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Summary. We develop a theoretical framework for constructing guaranteed qual-
ity Delaunay meshes in parallel for general two-dimensional geometries. This paper
presents a new approach for constructing graded meshes, i.e., meshes with element
size controlled by a user-defined criterion. The sequential Delaunay refinement algo-
rithms are based on inserting points at the circumcenters of triangles of poor quality
or unacceptable size. We call two points Delaunay-independent if they can be in-
serted concurrently without destroying the conformity and Delaunay properties of
the mesh. The contribution of this paper is three-fold. First, we present a number
of local conditions of point Delaunay-independence, which do not rely on any global
mesh metrics. Our sufficient conditions of point Delaunay-independence allow to
select points for concurrent insertion in such a way that the standard sequential
guaranteed quality Delaunay refinement procedures can be applied in parallel to
attain the required element quality constraints. Second, we prove that a quadtree,
constructed in a specific way, can be used to guide the parallel refinement, so that
the points, simultaneously inserted in multiple leaves, are Delaunay-independent.
Third, by experimental comparison with the well-known guaranteed quality sequen-
tial meshing software, we show that our method does not lead to overrefinement,
while matching its quality and allowing for code re-use.

1 Introduction

Parallel 2D mesh generation is still important for some 3D simulations like
direct numerical simulations of turbulence in cylinder flows with very large
Reynolds numbers [7] and coastal ocean modeling for predicting storm surge
and beach erosion in real-time [22]. In both cases, 2D mesh generation is
taking place in the zy-plane and it is replicated in the z-direction in the case
of cylinder flows or using bathemetric contours in the case of coastal ocean
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modeling applications. With the increase of the Reynolds number, the size of
the mesh grows in the order of Re%/* [13], which motivates the use of parallel
mesh generation algorithms. At the same time, the size of the mesh can be
somewhat reduced by employing parallel nonuniform mesh refinement, which
is the topic of this paper.

Nave, Chrisochoides, and Chew [16] presented a practical provably-good
parallel mesh refinement algorithm for polyhedral domains. The approach
in [16] allows rollbacks to occur whenever the simultaneously inserted points
can potentially lead to an invalid mesh. It is also labor intensive since it re-
quires changing the sequential meshing kernel in order to accommodate for
rollbacks and overlapping of computation with communication. In the present
paper, we develop a theoretical framework which allows us to guarantee a pri-
ori that concurrently inserted points are Delaunay-independent. The elimina-
tion of rollbacks leads to two major benefits: savings in the computation time
and the possibility to leverage existing sequential Delaunay meshing libraries
like the Triangle [18].

Linardakis and Chrisochoides [14] described a Parallel Domain Decoupling
Delaunay method for two-dimensional domains, which is capable of leverag-
ing serial meshing codes. However, it can produce only uniform meshes and
is based on the Medial Axis Transform, which is very expensive and diffi-
cult to compute for three-dimensional geometries. The approach developed in
this paper allows to construct nonuniform meshes and is domain decomposi-
tion independent, i.e., it does not require an explicit construction of internal
boundaries between the subdomains which will be forced into the final mesh.

Blelloch, Hardwick, Miller, and Talmor [1] describe a divide-and-conquer
projection-based algorithm for constructing Delaunay triangulations of pre-
defined point sets in parallel. The work by Kadow and Walkington [12, 10,
11] extended [2, 1] for parallel mesh generation and further eliminated the
sequential step for constructing an initial mesh, however, all potential conflicts
among concurrently inserted points are resolved sequentially by a dedicated
processor [11].

Edelsbrunner and Guoy [8] define the points x and y as independent if
the closures of their prestars (or cavities [9]) are disjoint. The approach in [8]
does not provide a way to avoid computing the cavities and their intersec-
tions for all candidate points, which is very expensive. Spielman, Teng, and
Ungor [20] presented the first theoretical analysis of the complexity of par-
allel Delaunay refinement algorithms. In [21] the authors developed a more
practical algorithm.

In [5] we presented a theoretical framework and the experimental evalua-
tion of a parallel algorithm for constructing uniform guaranteed quality Delau-
nay meshes. We proved a sufficient condition of Delaunay-independence, which
is based on a relation of the distance between points and the global circumra-
dius upper bound, and which can be verified very efficiently. We also showed
that a coarse-grained mesh decomposition can be used in order to guarantee
a priori that the points in certain regions will be Delaunay-independent. In
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this paper, we build upon the ideas presented in [4] to produce non-uniform
(graded) meshes. The non-trivial differences with [5] lie in the introduction of
new, local point independence conditions, and in the dynamic construction of
a quadtree with leaf size reflecting the local mesh density.

A more extensive review of parallel mesh generation methods can be found
in [6].

2 Parallel Refinement Theory

In this section, we develop local Delaunay-independence conditions and show
how quadtree leaves can be used to select subsets of circumcenters for con-
current insertion. We extend our previous work [5] by eliminating the use of
the global circumradius upper bound and adapting the size of refinement and
buffer zones to the user-defined grading function.

2.1 Terminology and Notation

We will denote point number ¢ as p; and the triangle with vertices p;, pj,
and pg as A (p;p;pr). When the vertices of a triangle are irrelevant, we will
write simply A,. An edge of a triangle will be denoted as e (p;p;) and a line
segment connecting two arbitrary points as L (p;p;). Let us call the open
disk corresponding to a triangle’s circumcircle its circumdisk. We will use
symbols O (A (pip;pk)), © (A (pipjpr)), and r (A (pipjpr)) to represent the
circumdisk, circumcenter, and circumradius of A (p;p;px), respectively.

The input to a planar triangular mesh generation algorithm includes a
description of domain 2 C R?, which is permitted to contain holes or have
more than one connected component. We will use a Planar Straight Line
Graph (PSLG) [18] to delimit {2 from the rest of the plane. Each segment in
the PSLG is considered constrained and must appear (possibly as a union of
smaller segments) in the final mesh.

The applications that use Delaunay meshes often impose two constraints
on the quality of mesh elements: an upper bound on the circumradius-to-
shortest edge ratio (which is equivalent to a lower bound on a minimal an-
gle [15, 19]) and an upper bound on the element area. The former is usually
fixed and given by a constant value p, while the latter can vary and be con-
trolled by some user-defined grading function A(z,y) : R? — R!. As a special
case, the grading function can also be constant: A(z,y) = A.

Typically, a mesh generation procedure starts with constructing an initial
mesh, which conforms to the input vertices and segments, and then refines
this mesh until the constraints are met. In this paper, we focus on paralleliz-
ing the Delaunay refinement stage, which is usually the most memory- and
computation-expensive. The general idea of Delaunay refinement is to insert
points in the circumcenters of triangles that violate the required bounds, until
there are no such triangles left. We will extensively use the notion of cavity [9]
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which is the set of triangles in the mesh whose circumdisks include a given
point p;. We will denote C (p;) to be the cavity of p; and 9C (p;) to be the set
of edges which belong to only one triangle in C (p;), i.e., external edges.

For our analysis, we will use the Bowyer-Watson (B-W) point insertion
algorithm [3, 23], which can be written as

V/ — VU {pi}, (1)
T —T\C(p:) U{A (pipjpr) | e (pjpr) € 9C (ps)},

where M = (V,T) and M’ = (V' T') represent the mesh before and after the
insertion of p;, respectively. The set of newly created triangles forms a ball [9]
of point p; (denoted B (p;)), which is the set of triangles in the mesh that have
pi as a vertex.

Sequential Delaunay algorithms treat constrained segments differently
from triangle edges [19, 17]. A vertex p is said to encroach upon a segment s,
if it lies within the open diametral disk of s [17]. When a new point is about to
be inserted and it happens to encroach upon a constrained segment s, another
point is inserted in the middle of s instead [17], and a cavity of the segment’s
midpoint is constructed and triangulated as before.

We will use the terms triangulation and mesh interchangeably, depending
on the context.

2.2 Delaunay-independent Points

(a) (b)

Fig. 1. (a) If Apspepr € C(ps) N C (p9), then concurrent insertion of pg and po
yields a non-conformal mesh. Solid lines represent edges of the initial triangula-
tion, and dashed lines represent edges created by the insertion of ps and pg. Note
that the intersection of edges psps and pyopr creates a non-conformity. (b) If edge
pspe is shared by C (ps) = {Ap1p2pr, Apapspr, Apspepr} and C (pro) = {Apspsps,
Ap3paps}, the new triangle Apspiops can have point pg inside its circumdisk, thus,
violating the Delaunay property.

We expect our parallel Delaunay refinement algorithm to insert multiple
circumcenters concurrently in such a way that at every iteration the mesh will
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be both conformal (i.e., simplicial) and Delaunay. Figure 1 illustrates how the
concurrently inserted points can violate one of these conditions.

Definition 1 (Delaunay-independence). Points p; and p; are Delaunay-
independent with respect to mesh M = (V,T) if their concurrent insertion
yields the conformal Delaunay mesh M’ = (V U {p;,p;},T"). Otherwise, p;
and p; are Delaunay-conflicting.

Suppose point p; encroaches upon a constrained segment s;. Then p; will
not be inserted, and the midpoint p} of s; will be inserted instead (similarly

for p;).

Definition 2 (Strong Delaunay-independence). Points p; and p; are
strongly Delaunay-independent with respect to mesh M = (V,T) iff any pair
of points in {pi, p;} X {p;,p}} are Delaunay-independent with respect to M.

2.3 Local Delaunay-Independence Conditions

Lemma 1 (Delaunay-independence criterion I). Points p; and p; are
Delaunay-independent iff

C(pi) NC(pj) =0, (2)

and
Ve (pmpn) € OC (pi) NOC (p;) = pi & O (A (PiPmpn)) - (3)

Proof. First, M’' = (V U {p;,p,},T") is conformal iff (2) holds. Indeed, if (2)
holds, then considering (1), the concurrent retriangulation of C (p;) and C (p;)
will not yield overlapping triangles, and the mesh will be conformal. Con-
versely, if (2) does not hold, the newly created edges will intersect as shown
in Fig. 1a, and M’ will not be conformal.

Now, we will show that M’ is Delaunay iff (3) holds. The Delaunay
Lemma [9] states that iff the empty circumdisk criterion holds for every pair
of adjacent triangles, then the triangulation is globally Delaunay. Disregard-
ing the symmetric cases, there are three types of pairs of adjacent triangles
A, and Ag, where A, € B(p;), that will be affected: (i) As € B(p;), (ii)
Ns € T\ B(pi) \ B(p;), and (iii) Ay € B (p;). The sequential Delaunay re-
finement algorithm guarantees that A, and A will be locally Delaunay in
the first two cases. In addition, condition (3) ensures that they will be locally
Delaunay in the third case. Therefore, the mesh will be globally Delaunay.
Conversely, if (3) does not hold, triangles A (pipmpn) and A (p;jpmpr) will
not be locally Delaunay, and the mesh will not be globally Delaunay.

Corollary 1 (Sufficient condition of Delaunay-independence I [5]).
From Lemma 1 it follows that if (2) holds and OC (p;) N OC (p;) = 0, then p;
and p; are Delaunay-independent.



6 Andrey N. Chernikov and Nikos P. Chrisochoides

() (b)

Fig. 2. (a) Either e (pip;) or e (pmprn) is locally Delaunay. (b) O (A (pjpmpn))
cannot include p; and not include q.

Lemma 2 (Delaunay-independence criterion II). Points p; and p; are
Delaunay-independent with respect to mesh M = (V,T) iff the edge e (p;p;)
does not appear in M' = (VU {p;,p,;},T").

Proof. To prove the “if” part, let us recall that an edge e exists in a Delaunay
triangulation iff there is an empty open disk whose circle passes through the
endpoints of e [19]. This means that, in case e (p;p;) is not in M, there is no
empty open disk whose circle passes through p; and p;. This observation has
two consequences:

(i) There is no open disk (triangle circumdisk, as a special case), empty of
the existing mesh vertices, that includes both p; and p;; therefore, condi-
tion (2) holds.

(ii) There is no empty open disk, which includes p;, whose circle passes
through p;. As a special case, there is no such disk whose circle also
passes through p,, and p,,; consequently, condition (3) holds.

Thus, p; and p; are Delaunay-independent by Lemma 1.

In order to show that the “only if” part of the Lemma holds, we assume
that p;, and p; are Delaunay-independent. Then, by Lemma 1, conditions (2)
and (3) hold. Consider Figure 2a. An edge e of a triangulation is either locally
Delaunay or is flippable, in which case the edge created by flipping e is locally
Delaunay [19]. Since the edge € (pmpr) is locally Delaunay, the edge e (p;p;)
is not locally Delaunay, and, hence, cannot exist in M’.

Corollary 2 (Sufficient condition of Delaunay-independence II). Lemma 2
implies that if p; and p; are not visible to each other (i.e. the edge e (p;p;) can-
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not exist in a triangulation of 2, e.g. it would cross a constrained segment),
then p; and p; are Delaunay-independent.

Lemma 3 (Sufficient condition of Delaunay-independence III). Points
p; and p; are Delaunay-independent if there exists a point ¢ € L (p;p;) such
that

1
VA eT : qeO(Ls) = T(AS)§§||pi_ij- (4)

Proof. First, condition (4) implies that C (p;) N C(p;) = 0. Indeed, if there
had been a triangle circumdisk that included p; and p;, then this circumdisk
would have also included ¢ and had radius greater than 3||p; — p;||, which
contradicts (4).

Now, there are two possibilities:

(i) If OC (p;) N OC (p;) = 0, then, by Corollary 1, p; and p; are Delaunay-
independent.

(ii) Otherwise, let OC (p;) N AC (p;) # 0 and e (pmpn) be an arbitrary edge in
9C (p;) N OC (pj) as depicted on Fig. 2b. O (A (pjpmpr)) cannot include
pi; otherwise, it would have also included ¢ and had radius greater than
%Hp, — p;ll, which contradicts (4). Hence, by Lemma 1, p; and p; are
Delaunay-independent.

2.4 Quadtree Construction

Definition 3 (Quadtree node). Let a quadtree node be an azis-aligned
square S C R%. A quadtree node can be either divided into four smaller nodes
of equal size or not divided (in this case it is a leaf).

We will denote the length of the side of square S as £(.5).

Definition 4 (a-neighborhood). Let the a-neighborhood N, (S;) (o €
{Left, Right, Top, Bottom}) of quadtree leaf S; be the set of quadtree leaves
that share a side with S; and are located in the o direction of S;. For example,

0 Fz'g. 3, Sk S NTOp (Sz) and Sl S NRight (Sz)

Definition 5 (Orthogonal directions). Let the orthogonal directions ORT ()
of direction « be

{Left, Right} if o € {Top, Bottom},

ORT (o) = { {Top, Bottom} if « € {Left, Right}.

Definition 6 (Buffer zone). Let the set of leaves
BUF (i) = [ JNa (Si) U {Sm € Norr(a) (S) | Sk € | JNa (Si)}
be called a buffer zone of leaf S; with respect to mesh M iff

VS, € BUF (S;) VA, €T : O(Ag) NSy £0 —> T(AS)<ie(sn). (5)
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Equation (5) is the criterion for the dynamic construction of the quadtree.
Starting with the root node which covers the entire domain, each node of
the quadtree is split into four smaller nodes as soon as all triangles, whose
circumdisks intersect this node, have circumradii smaller than one eighth of
its side length.

Fig. 3. An example of BUF (S;).

L

Fig. 4. Splitting constrained segments and strong Delaunay-independence.

Definition 7 (Delaunay-separated regions). Let two regions R; C R? and
R; C R? be called Delaunay-separated with respect to mesh M iff arbitrary
points p; € R; and p; € R; are strongly Delaunay-independent.

Lemma 4 (Sufficient condition of square Delaunay-separateness).
If S; and S; are quadtree leaves and S; ¢ BUF (S;), then S; and S; are
Delaunay-separated.
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Proof. First, for an arbitrary pair of points p; € S; and p; € S; ¢ BUF (S5,),
we will prove that p; and p; are Delaunay-independent. Then we will ex-
tend the proof to show that any pair of points from {p;,p}} X {pj,p;-} are
Delaunay-independent, which will imply that p; and p; are strongly Delaunay-
independent; hence, S; and S; are Delaunay-separated.

By enumerating all possible configurations of leaves in BUF (S;) and
grouping similar cases, w.l.o.g. all arrangements can be accounted for using
the following argument.

Suppose L (p;p;) intersects the common boundary of S; and S, € Ny, (S;)
BUF (S;) (Fig. 5).

(i) If £ (p;p;) intersects the upper boundary of Sy (Fig. ba), then, from (5)
and the fact that ¢(Sx) < ||p; — p;l|, any point ¢ € L (p;p;) N Sk will
satisfy (4). Therefore, by Lemma 3, p; and p; are Delaunay-independent.

(ii) Otherwise, let L (p;p;) intersect the left boundary of Sp and S, €
Niest (Sg) € BUF (S;) be the leaf adjacent to this boundary at the
point of intersection. £ (p;p;) can intersect either the upper boundary
of S,, (Fig. 5b) or the left boundary of S,, (Fig. 5¢). In both cases,
C(Sm) < |lpi — pjll, any point ¢ € L (pip;) N Sy will satisfy (4), and
p; and p; are Delaunay-independent by Lemma 3.

Now, suppose p; and p; encroach upon constrained edges e (p;pnm) and
e (prps), respectively (Fig. 4). Then the midpoints p} and p’; of e (pipy) and
e (prps) will be inserted instead. If pj and p’; lie in the same quadtree leaves as
p; and pj;, then they can be proven Delaunay-independent using the argument
above.

Let us analyze the worst case, i.e. p;,p} € S € BUF (S;). Since the di-
ametral disk of an edge has the smallest radius among all disks whose circle
passes through the endpoints of an edge, then r (e (pipm)) < 7 (A (Dipmpn)) <

10(Sk) and 7 (e (prps)) < 7 (A (prpspr)) < $£(Sk). Therefore, ||p; — pj| >
%6 (Sk). By constructing imaginary buffer squares Sy, and S, as shown on

NN N
N q

m

S
p

ESPe

S.

l

(a) (b) (c)

Fig. 5. Some possible positions of points p; and p; relative to BUF (.5;).

13
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Fig. 4, we can still satisfy condition (4), which guarantees that p; and p’; are
Delaunay-independent by Lemma 3.

3 Experiments
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Fig. 6. Pipe cross-section model, A(z,y) = 0.4y/(z — 200)2 + (y — 200)2 + 1. (a)

Our parallel refinement algorithm, 4166 triangles. (b) The Triangle [18], 4126 tri-
angles.
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(a) (b)

Fig. 7. Jonathan Shewchuk’s key model, A(z,y) = 0.02|y — 46| + 0.1. (a) Our
parallel refinement algorithm, 5411 triangles. (b) The Triangle [18], 5723 triangles.

20
y
0 o
=20 x
-20 0 50

(a) (b)

Fig. 8. The cylinder flow model. A(z,y) = 1.2- 1072 if ((z > 0) A (y < 5)) V ((z <
0) A (/22 +42) < 5); Az, y) = 1072, otherwise. Our parallel refinement algorithm
produced 1044756 triangles, and the Triangle [18] produced 1051324 triangles. (a)
The input model. (b) The final quadtree. The complete triangulation is not drawn.

Figures 6 and 7 compare the meshes produced by our implementation
and the Triangle library [18] for a pipe cross-section and a key. Figure 8
also shows the initial geometry and the quadtree produced by our algorithm
for the cylinder flow problem, which is similar to the model used in [7]. For
all of the quadtree nodes, mesh refinement and node subdivision routines
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were applied concurrently while preserving the required buffer zones, until
the quality constraints were met. The specified grading functions are used as
follows. If (x;,y;) is the centroid of the triangle A;, then the area of A; has
to be less than A(z;,y;). In all experiments we used the same minimal angle
bound of 20°. These tests indicate that while maintaining the required quality
of the elements, the number of triangles produced by our method is close, and
sometimes is even smaller, than produced by the Triangle [18].

4 Conclusions

We presented a theoretical framework for developing parallel Delaunay mesh-
ing codes, which allows to control the size of the elements with a user-defined
grading function. We eliminated such disadvantages of the previously pro-
posed methods as the necessity to maintain a cavity (conflict) graph, the roll-
backs, the requirement to solve a difficult domain decomposition problem, and
the centralized sequential resolution of potential conflicts. Our theory lever-
ages the quality guarantees of the existing sequential Delaunay refinement
algorithms. The experimental results confirm that the parallel algorithm pro-
duces meshes with the same quality as the sequential Delaunay refinement
algorithm and does not lead to overrefinement.

We are currently working on the extension of the proposed approach to
three dimensions. While the quadtree immediately generalizes to the octree,
the properties of 3D cavities require further study.
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