
Generalized Delaunay Mesh Refinement: From
Scalar to Parallel

Andrey N. Chernikov and Nikos P. Chrisochoides

Department of Computer Science
College of William and Mary
Williamsburg, VA 23185
{ancher,nikos}@cs.wm.edu

Summary. The contribution of the current paper is three-fold. First, we generalize
the existing sequential point placement strategies for guaranteed quality Delaunay
refinement: instead of a specific position for a new point, we derive a selection disk
inside the circumdisk of a poor quality triangle. We prove that any point placement
algorithm that inserts a point inside the selection disk of a poor quality triangle
will terminate and produce a size-optimal mesh. Second, we extend our theoretical
foundation for the parallel Delaunay refinement. Our new parallel algorithm can be
used in conjunction with any sequential point placement strategy that chooses a
point within the selection disk. Third, we implemented our algorithm in C++ for
shared memory architectures and present the experimental results. Our data show
that even on workstations with a few cores, which are now in common use, our
implementation is significantly faster the best sequential counterpart.

1 Introduction

In this paper we address theoretical and practical aspects for the development
of both scalar and parallel Delaunay mesh generation algorithm and software
that satisfy the following requirements:

1. allow to construct well-shaped elements with bounded minimal angle;
2. produce graded meshes, i.e., meshes with element size specified by a user-

defined function;
3. offer proofs of termination and size optimality;
4. allow to use custom point placement strategies (e.g., circumcenter, off-

center, etc.);
5. replace the solution of a difficult domain decomposition problem with

an easier data distribution approach without relying on the speculative
execution model [10, 19];

6. offer performance improvement over the best available sequential software,
even on workstations with just a few hardware cores.

2 Andrey N. Chernikov and Nikos P. Chrisochoides

We describe our solution which satisfies all of these requirements. Although
the extension of the method to three dimensions is still is progress, we present
a complete practical parallel two-dimensional guaranteed quality graded mesh
generator. In such applications as the direct numerical simulations of turbu-
lence in cylinder flows with very large Reynolds numbers [12] and coastal ocean
modeling for predicting storm surge and beach erosion in real-time [25], three-
dimensional simulations are conducted using two-dimensional meshes. In both
cases, 2D mesh generation is taking place in the xy-plane and it is replicated
in the z-direction in the case of cylinder flows or using bathemetric contours
in the case of coastal ocean modeling applications.

The field of sequential guaranteed quality Delaunay refinement has been
extensively studied, see [8, 13, 16, 20, 23] and the references therein. However,
new ideas and improvements keep being introduced. One of the basic questions
being studied is where to insert additional (so-called Steiner) points into an
existing mesh in order to improve the quality of the elements. Ruppert’s [20]
and early Chew’s [8] algorithms use circumcenters of poor quality triangles.
Later, Chew [9] suggested to use randomized insertion of near-circumcenter
points for three-dimensional Delaunay refinement, with the goal of avoiding
slivers. Recently, Üngör [24] proposed to insert specially chosen points which
he calls off-centers; this method allows to produce smaller meshes in practice
and it was implemented in the popular sequential mesh generation software
the Triangle [22]. We expect that other optimization techniques can be used
to select positions for new points. Indeed, in Subsection 2.2 we give an exam-
ple of a point placement strategy that in some cases allows to achieve even
smaller meshes than the off-center method, albeit at significant computation
cost. Since one would not like to redesign the parallel algorithm and soft-
ware to accommodate each of the point placement techniques, in this paper
we generalize the sequential Delaunay refinement approaches and develop a
framework which allows to use custom point selection strategies. In particular,
we derive a selection disk for the position of a new point with respect to a poor
quality triangle and prove that any point placement technique with the only
restriction that it selects a point inside the selection disk will terminate and
produce a size-optimal guaranteed quality mesh. While the use of Chew’s [9]
picking-sphere is restricted to produce only meshes with constant density, the
use of our selection disk allows to obtain graded size-optimal meshes.

The domain decomposition problem for parallel mesh generation is formu-
lated as follows [11, 14, 15]. Given a domain Ω ⊂ Rn, construct the separators
Sij ⊂ Rn−1, Sij ⊂ Ω, such that Ω is decomposed into subdomains Ωi:

Ω =
N⋃

i=1

Ωi, Ωi ∩Ωj = Sij , i, j = 1, . . . , N, i 6= j,

while the separators do not create very small angles and other features
that will force the degradation of the mesh quality. Linardakis and Chriso-
choides [14, 15] described a Medial Axis Domain Decomposition Method for

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 3

two-dimensional geometries. However, the solution is based on the Medial
Axis Transform which is very difficult and expensive to construct for three-
dimensional geometries. Another approach is to partition and refine the mesh
simultaneously [10, 19], such that when a conflict is detected between concur-
rently inserted points, some of the point insertions are canceled, which leads
to high computation and communication costs.

In [4–7] we showed that the domain decomposition problem for the parallel
Delaunay refinement can be replaced with an easier data distribution problem.
We proved that an auxiliary spatial data structure, like a uniform 2D (or 3D)
lattice and a quadtree (or an octree), can be constructed in such a way that
the points introduced in certain regions of Ω, that correspond to separated
regions from the above data structure, do not have any dependences and can
be inserted concurrently.

In [5, 7] we presented the theory and the implementation for the paral-
lel construction of guaranteed quality uniform two-dimensional meshes which
use a uniform lattice as an auxiliary spatial data structure. In [4, 6] we pre-
sented the theoretical foundation for the construction of non-uniform (graded)
meshes for the circumcenter point insertion method [8, 20, 23]. In this paper,
we present the algorithm for the generalized point insertion method, describe
our implementation and the experimental results using the off-center point
insertion strategy [24].

Ruppert’s sequential Delaunay refinement algorithm has quadratic worst-
case running time, even though in most practical cases the time is linear with
respect to the output size [20, 23]. Recently, Miller [16] proposed a Delaunay
refinement algorithm which runs in optimal O (n log n + m) time, where n
is the size of the input, and m is the size of the output. He achieved this
improvement by introducing a priority queue, where the skinny triangles are
ordered by their diameter (equivalently, circumradius), and the triangles with
the largest diameter are refined first. As it can be seen further in the paper, our
parallel algorithm also gives priority to triangles with large circumradii, which
allows to eliminate quadratic running time for pathological input geometries.

Cheng et al. [3] developed an algorithm to remove sliver tetrahedra from
an existing Delaunay mesh. The algorithm pumps the weights of the vertices
and flips the edges to obtain a new triangulation of the same point set. The
maximum weight that can be assigned to a point is bounded by a function of
the distance to the nearest point. This relates to the choice of radius for our
selection disk which depends on the length of the shortest edge of a triangle.

In Section 2 we introduce the background for the sequential Delaunay
refinement, define the selection disk for the insertion of Steiner points, and
present the proofs of termination and size optimality to show that a Delaunay
refinement algorithm which chooses points inside the selection disks of skinny
triangles terminates and produces size optimal meshes. Then, in Section 3
we describe our parallel implementation and experimental results. Section 4
concludes the paper.

4 Andrey N. Chernikov and Nikos P. Chrisochoides

2 Point Insertion for Sequential Delaunay Refinement

2.1 Delaunay Refinement Background

Let the mesh M = (V, T, S) consist of a set V = {pi} of vertices, a set
T = {ti = 4 (pupvpw) | pu, pv, pw ∈ V } of triangles, and a set S = {si =
pupv | pu, pv ∈ V } of constrained segments. We will denote an edge of a tri-
angle as e (pipj). The input to a planar triangular mesh generation algorithm
includes a description of domain Ω ⊂ R2, which is permitted to contain holes
or have more than one connected component. We will use a Planar Straight
Line Graph (PSLG) [22] to delimit Ω from the rest of the plane. Each segment
in the PSLG is considered constrained and must appear (possibly as a union
of smaller subsegments) in the final mesh. The vertices of the PSLG are a
subset of the final set of vertices in the mesh.

There are two commonly used parameters that control the quality of mesh
elements: an upper bound on the circumradius-to-shortest edge ratio (which
is equivalent to a lower bound on a minimal angle [17]) and an upper bound
on the element area. We will denote the circumradius-to-shortest edge ratio of
triangle t as ρ (t) and the area of triangle t as ∆(t). The former upper bound is
usually fixed and given by a constant value ρ̄, while the latter can vary and be
controlled by some user-defined grading function ∆̄(·), which can be defined
either over the set of triangles or over Ω, depending on the implementation.

Let us call the open disk corresponding to a triangle’s circumscribed circle
its circumdisk. We will use symbols© (t) and r (t) to represent the circumdisk
and the circumradius of triangle t, respectively. A mesh is said to satisfy the
Delaunay property if the circumdisk of every triangle does not contain any of
the mesh vertices [13, 23].

Delaunay mesh generation algorithms start with constructing an initial
mesh, which conforms to the input PSLG, and then refine this mesh until
the element quality constraints are met. In this paper, we focus on paral-
lelizing the Delaunay refinement stage, which is usually the most memory-
and computation-expensive. The general idea of Delaunay refinement is to
insert additional (Steiner) points inside the circumdisks of poor quality tri-
angles, which causes these triangles to be destroyed, until they are gradually
eliminated and replaced by better quality triangles.

We will extensively use the notion of cavity [13] which is the set of triangles
in the mesh whose circumdisks include a given point pi. We will denote C (pi)
to be the cavity of pi and ∂C (pi) to be the set of edges which belong to only
one triangle in C (pi), i.e., external edges. For our analysis, we will use the
Bowyer-Watson (B-W) point insertion algorithm [2, 26]:

V ′ ← V ∪ {pi},
T ′ ← T \ C (pi) ∪ {4 (pipjpk) | e (pjpk) ∈ ∂C (pi)},

(1)

where M = (V, T, S) and M′ = (V ′, T ′, S′) represent the mesh before and
after the insertion of pi, respectively.

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 5

Sequential Delaunay algorithms treat constrained segments differently
from triangle edges [20, 23]. A vertex p is said to encroach upon a segment s, if
it lies within the open diametral disk of s [20]. When a new point is about to
be inserted and it happens to encroach upon a constrained segment s, another
point is inserted in the middle of s instead [20], and a cavity of the segment’s
midpoint is constructed and triangulated according to (1).

The proofs of termination and size optimality of Delaunay refinement al-
gorithms [20, 23] explore the relationships between the insertion radius of a
point and that of its parent. The insertion radius R (p) of point p is defined as
the length of the shortest edge connected to p immediately after p is inserted
into the mesh [23]. The parent p̂ of point p is the vertex which is “responsible”
for the insertion of p [23]. In particular, if p is inserted inside the circumdisk
of a poor quality triangle, p̂ is the most recently inserted vertex of the shortest
edge of that triangle. If p is a midpoint of an encroached segment, p̂ is the
point (possibly rejected for insertion) that encroaches upon that segment. If
p is an input vertex, it has no parent. In addition, the proofs require that
ρ̄ ≥
√

2.
The local feature size function lfs : R2 → R for a given point p is equal to

the radius of the smallest disk centered at p that intersects two non-incident
vertices or segments of PSLG X [20]. lfs (p) satisfies the Lipchitz condition:

Lemma 1 (Lemma 1 in Ruppert [20], Lemma 2 in Shewchuk [23]).
Given any PSLG X and any two points pi and pj in the plane, the following
inequality holds:

lfs (pi) ≤ lfs (pj) + ‖pi − pj‖ (2)

2.2 Delaunay Refinement Using Selection Disks

Traditionally, Steiner points are selected in the circumcenters of poor quality
triangles [8, 20, 23]. However, Chew [9] chooses Steiner points randomly inside
a picking sphere to avoid slivers. His goal is to construct a mesh with con-
stant density; therefore he proves the termination, but not the size-optimality
of the mesh. Ruppert [20] and Shewchuk [23] proved that if ρ̄ ≥

√
2, then De-

launay refinement with circumcenters terminates and, furthermore, produces
size-optimal meshes. In this context, size-optimality means that the number
of triangles in the resulting mesh will be within a constant multiple of the
smallest possible number of triangles satisfying the input constraints.

Recently, Üngör [24] introduced a new type of Steiner points called off-
centers. The idea is based on the observation that sometimes the triangles cre-
ated as a result of inserting circumcenters of skinny triangles are also skinny
and require further refinement. It combines the advantages of advancing front
methods, which can produce very well-shaped elements in practice, and Delau-
nay methods, which offer theoretical guarantees. Üngör showed that the use of
off-centers allows to significantly decrease the size of the final mesh in practice.
Consider Figure 1(left). Suppose 4 (pkplpm) is skinny: ρ (4 (pkplpm)) > ρ̄. If

6 Andrey N. Chernikov and Nikos P. Chrisochoides

c

p
l

p
m

p
k

|| p
l

p
m||−ρ

a

b

o

p
i

p
n

c

p
l

p
m

p
k

o

|| p
l

p
m||−

Fig. 1. (Left) Delaunay refinement with off-centers [24]. (Right) The selection
disk (shaded) for the insertion of a Steiner point.

we insert its circumcenter c, the new triangle 4 (cplpm) may also be skinny.
In this case, instead of inserting c, Üngör suggests to insert the off-center o
chosen on the perpendicular bisector of the shortest edge e (plpm) in such a
way that the new triangle 4 (oplpm) will have circumradius-to-shortest edge
ratio equal to exactly ρ̄. While eliminating additional point insertions, this
strategy creates triangles with the longest possible edges, such that one can
prove termination of the algorithm and size-optimality of the result.

However, circumcenters and off-centers are not the only possible positions
for inserting the Steiner points, either sequentially or in parallel, such that
one can prove termination and size-optimality.

Definition 1. If t is a poor quality triangle with circumcenter c, shortest edge
length l, circumradius r, and circumradius-to-shortest edge ratio ρ = r/l >
ρ̄ ≥
√

2, then the selection disk for the insertion of a Steiner point that would
eliminate t is the open disk with center c and radius r −

√
2l.

For example, in Figure 1(right) e (plpm) is the shortest edge of a skinny tri-
angle 4 (pkplpm) and c is its circumcenter. The selection disk is the shaded
disk with center c and radius r (4 (pkplpm))−

√
2‖pl − pm‖.

Below we prove that any point inside the selection disk of a triangle can be
chosen for the elimination of the triangle, and that the generalized Delaunay
refinement algorithm which chooses Steiner points inside the selection disks
terminates and produces size-optimal meshes.

Remark 1. The radius of Chew’s picking sphere is fixed and is equal to one half
of the length of the shortest possible edge in the final mesh [9]. We generalize
the idea of his picking sphere to the selection disk, such that the radius of
the selection disk varies among the triangles and depends on the length of the
shortest edge of each particular triangle.

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 7

p
l

p
m

p
k

p
i

pp

p

wu

p

v

i

p
l

p
m

p
k

p
i

o

Fig. 2. (Left) p̂i is a Steiner point within a selection disk of a poor quality triangle
which encroaches upon a constrained segment e (pupv). (Right) An optimization-
based method for the selection of a Steiner point within a selection disk of a poor
quality triangle.

Remark 2. Üngör’s off-center always lies inside the selection disk.

Remark 3. As ρ (4 (pkplpm)) approaches
√

2, the selection disk shrinks to the
circumcenter c of the triangle. If, furthermore, ρ (4 (pkplpm)) ≤

√
2, the selec-

tion disk vanishes, which coincides with the fact that the triangle 4 (pkplpm)
cannot be considered skinny.

The proofs of termination and size-optimality of Delaunay refinement with
circumcenters in [8, 20, 23] rely on the assumption that the insertion radius of
the Steiner point is equal to the circumradius of the poor quality triangle. This
assumption holds when the Steiner point is chosen in the circumcenter of a
triangle, since by Delaunay property the circumdisk of the triangle is empty,
and, hence, there is no vertex closer to the circumcenter than the vertices
of this triangle. However, the above assumption does not hold if we pick an
arbitrary point pi within the selection disk, see Figure 1(right). Therefore,
we need new proofs in the new context when Steiner points can be inserted
anywhere within the selection disks of poor quality triangles.

Proof of Termination

Lemma 2. If pi is a vertex of the mesh produced by a Delaunay refine-
ment algorithm which chooses points within selection disks of triangles with
circumradius-to-shortest-edge ratios greater than ρ̄ ≥

√
2, then the following

inequality holds:
R (pi) ≥ C ·R (p̂i) , (3)

where we distinguish among the following cases:

8 Andrey N. Chernikov and Nikos P. Chrisochoides

(i) C =
√

2 if pi is a Steiner point chosen within the selection disk of a skinny
triangle;

Otherwise, let pi be the midpoint of subsegment s. Then

(ii) C = 1√
2

if p̂i is a Steiner point which encroaches upon s, chosen within
the selection disk of a skinny triangle;

(iii) C = 1
2 cos α if pi and p̂i lie on incident subsegments separated by an angle

of α (with p̂i encroaching upon s), where 45◦ ≤ α ≤ 90◦;
(iv) C = sinα if pi and p̂i lie on incident segments separated by an angle of

α ≤ 45◦.

If pi is an input vertex, then

R (pi) ≥ lfs (pi) . (4)

Proof. We need to present new proofs only for cases (i) and (ii), since the
proofs for all other cases are independent of the choice of the point within the
selection disk and are given in [23].

Case (i) By the definition of a parent vertex, p̂i is the most recently in-
serted endpoint of the shortest edge of the triangle; without loss of generality
let p̂i = pl and e (plpm) be the shortest edge of the skinny triangle4 (pkplpm),
see Figure 1(right). If e (plpm) was the shortest edge among the edges incident
upon pl at the time pl was inserted into the mesh, then ‖pl− pm‖ = R (pl) by
the definition of the insertion radius; otherwise, ‖pl − pm‖ ≥ R (pl). In either
case,

‖pl − pm‖ ≥ R (pl) . (5)

Now we can derive the relation between the insertion radius of point pi

and the insertion radius of its parent p̂i = pl:

R (pi) >
√

2‖pl − pm‖ (by the construction of the selection disk)
≥
√

2R (pm) . (from (5))

Hence, R (pi) >
√

2R (p̂i); choose C =
√

2.
Case (ii) Let p̂i be inside the selection disk of a skinny triangle4 (pkplpm),

such that p̂i encroaches upon e (pupv), see Figure 2(left). Since the edge
e (pupv) is part of the mesh, there must exist some vertex pw such that pu,
pv, and pw form a triangle. Because pw is outside of the diametral circle of
e (pupv), the circumdisk© (4 (pupvpw)) has to include point p̂i. Therefore, if
p̂i were inserted into the mesh, 4 (pupvpw) would be part of the cavity C (p̂i)
and the edges connecting p̂i with pu and pv would be created. Therefore,

R (p̂i) ≤ min(‖p̂i − pu‖, ‖p̂i − pv‖) <
√

2
‖pu − pv‖

2
=
√

2R (pi) ;

choose C = 1√
2
. ut

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 9

Theorem 1 (Theorem 4 in Shewchuk [23]). Let lfsmin be the shortest
distance between two non-incident entities (vertices or segments) of the input
PSLG. Suppose that any two incident segments are separated by an angle of
at least 60◦, and a triangle is considered to be skinny if its circumradius-to-
shortest edge ratio is larger than ρ̄, where ρ̄ ≥

√
2. Ruppert’s algorithm will

terminate with no triangulation edge shorter than lfsmin.

The proof of this theorem in [23] is based on the result of Lemma 3 in [23],
which establishes the relations (3) and (4) in the context of circumcenter
point insertion. Otherwise, the proof is independent of the specific position
of inserted points. Since we proved (3) and (4) in the context of inserting
arbitrary points within selection disks, this theorem also holds in this context.

Proof of Good Grading and Size Optimality

The quantity D (p) is defined as the ratio of lfs (p) over R (p) [23]:

D (p) =
lfs (p)
R (p)

. (6)

It reflects the density of vertices near p at the time p is inserted, weighted by
the local feature size.

Lemma 3. If pi is a vertex of the mesh produced by a Delaunay refinement
algorithm which chooses points within selection disks of skinny triangles and
C is the constant specified by Lemma 2, then the following inequality holds:

D (pi) ≤ 1 +
D (p̂i)

C
. (7)

Proof. If pi is chosen within the selection disk of a skinny triangle, then
R (pi) >

√
2‖pi − p̂i‖ by construction. If pi is a segment midpoint and p̂i is a

rejected encroaching Steiner point within a selection disk, R (pi) > ‖pi − p̂i‖
because p̂i is inside the diametral circle of the segment. If pi is a segment
midpoint and p̂i is an encroaching vertex which lies on another segment, then
by the definition of the insertion radius R (pi) = ‖pi− p̂i‖ by the definition of
the insertion radius. In all cases,

R (pi) ≥ ‖pi − p̂i‖. (8)

Then
lfs (pi) ≤ lfs (p̂i) + ‖pi − p̂i‖ (from Lemma 1)

≤ lfs (p̂i) + R (pi) (from (8))
= D (p̂i) R (p̂i) + R (pi) (from (6))
≤ D (p̂i)

R(pi)
C + R (pi) (from Lemma 2)

The result follows from dividing both sides by R (pi). ut

10 Andrey N. Chernikov and Nikos P. Chrisochoides

Lemma 4 (Extension of Lemma 7 in Shewchuk [23] and Lemma 2
in Ruppert [20]). Suppose that ρ̄ >

√
2 and the smallest angle in the input

PSLG is strictly greater than 60◦. There exist fixed constants CT and CS

such that, for any vertex pi inserted (or considered for insertion and rejected)
within the selection disk of a skinny triangle, D (pi) ≤ CT , and for any vertex
pi inserted at the midpoint of an encroached subsegment, D (pi) ≤ CS. Hence,
the insertion radius of a vertex has a lower bound proportional to its local
feature size.

The proof of this Lemma in [23] relies only on Lemmata 2 and 3 here which
have been proven to hold for the Steiner points chosen within selection disks
of skinny triangles. Hence, the Lemma holds in this context, too.

Theorem 2 (Theorem 8 in Shewchuk [23], Theorem 1 in Ruppert
[20]). For any vertex pi of the output mesh, the distance to its nearest neighbor
is at least lfs(pi)

CS+1 .

The proof in [23] relies only on Lemmata 1 and 4 here and, therefore, holds
for the arbitrary points chosen within selection disks of skinny triangles.

Theorem 2 is the precondition of the following theorem:

Theorem 3 (Theorem 10 in Shewchuk [23], Theorem 14 in Mitchell
[18], Theorem 3 in Ruppert [20]). Let lfsM (pi) be the local feature size at
pi with respect to a meshM (treatingM as a PSLG), whereas lfs (pi) remains
the local feature size at pi with respect to the input PSLG. Suppose a mesh
M with smallest angle θ has the property that there is some constant k1 ≥ 1,
such that for every point pi, k1lfsM (pi) ≥ lfs (pi). Then the cardinality of M
is less than k2 times the cardinality of any other mesh of the input PSLG with
smallest angle θ, where k2 = O

(
k2
1/θ

)
.

An Example of a Point Selection Strategy

Let us consider Figure 2(right). We can see that the off-center o of the skinny
triangle 4 (pkplpm) is not the only location for a Steiner point pi that will
lead to the creation of the new triangle incident to the edge e (plpm) with
circumradius-to-shortest edge ratio equal to exactly ρ̄. The arc shown in bold
in the Figure is the intersection of the circle passing through pl, pm, and o with
the selection disk of 4 (pkplpm). Let us denote this arc as Γ . The thin arcs
show parts of the circumcircles of other triangles in the mesh. We can observe
that the cavity C (pi) will vary depending on the location of pi, according
to the set of triangle circumdisks that include pi. Let us also represent the
penalty for deleting triangle t as P (t):

P (t) =
{
−1, if (ρ (t) > ρ̄) ∨ (∆(t) > ∆̄),

1, otherwise.

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 11

Fig. 3. (Left) Un upper part of a model of cylinder flow. (Right) Pipe cross-
section model.

Table 1. The comparison of the number of triangles generated with the use of three
different point insertion strategies, for different models and minimal angle bounds.
No area bound is used.

Point position θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe
Circumcenter 2173 3033 3153 4651 8758 10655
Off-center 1906 2941 2942 4411 6175 8585
Our optimization-based
method 1805 2841 2932 4359 6319 8581

Then our objective is to minimize the profit function associated with the
insertion of point pi as the sum of the penalties for deleting all triangles in
the cavity C (pi):

min
pi∈Γ

F (pi), F (pi) =
∑

t∈C(pi)

P (t)

In other words, we try to minimize the number of deleted good quality tri-
angles and at the same time to maximize the number of deleted poor quality
triangles. The results of our experiments with the cylinder flow (Fig. 3(left))
and the pipe cross-section (Fig. 3(right)) models using Triangle version 1.6 [22]
are summarized in Tables 1 and 2. We do not list the running times since our
experimental implementation is built on top of the Triangle and does not
take advantage of its intermediate calculations as do the circumcenter and
off-center insertion methods. From Table 1 we can see that our optimization-
based method tends to produce up to 20% fewer triangles than the circumcen-
ter method and up to 5% fewer triangles than the off-center method for small
values of the minimal angle bound and no area bound, and the improvement
diminishes as the angle bounds increase. Table 2 lists the results of the sim-
ilar experiments, with an additional area bound constraint. We observe that
the introduction of an area bound effectively voids the difference among the
presented point insertion strategies.

3 Generalized Parallel Delaunay Refinement

In [6] we described the construction of a quadtree which overlays the mesh. If
a part of the mesh associated with a leaf Leaf of the quadtree is scheduled

12 Andrey N. Chernikov and Nikos P. Chrisochoides

Table 2. The comparison of the number of triangles generated with the use of three
different point insertion strategies. For the cylinder flow model, the area bound is
set to ∆̄ = 0.01, and for the pipe cross-section model ∆̄ = 1.0.

Point position θ = 10◦ θ = 20◦ θ = 30◦

flow pipe flow pipe flow pipe
Circumcenter 219914 290063 220509 289511 228957 294272
Off-center 219517 290057 220479 289331 226894 295644
Our optimization-based
method 219470 289505 220281 289396 226585 294694

DelaunayRefinement(X , g, ∆̄(·), ρ̄, f(·), M, Leaf)
Input: X is a PSLG which defines Ω

g is the granularity
∆̄(·) is the triangle area grading function
ρ̄ is the upper bound on triangle circumradius-to-shortest edge ratio
f(·) is a deterministic function which returns a specific position

within triangle’s selection disk
M is the current Delaunay mesh
Leaf is the leaf scheduled for refinement

Output: Locally refined Delaunay mesh M
Locally refined quadtree node Leaf

1 imin ← minPoorTrianglesi(Leaf) 6=∅ i
2 imax ← imin + g
3 for j = imin, . . . , imax

4 while PoorTrianglesj(Leaf) 6= ∅
5 Let t ∈ PoorTrianglesj(Leaf)
6 p← f(t)
7 Insert p intoM
8 for L ∈ {Leaf} ∪ BUF (Leaf)
9 Update PoorTriangles(L) and Counter(L)

10 endfor
11 endwhile
12 endfor
13 Split Leaf recursively while (9) holds
14 returnM, Leaf

Fig. 4. The algorithm executed by each of the refinement threads.

for refinement by a thread, no other thread can refine the parts of the mesh
associated with the buffer zone BUF (Leaf) of this leaf. For each leaf of the
quadtree the following relation is maintained:

∀t ∈M : © (t) ∩ Leaf 6= ∅ =⇒ r (t) <
1
4
` (Leaf) , (9)

where ` (Leaf) is the length of the side of Leaf . See [6] for the details.
The algorithm is designed for the execution by one master thread which

manages the work pool and multiple refinement threads which refine the mesh

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 13

and the quadtree. Figure 4 presents the part of the algorithm executed by each
of the refinement threads.

When a quadtree leaf Leaf is scheduled for refinement, we remove not
only the nodes from the buffer zone BUF (Leaf) of Leaf from the refinement
queue, but also the nodes from BUF (L) for each L ∈ BUF (Leaf). Although
this is not required by our theory, there are two implementation considerations
for doing so, and both are related to the goal of reducing fine-grain synchro-
nization.1 First, each leaf has an associated data structure which stores the
poor quality triangles whose circumdisks intersect this leaf, so that we can
maintain the relation (9). Even though in theory the refinement of the mesh
by concurrent threads is not going to cause problems when the threads work
within the same quadtree leaf, in practice we would have to introduce synchro-
nization in line 9 of the algorithm in Figure 4 to maintain this data structure.
Second, for efficiency considerations, we followed the design of the triangle
data element that is used in the Triangle [22]. In particular, each triangle
contains pointers to neighboring triangles for easy mesh traversal. However, if
two cavities share an edge and are updated by the concurrent threads, which
can be done legitimately in certain cases [6], these triangle–neighbor pointers
will be invalidated. For these reasons, we chose to completely separate the
sets of leaves affected by the mesh refinement performed by multiple threads.

Each of the worker threads performs the refinement of the mesh and the
refinement of the quadtree. The poor quality triangles whose split-points se-
lected by a deterministic function f(·) are inside the square of Leaf are stored
in the data structure denoted here as PoorTriangles(Leaf). Leaf needs to be
scheduled for refinement if the size of this data structure is not empty. In ad-
dition, each Leaf has a counter for the triangles with various ratios of the side
length of Leaf to their circumradius. If we denote σ(t, Leaf) =

⌊
log2

`(Leaf)
r(t)

⌋
,

then Counteri(Leaf) = |{t ∈M | (© (t) ∩ Leaf 6= ∅) ∧ (σ(t, Leaf) = i)}|.
When Counteri(Leaf) = 0, ∀i = 1, 2, 3, it implies that (9) would hold for
each of the children of Leaf , and Leaf can be split. In [5] we proved that
when a point is inserted into a Delaunay mesh using the B-W algorithm, the
circumradii of the new triangles are not going to be larger than the circum-
radii of the triangles in the cavity of the point or those that are adjacent to
the cavity. Therefore, new triangles that would violate (9) are not going to be
created. Each leaf of the quadtree has associated with it a bucketing structure
which holds poor quality triangles:

PoorTrianglesi(Leaf) = {t ∈M | (f(t) ∈ Leaf) ∧ (σ(t, Leaf) = i)∧
((∆(t) > ∆̄(t)) ∨ (ρ (t) > ρ̄))}.

At each mesh refinement step, all triangles in PoorTrianglesj(Leaf) are re-
fined, for all j = imin, . . . , imin + granularity, where

1As we have shown in [1], modern SMTs are not suitable for executing fine-grain
parallelism in Delaunay mesh refinement.

14 Andrey N. Chernikov and Nikos P. Chrisochoides

imin = minPoorTrianglesi(Leaf) 6=∅ i, and granularity ≥ 1 is a parameter that
controls how much computation is done during a single mesh refinement call.
After a mesh refinement call returns, the feasibility of splitting Leaf is eval-
uated, and it is recursively subdivided if necessary.

3.1 Implementation and Experimental Evaluation

We implemented the algorithm in C++ using Pthreads for thread manage-
ment. The experiments were conducted on an IBM Power5 node with two dual-
core processors running at 1.6 GHz and 8 GBytes of total physical memory.
We compared our implementation with the fastest to our knowledge sequen-
tial Delaunay mesh generator the Triangle version 1.6 [22]. This is the latest
release of the Triangle, which uses the off-center point insertion algorithm [24].
In order to make the results comparable, our GPDR implementation also uses
the off-center point insertion [24]. Triangle provides a convenient facility for
the generation of meshes respecting user-defined area bounds. The user can
write his own triunsuitable() function and link it against the Triangle.
This function is called to examine each new triangle and to decide whether
or not it should be considered big and enqueued for refinement. We encoded
our grading function into the triunsuitable() function, compiled it into an
object file, and linked against both the Triangle and our own GPDR imple-
mentation. We ran each of the tests 10 times and used average or median
timing measurements as indicated.

Figure 5(left) presents the total running times for several granularity val-
ues, as the number of compute threads increases from 1 to 4. One additional
thread was used to manage the refinement queue. The mesh was constructed
for the pipe cross-section model shown in Figure 3(left), using the grading
function

∆̄(x, y) = c · (
√

(x− 200)2 + (y − 200)2 + 1), (10)

where c = 10−4 and (x, y) is the centroid of a triangle. Thus a triangle is
considered big if its area is greater than ∆̄(x, y). In all tests we used the same
20◦ degrees angle bound. The total number of triangles produced both by the
Triangle and GPDR was approximately 17 million.

We can see that the best running time was achieved using 4 compute
threads with the granularity value equal to 2, and it constituted 56% of the
Triangle’s sequential running time. It is also interesting to see the intersection
of lines corresponding to granularities 2 and 3, when the number of compute
threads was increased from 3 to 4. This intersection reflects one of the ba-
sic tradeoffs in parallel computing, between granularity and concurrency: in
order to increase the concurrency we have to decrease the granularity, which
introduces more overheads.

Figure 5(right) shows the breakdown of the total execution time for each
of the threads. The fact that the management thread is idle for 93% of the
total time suggests the possibility of high scalability of the code on larger

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 15

1 2 3 4
0

10

20

23.5

30

42.2

50

54.3

60

70

80

Number of compute threads

T
im

e,
 s

ec

Triangle (sequential)
granularity = 1
granularity = 2
granularity = 3
granularity = 4
granularity = ∞

0 1 2 3 4
0

5

10

15

20

25

Thread number

T
im

e,
 s

ec

Mesh refinement
Quadtree refinement
Refinement queue updates
Idle time

Fig. 5. (Left) The total running time of the GPDR code, for different granularity
values, as the number of compute threads is increased from 1 to 4, compared to the
Triangle [22]. Each point on the graph is the average of 10 measurements. (Right)
The breakdown of the total GPDR execution time for each of the threads, when the
number of compute threads is 4 and granularity is 2. Thread number 0 performs
only the management of the refinement queue, and threads 1–4 perform mesh and
quadtree refinement. The data correspond to the test with the median total time.

machines, since it can handle many more refinement threads (cores) than the
current widely available machines have.

Standard system memory allocators exhibited high latency and poor scal-
ability in our experiments, which lead us to develop a custom memory man-
agement class. At initialization, our memory pool class takes the size of the
underlying object (triangle, vertex, quadtree node, or quadtree junction point)
as a parameter and at runtime it allocates blocks of memory which can fit
a large number of objects. When the objects are deleted, they are not deal-
located but are kept for later reuse instead. Our qualitative study of the
performance of the standard, the custom, and a novel generic multiprocessor
allocator appears in [21].

4 Conclusions

We analyzed the existing point insertion methods for guaranteed quality De-
launay refinement and unified them into a framework which allows to develop

16 Andrey N. Chernikov and Nikos P. Chrisochoides

Fig. 6. An example mesh of the pipe model, with the corresponding quadtree. The
grading function is given by (10) with c = 0.3.

Fig. 7. Examples of the approaches for choosing Steiner points within selection
disks of skinny triangles.

customized mesh optimization techniques. The goals of these techniques may
include the following:

• minimizing the number of inserted points, see for example [24] and Sub-
section 2.2 here;

• eliminating slivers, see [9];
• splitting multiple poor quality triangles simultaneously, see Fig. 7(left).
• creating elongated edges in required directions, see Fig. 7(center);
• inserting more than one point, e.g., to create elements with specific shapes,

see Fig. 7(right);
• satisfying other application-specific requirements.

In this paper, we extended our theoretical framework for parallel Delaunay
refinement presented in [6] to work with custom point placement techniques.
We used three different point placement methods: circumcenter, off-center
and a new optimization-based method which allows to improve the size of the
mesh by up to 20% and up to 5% over the first two methods, respectively.

Generalized Delaunay Mesh Refinement: From Scalar to Parallel 17

Our current algorithm is limited to deterministic point selection; incorporating
randomized point selection is left to the future research.

We presented the algorithm and the implementation of a parallel 2D
graded guaranteed quality Delaunay mesh generator. The experimental re-
sults show that our code on a machine with two dual-core processors runs in
56% of the time taken by the fastest sequential code the Triangle [22]. By us-
ing a quadtree constructed in a specific way, we eliminated the need to solve
the difficult domain decomposition problem. Our ongoing research includes
the extension of the theory and of the implementation to three dimensions.

Acknowledgments

This work was supported (in part) by the following grants: EIA-0203974, ACI-
0312980, and CNS-0521381. We thank the anonymous reviewers for helpful
comments.

References

1. C. D. Antonopoulos, X. Ding, A. N. Chernikov, F. Blagojevic, D. S. Nikolopou-
los, and N. P. Chrisochoides. Multigrain parallel Delaunay mesh generation:
Challenges and opportunities for multithreaded architectures. In Proceedings
of the 19th annual international conference on Supercomputing, pages 367–376.
ACM Press, 2005.

2. A. Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–166,
1981.

3. S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng. Sliver
exudation. J. ACM, 47(5):883–904, 2000.

4. A. N. Chernikov and N. P. Chrisochoides. Parallel guaranteed quality planar
Delaunay mesh generation by concurrent point insertion. In 14th Annual Fall
Workshop on Computational Geometry, pages 55–56. MIT, Nov. 2004.

5. A. N. Chernikov and N. P. Chrisochoides. Practical and efficient point insertion
scheduling method for parallel guaranteed quality Delaunay refinement. In Pro-
ceedings of the 18th Annual International Conference on Supercomputing, pages
48–57. ACM Press, 2004.

6. A. N. Chernikov and N. P. Chrisochoides. Parallel 2D graded guaranteed quality
Delaunay mesh refinement. In Proceedings of the 14th International Meshing
Roundtable, pages 505–517. Springer, Sept. 2005.

7. A. N. Chernikov and N. P. Chrisochoides. Parallel guaranteed quality Delaunay
uniform mesh refinement. SIAM Journal on Scientific Computing, in print, May
2006.

8. L. P. Chew. Guaranteed quality mesh generation for curved surfaces. In Annual
ACM Symposium on Computational Geometry, pages 274–280, 1993.

9. L. P. Chew. Guaranteed-quality Delaunay meshing in 3D. In Proceedings of the
13th ACM Symposium on Computational Geometry, pages 391–393, 1997.

10. N. Chrisochoides and D. Nave. Parallel Delaunay mesh generation kernel. Int.
J. Numer. Meth. Engng., 58:161–176, 2003.

18 Andrey N. Chernikov and Nikos P. Chrisochoides

11. N. P. Chrisochoides. A survey of parallel mesh generation methods. Technical
Report BrownSC-2005-09, Brown University, 2005. Also appears as a chapter
in Numerical Solution of Partial Differential Equations on Parallel Computers
(eds. Are Magnus Bruaset, Petter Bjorstad, Aslak Tveito), Springer Verlag.

12. S. Dong, D. Lucor, and G. E. Karniadakis. Flow past a stationary and moving
cylinder: DNS at Re=10,000. In 2004 Users Group Conference (DOD UGC’04),
pages 88–95, 2004.

13. P.-L. George and H. Borouchaki. Delaunay Triangulation and Meshing. Appli-
cation to Finite Elements. HERMES, 1998.

14. L. Linardakis and N. Chrisochoides. A static medial axis domain decompo-
sition for 2d geometries. ACM Transactions on Mathematical Software, 2005.
Submitted.

15. L. Linardakis and N. Chrisochoides. Delaunay decoupling method for parallel
guaranteed quality planar mesh refinement. SIAM Journal on Scientific Com-
puting, 27(4):1394–1423, 2006.

16. G. L. Miller. A time efficient Delaunay refinement algorithm. In SODA ’04: Pro-
ceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 400–409, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

17. G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay based
numerical method for three dimensions: Generation, formulation, and partition.
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pages 683–692. ACM Press, May 1995.

18. S. A. Mitchell. Cardinality bounds for triangulations with bounded minimum
angle. In Proceedings of the 6th Canadian Conference on Computational Geom-
etry, pages 326–331, Aug. 1994.

19. D. Nave, N. Chrisochoides, and L. P. Chew. Guaranteed–quality parallel De-
launay refinement for restricted polyhedral domains. Computational Geometry:
Theory and Applications, 28:191–215, 2004.

20. J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18(3):548–585, 1995.

21. S. Schneider, C. D. Antonopoulos, A. N. Chernikov, D. S. Nikolopoulos, and
N. P. Chrisochoides. Designing effective memory allocators for multicore and
multithreaded systems: A case study with irregular and adaptive applications.
Submitted to the Supercomputing Conference, 2006.

22. J. R. Shewchuk. Triangle: Engineering a 2D Quality Mesh Generator and Delau-
nay Triangulator. In M. C. Lin and D. Manocha, editors, Applied Computational
Geometry: Towards Geometric Engineering, volume 1148 of Lecture Notes in
Computer Science, pages 203–222. Springer-Verlag, May 1996. From the First
ACM Workshop on Applied Computational Geometry.

23. J. R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications, 22(1–3):21–74, May 2002.

24. A. Üngör. Off-centers: A new type of Steiner points for computing size-optimal
guaranteed-quality Delaunay triangulations. In Proceedings of LATIN, pages
152–161, Apr. 2004.

25. R. A. Walters. Coastal ocean models: Two useful finite element methods. Recent
Developments in Physical Oceanographic Modelling: Part II, 25:775–793, 2005.

26. D. F. Watson. Computing the n-dimensional Delaunay tesselation with appli-
cation to Voronoi polytopes. Computer Journal, 24:167–172, 1981.

