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Abstract
Scalable and locality-aware multiprocessor memory allocators are critical for harnessing
the potential of emerging multithreaded and multicore architectures. This paper evaluates
two state-of-the-art generic multithreaded allocators designed for both scalability and lo-
cality, against custom allocators, written to optimize themultithreaded implementation of
parallel mesh generation algorithms. We use three different algorithms in terms of com-
munication/synchronization requirements. The implementations of all three algorithms are
heavily dependent on dynamically allocated pointer-baseddata structures and all three use
optimized internal memory allocators based on application-specific knowledge. For our
study we used memory allocators which are implemented and evaluated on two real mul-
tiprocessors with a multi-SMT (quad Hyperthreaded Intel) and a multi-CMP/SMT (dual
IBM Power5) organization. Our results indicate that properly engineered generic memory
allocators can come close or sometimes exceed (in sequential allocation) the performance
of custom multi-threaded allocators. These results suggest that in the near future we should
be able to develop generic multi-threaded allocators that can adapt to application charac-



teristics and increase productivity without compromisingperformance.

Introduction

The critical nature of memory allocation, especially in highly irregular applications, like
parallel mesh generation, that make heavy use of dynamic data structures, forces appli-
cation developers to build customized concurrent memory allocators. Clearly, the main
argument for building a custom memory allocator is performance. Standard system alloca-
tors often exhibit high latency and poor scalability, for reasons which are hard to diagnose
since they are almost always used as black boxes. The black box approach does not let
application developers utilize their understanding of code behavior. Custom multithreaded
memory allocators can be designed for a specific application’s properties. For example, a
custom allocator may: i) eliminate synchronization and shared memory pools altogether,
if objects are allocated and deallocated uniformly across threads; ii) customize the object
segregation strategy to the application’s actual object allocation and access patterns; iii)
change the semantics of deallocation, for example, by deallocating objects in batches, thus
aggregating many costly memory allocation operations intoone.

The major disadvantage of custom memory allocators is the substantial effort needed to
design, implement and test them, especially in a multithreaded execution environment. Ef-
fective custom allocators require a deep understanding of applications and their memory
allocation patterns—a non-trivial exercise in the case of irregular and adaptive applications.
Custom allocators also tend to suffer from lack of portability both between applications and
between platforms. Generic multithreaded memory allocators, on the other hand, are ad-
vantageous from a productivity perspective. Given the severe productivity obstacles in par-
allel computing, off-loading the complexity of memory allocation and hiding hard to gauge
architectural details from the programmer are major steps towards improved productivity.
This effort is relevant and timely, due to an acute need for rapid porting and prototyping of
applications on multithreaded and multicore processors. These processors are becoming a
commodity at a fast pace.

We evaluate custom and generic multithreaded allocators with three parallel guaranteed
quality mesh generation codes. These codes (briefly referred to as PCDM, MPCDM and
PDR) have been developed and extensively optimized over thelast ten years. The codes
stress different aspects of allocation, including both sequential and parallel allocation la-
tency, locality and scalability in multithreaded environments. Their memory allocation,
deallocation and usage patterns are highly irregular and unstructured. For realistic problem
sizes, the codes generate tens of millions of objects of multiple sizes. All three codes rely
heavily on custom memory allocators to mitigate the problems of standard system alloca-
tors. Alongside the evaluation of different allocators, werevisit the question of viability
of generic multithreaded memory allocators for demanding applications, by examining the



design aspects of multithreaded memory allocators that improve scalability and locality,
while preserving good sequential performance.

Parallel Mesh Generation

Parallel mesh generation procedures in general decompose the original mesh generation
problem intoNs smaller subproblems which are solved (i.e., meshed) concurrently using
P ≪ Ns processors. The subproblems can be formulated to be tightlycoupled, partially
coupled, weakly coupled, or decoupled [7]. The coupling of the subproblems determines
the intensity of the communication and the amount and type ofsynchronization required
between the subproblems. Existing parallel mesh generation methods are based on either
Delaunay triangulation, the advancing front technique or edge-subdivision methods. A
complete review of all these methods appears in [7]. In this paper we use parallel guar-
anteed quality Delaunay mesh generation methods as our application testbed. The custom
memory manager we build is specific for unstructured mesh generation but does not rely
on a highly efficient compact representation of simplicial meshes as is the one presented
in [3]; it is representative of any typical adaptive and irregular multithreaded application.
For instance, in [12] the authors evaluate the parallelization of a dynamically adapting, un-
structured mesh application. They mention the memory allocation-related problems that
they observed, such as poor cache reuse due to pointer chasing, false sharing, and memory
hot-spots. These problems are similar to those we encountered with the applications de-
scribed in this paper, and are relevant to a wide class of unstructured codes. In this paper
we take a closer look on the issue of multithreaded memory allocation [13], for dynamic
and irregular codes like parallel mesh generation, and report our experience on trade-offs
between custom and generic allocators.

Parallel Delaunay Refinement The Parallel Delaunay Refinement (PDR) code is a two-
dimensional, partially coupled multithreaded mesh generator [4]. It is written in C++ using
POSIX threads for parallelism. The algorithm implemented in the PDR code has the fol-
lowing characteristics: i) allows the construction of well-shaped elements with bounded
minimal angle; ii) produces graded meshes, i.e., meshes with element size specified by a
user-defined function; iii) termination and size optimality can be proved; iv) allows the
use of custom point placement strategies (e.g., circumcenter, off-center, etc.); v) replaces
the solution of a difficult domain decomposition problem with an easier data distribution
approach without relying on the speculative execution model [6]; vi) offers performance
improvement over the best available sequential software, on workstations with just a few
hardware cores.



Parallel Constrained Delaunay Meshing The Parallel Constrained Delaunay Meshing
(PCDM) software [5] is a weakly-coupled distributed memorytwo-dimensional mesh gen-
erator which uses domain decomposition [10] to divide the problem among the processes.
It is written in C++ and uses MPI for communication among processes. The units of work
are represented by subdomain objects.

Each subdomain contains the collections of the constrainededges, the triangles, and the
points. Each triangle contains three pointers to its vertices and three pointers to the neigh-
boring triangles. For the point insertion, we use the B-W algorithm. The constrained
(boundary) segments are protected by diametral lenses [14], and each time a segment is
encroached, it is split in the middle; as a result, asplit message is sent to the neighboring
subdomain.

Since PCDM follows the MPI process model, each process lies in its own address space
and uses its own copy of a custom memory allocator. Therefore, PCDM is not expected
to benefit from scalability or other optimizations of multithreaded allocators. However, its
allocation intensity stresses the speed of sequential memory allocation and tests the adap-
tivity of multithreaded allocators to sequential allocation patterns. Furthermore, the small
object sizes stress the capability of the allocator to exploit spatial locality. Both multiple
triangles and multiple vertices can fit in a single L2/L3 cache line on our experimental
platforms.

In addition to the distributed memory version of PCDM, we evaluate a medium-grain mul-
tithreaded implementation of PCDM (MPCDM) [1]. MPCDM uses multithreading within
each domain. Threads create and refine individual cavities concurrently, using the B-W
algorithm. MPCDM is synchronization-intensive mainly because threads need to tag each
triangle while working on a cavity, to detect conflicts during concurrent cavity triangula-
tion. The data for MPCDM are from an execution which uses a pipe cross-section model.

MPCDM adopts the memory pools for triangles and vertices used in PCDM, and uses one
memory pool per thread instead of global memory pools. Each thread allocates only from
its local pool, therefore no synchronization instructionsare needed for accessing memory
pools.

The Custom Memory Pool Data Structure

Meshing is an extremely memory-intensive application area. Hence, the performance of
a particular meshing application is dependent on the performance of its underlying mem-
ory allocator. If the standard memory allocation facilities are insufficient to provide the
necessary performance and scalability, application developers are forced to write their own
customized allocators. The standard memory allocator backingnew anddelete on our ex-
perimental platforms imposed unacceptable overhead, which motivated developing a cus-
tom allocation scheme.



The three codes use the same memory pool class, which can be customized to allocate
objects of different sizes. PCDM uses a custom allocator which was originally tuned for
UltraSparc II-based uniprocessors. The original code makes extensive use of the C++ STL,
which introduces its own layer of memory allocation for internal data structures.

At initialization, the memory pool class takes the size of the underlying object as parameter
and at runtime it allocates blocks of memory which can accommodate a certain number
of objects. Since triangles are the only type of objects thatcan be deleted in all three
applications, the memory pool class does not provide a general-purpose facility to reuse
deleted objects. Instead, the applications manage an additional vector to store the pointers
to the memory addresses of the triangles which can be recycled. All methods of the memory
pool class are implemented in a header file, so that the calls to these methods can be inlined
by the compiler.

The memory pool class does not address such issues as aligning the objects to memory
addresses and choosing appropriate block sizes. Furthermore, all memory pools of PDR
and MPCDM are strictly thread-local; they do not require locks or other forms of synchro-
nization since they do not serve concurrent accesses from multiple threads.

Performance Evaluation

Our experimental setting consists of two hardware platforms with layered shared-memory
parallelism. The first is a Dell PowerEdge 6650 server, with 4Hyperthreaded Intel pro-
cessors. Each Hyperthreaded processor has two execution contexts. The second platform
is an IBM OpenPower 720 node. The node has 2 IBM Power5 processors, each of which
is a dual-core processor with 2-way SMT cores. Although our experimental platforms
are small-scale shared-memory machines, they still provide valuable insight on scalability
trends on systems with SMT and multicore components, as wellas insights on the implica-
tions of multiprocessor memory allocators on both multithreaded codes and multi-process
MPI codes. Our results are also relevant for clusters of small shared-memory systems, a
still quite popular hardware platform for high-end computing.

As a representative example of the state-of-the-art in multithreaded memory allocation,
and as a competitive design to compare against custom allocators, we select two recently
developed allocators, Streamflow [13] and Google’s Tcmalloc [8].

The allocators and their variants that we evaluate are shownin Table 1. In addition to the
custom memory allocators hard-coded in each application, we evaluate the standard system
allocator (labeledstandard in the results), the multithreaded allocator included in Google’s
performance tools (labeledtcmalloc), Streamflow, and a hybrid scheme which uses the cus-
tom allocator for all objects and Streamflow’s page manager for managing memory pools
from which objects are allocated and recycled (labeledcustom+pageman). This configura-



Allocator Characteristics
standard glibc, thread-safe for MPCDM and PDR, or optimized

sequential for PCDM,2n object sizes
tcmalloc [8] no headers, locks,2n object size classes
Streamflow no headers, no locks, lock-free page block recycling,

4|8× object size classes
custom application-specific
custom + page manager custom allocator uses Streamflow’s page manager for

block allocations

Table 1: Memory allocators evaluated in the experiments.

tion tests whether a generic page manager can be beneficial even for custom allocators. The
standard glibc allocator is configured differently for sequential and multithreaded execution
in Linux, a property we discovered via experimentation. Thedefault sequential allocator
is based on Doug Lea’s segregated object allocator, which segregates objects according to
size, and uses object sizes which are powers of two [9]. However, when the C compiler de-
tects that the POSIX threads library is used, it switches to adifferent thread-safe allocation
scheme, which is slower—according to our experiments—than the default sequential allo-
cator. Glibc adds metadata to each object, for linking objects to free lists and facilitating
object recycling.

There are other well-known general purpose multithreaded memory allocators, such as
Hoard [2] and Maged Michael’s lock-free allocator [11], that we have not included in our
study. We have focused on Streamflow and Tcmalloc because they have exhibited the
best performance with these applications on our experimental systems. For a more com-
prehensive comparison of all four memory allocators (Hoard, Michael’s, Streamflow and
Tcmalloc), see [13].

We examine the performance of multithreaded allocators using MPCDM and PDR, with
executions up to 8 threads on our two experimental platforms.

MPCDM requires the available processors to always be a powerof two. Its input is the
same pipe cross-section model as used with PCDM. The problemsizes were scaled to fit
in available physical memory on each system, generating 8 million triangles on the Intel
system, and 30 million triangles on the IBM system. For PDR, we use a model of the
Chesapeake Bay as input, and generate 3 million triangles onthe Intel system, and 11
million triangles on the IBM system.

Single-threaded performance of MPCDM stresses a memory allocator’s latency, and for
memory allocators designed mainly for scalability, their ability to adapt to an allocation
pattern that does not require synchronization. The genericallocators perform reasonably
close (within 7%) to thecustom allocator in MPCDM.Streamflow is only 3% slower than
thecustom allocator in single-threaded executions. The results indicate that the generic al-



locators we evaluate, with the exception ofstandard, exhibit good sequential performance.
Standard memory allocation shows the highest latency, primarily because thestandard
allocator uses a slower sequential allocation path when thecode spawns threads via the
POSIX library. Thecustom allocator is 13% faster thanstandard on the Intel system, and
15% faster on the IBM system.Streamflow adapts consistently well to single-threaded and
multi-threaded execution with MPCDM on both platforms.

PDR’s custom allocator outperforms the general purpose allocators on both platforms by
a wide margin. On the IBM platform, PDR’scustom allocator outperformsstandard by
69%, streamflow by 58%, andtcmalloc by 37%. On the Intel platform, PDR’scustom
outperformsstandard by 71%,streamflow by 30%, andtcmalloc by 34%. The application-
specific allocator in PDR takes advantage of application knowledge in two ways. First,
due to the workings of the algorithm, no synchronization is needed for memory allocation,
therefore no expensive atomic instructions are imposed on the critical path of sequential
allocation. Second, the custom allocator exploits the factthat memory usage constantly in-
creases over the life of the application. When member objectsof the critical data structures
are no longer needed, their memory is not returned to memory pools. Instead, that memory
is recycled in thread-local vectors, as new instances of those data structures are guaranteed
to be needed very soon.

Recycling through local vectors involves only the manipulation of one pointer. Recycling
through any generic memory allocator involves at least a function call and several pointer
manipulations, since the allocator needs to look up page block metadata in order to locate
the memory pool which should host the recycled object.

On the Intel platform, MPCDM withStreamflow performs on par with, or outperforms,
the custom allocator by up to 2% in MPCDM. On the IBM platform,Streamflow is within
3% of the performance of thecustom allocator.Tcmalloc achieves noticeably lower perfor-
mance than thecustom allocator, by 7–16% on the Intel platform and 4–7% on the IBM
platform.

The reason for the difference betweenStreamflow andTcmalloc is their synchronization
mechanisms. MPCDM is an extremely synchronization intensive application; point-to-
point synchronization is performed between threads approximately every 1µsec. While
both Streamflow and Tcmalloc eliminate additional synchronization overhead on thread-
local operations, when synchronization is needed,Streamflow uses non-blocking, lock-free
algorithms whileTcmalloc uses locks. Non-blocking, lock-free algorithms allow finer-
grain allocations because threads never have to busy-wait on a critical resource within the
allocator.

On the IBM system, a 64-bitcompare&swap operation takes 83µs, which is 157 cycles
on the 1.65GHz processor. On Intel, a 64-bitcompare&swap takes 137µs, or 274 cycles
on a 2.0GHz processor. Sincetcmalloc relies more on synchronization, it is more suscepti-
ble to the increased cost of atomic operations.Streamflow overcomes this problem due to



its decoupled design of allocation operations.

We also observe that the page manager ofStreamflow improves the performance of the
custom allocator even further, by 3–5% on the Intel platform and by 2–7% on the IBM
platform. This result indicates that customized and generic allocators can also work in
synergy, with generic allocators responsible for managinglarge memory blocks and cus-
tomized allocators responsible for managing small objectswithin memory blocks.

In MPCDM, thecustom allocator achieves a speedup of up to 1.69 on the Intel systemand
up to 2.6 on the IBM system. The latter architecture is generally more scalable due to the
use of dual- core processors, instead of SMT processors and amore scalable implementa-
tion of the SMT microarchitecture within the cores. On the other hand, we observe that
absolute performance is noticeably higher on the Intel platform. Part of this difference is
attributed to the quality of the compilers used. We used version 9 of the Intel compiler on
the Intel platform and g++ on the IBM platform.

PDR is characterized by a wider disparity between allocators than MPCDM. On the Intel
system, thestandard allocator exhibits poor sequential performance (more than70% slower
thancustom) and the worst scalability, achieving a maximum speedup of 1.7 versus a max-
imum speedup of 2.5 achieved withcustom. Streamflow achieves a maximum speedup of
2.0, while its sequential performance is 30% lower than thatof custom. Tcmalloc performs
within 34% ofcustom with a single thread, and achieves a 2.0 speedup with up to 8 threads.
Thecustom allocator scales well because it avoids synchronization altogether. This is pos-
sible becausecustom is implemented with knowledge of the algorithm’s behavior.Further,
the code ofcustom can be inlined and optimized with the rest of the application, while call-
ing the external generic allocators inevitably includes function call overheads and makes
inlining harder, even if the generic allocators are compiled together with the applications.
Finally, as explained earlier,custom uses an application-specific zero-cost recycling policy
which avoids entirely the overhead of returning and retrieving memory back to and from
the allocator via sequences ofnew anddelete calls. Objects are recycled with a single
pointer bump. The overhead of function calls and pointer dereferencing negatively affects
the performance of generic allocators, which have to recycle every object through a call to
delete and a subsequent call tonew.

Once again, we observe that merging thecustom allocator with the page block and large
object manager instreamflow, yields performance improvements, which reach up to 17%
on the Intel platform. Thecustom allocator benefits from the page block caching capa-
bilities of streamflow. We have verified with experiments that the page block manager in
streamflow reduces the latency of both thecustom allocator and the genericstreamflow
small object allocator via a drastic reduction of minor pagefaults and TLB misses.

The trends observed with PDR on the IBM system are mostly similar to the trends observed
on the Intel system. We only outline the most important differences. The IBM system
again exhibits better scalability than the Intel system, achieving speedups of 3.0–4.0 (versus



1.7–2.5 on the Intel system), due to the inherently better architectural scalability of the
multicore and SMT-core design of the IBM Power5. The excessive cost of unnecessary
synchronization hurts the performance oftcmalloc beyond 4 threads, rendering it inferior to
streamflow. The gain from merging Streamflow’s page manager with thecustom allocator
is wider than on the Intel system, giving rise to up to 27% better performance than page
management directly from Linux.

Conclusions

This paper explored the performance and productivity implications of using generic multi-
threaded memory allocators for parallel mesh generation codes on emerging multiproces-
sors. We have investigated the merits and disadvantages of using generic memory allocators
in the context of three applications with challenging and particularly demanding memory
allocation patterns by providing a qualitative and quantitative comparison of custom and
generic allocators. Our quantitative comparison used realSMT and multicore-based mul-
tiprocessors, and three real applications which are heavily dependent on dynamically allo-
cated and managed data structures, producing finite elementmesh sizes in the order of tens
of millions of elements each.

The main findings of this paper are summarized as follows:

• Although custom memory allocators achieve on average the best performance in mesh
generation codes, generic multithreaded memory allocators designed simultaneously
for fast locality-aware sequential allocation, and scalable multithreaded allocation come
very close to and occasionally outperform custom allocators. Generic allocators also
have negligible deployment costs.

• Generic multithreaded allocators are efficient, only if they adapt well to both sequential
and parallel object allocation/deallocation patterns. Our results stress the fact that se-
quential optimizations in a multithreaded memory allocator are critical for the overall
performance of adaptive and irregular applications. In thecase of parallel mesh gener-
ation, sequential optimizations in the allocator can improve performance by as much as
a 70%.

• Generic and custom allocators can be used in synergy. We havebuilt a generic page
block manager to support both custom and generic allocators, by providing user-level
caching and recycling of page blocks for both small and largeobjects, using a unified
strategy. We show that using a page block manager to support custom allocators, we
achieve substantial performance improvement on multithreaded and multicore proces-
sors, by reducing TLB misses and minor page faults.
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