies using a single-
grain approach, such as the directive and lock-based approach used
in the Tera MTA [22], can not harness the power of current mul-
tithreaded architectures, while at the same time securing scalabil-
ity. On the contrary, our findings suggest that more effort should
be invested in restructuring algorithms and applications to expose
multiple levels and granularities of parallelism, in order to cope bet-
ter with architectural features such as shared cache hierarchies and
contention for execution resources.

In this paper we focused on PCDM, a parallel, guaranteed-quality
mesh generator. PCDM exposes parallelism in three granulari-
ties. We exploit the coarsest grain with an MPI-only implemen-
tation which proves to scale well on a 64 and a 128 processor clus-
ter. Its ability to use more than one processors allows it to solve
problems faster than Triangle, the best, hand-optimized, sequen-
tial Delaunay mesh generation software. At the same time PCDM
can tackle problem sizes which can not be addressed by Trian-
gle, due to memory limitations. However, the sequential version
of PCDM performs significantly worse than Triangle. We, thus,
investigated whether the multiple execution contexts available in
modern SMTs can be used to efficiently exploit the fine-grain paral-
lelism of PCDM and to close the performance gap between PCDM
and Triangle on a single processor, using multithreading out of the
box. Initial experimental results on Intel Hyperthreaded processors
indicated that the overheads related to fine-grain parallelism man-
agement and execution overrun potential benefits, resulting often to
performance degradation. Through careful and detailed profiling,
using the hardware performance counters available on the proces-
sor, we identified the most important bottlenecks. Following this
evaluation, we suggested a few modest hardware extensions that
will allow emerging SMTs to efficiently execute parallelism at the
finest granularity offered by PCDM. We evaluate the performance
impact of these extensions on a simulated SMT multiprocessor. The
new mechanism allows the multithreaded version of PCDM to out-
perform the sequential one on a single physical processor. A mul-
tilevel version, using both threading and MPI outperforms a pure,
single-level MPI version if more than one processors are available.

Despite the inefficiency of thread management mechanisms on

current SMT processors, we were able to match the performance
of the best known sequential algorithm (Triangle) with four threads
and outperform it with eight threads on a quad SMP. We foresee that
hardware improvements for multithreading on SMTs coupled with
our multigrain-multithreading substrate will bring the crossover
point to an even lower number of threads.

PCDM is memory bound due to extensive pointer chasing. Mul-
tithreading can thus be employed to reduce memory latency, via
speculative precomputation. Our results have shown that exist-
ing processors lack the efficient thread management mechanisms
needed to implement timely and low-interference speculative pre-
computation. Investigating speculative precomputation with more
aggressive SMT hardware and in conjunction with the fine-grain
multithreading implementation of PCDM is left as future work.

The analysis of PCDM revealed that its fine-grain parallelism
can utilize at most two (or three) execution contexts per physical
processor, for 2- (or 3)-D meshes. However, a medium-grain paral-
lel implementation of PCDM can provide enough work to keep up
to 512 execution contexts busy. As a natural extension of this work,
we intend to evaluate the performance of medium-grain PCDM on
SMTs with more than two execution contexts per processor.

Many of the performance problems in SMTs can be traced down
to the extensive resource sharing and the lack of performance iso-
lation between the execution contexts of each processor. Chip mul-
tiprocessors (CMPs) play dominant role in the roadmaps of most
major processor manufacturers. This class of processors integrates
more than one complete processor cores on a single chip. The mul-
tiple cores share only one or more upper levels of the cache hier-
archy. Therefore, we expect that CMP-based SMPs will be able to
efficiently support on-chip multithreading, even in cases SMTs can
not due to conflicts in the resource requirements of the co-executing
threads. A natural next step of our work is to investigate the inter-
action of demanding irregular and adaptive applications, such as
PCDM, on CMP-based systems.
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