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Abstract

Scalable and locality-aware multiprocessor memory attosaare critical for harnessing
the potential of emerging multithreaded and multicore éectures. This paper evaluates
two state-of-the-art generic multithreaded allocatorsigiteed for both scalability and lo-
cality, against custom allocators, written to optimize thaltithreaded implementation of
parallel mesh generation algorithms. We use three diffealyorithms in terms of com-
munication/synchronization requirements. The impleragons of all three algorithms are
heavily dependent on dynamically allocated pointer-baised structures and all three use
optimized internal memory allocators based on applicasipecific knowledge. For our
study we used memory allocators which are implemented aalda&ed on two real mul-
tiprocessors with a multi-SMT (quad Hyperthreaded Intel @ multi-CMP/SMT (dual
IBM Power5) organization. Our results indicate that prépengineered generic memory
allocators can come close or sometimes exceed (in seqgualidization) the performance
of custom multi-threaded allocators. These results suglgatin the near future we should
be able to develop generic multi-threaded allocators taatadapt to application charac-



teristics and increase productivity without compromismegformance.

Introduction

The critical nature of memory allocation, especially inHligirregular applications, like
parallel mesh generation, that make heavy use of dynami staictures, forces appli-
cation developers to build customized concurrent memdopcators. Clearly, the main
argument for building a custom memory allocator is perfaroga Standard system alloca-
tors often exhibit high latency and poor scalability, foasens which are hard to diagnose
since they are almost always used as black boxes. The blackpgmroach does not let
application developers utilize their understanding ofecbdhavior. Custom multithreaded
memory allocators can be designed for a specific applicatimoperties. For example, a
custom allocator may: i) eliminate synchronization andretianemory pools altogether,
if objects are allocated and deallocated uniformly acrbssads; ii) customize the object
segregation strategy to the application’s actual objdotation and access patterns; iii)
change the semantics of deallocation, for example, byasatihg objects in batches, thus
aggregating many costly memory allocation operations dmnig.

The major disadvantage of custom memory allocators is thetantial effort needed to
design, implement and test them, especially in a multithedaexecution environment. Ef-
fective custom allocators require a deep understandingolications and their memory
allocation patterns—a non-trivial exercise in the caserefular and adaptive applications.
Custom allocators also tend to suffer from lack of portapbioth between applications and
between platforms. Generic multithreaded memory allosatan the other hand, are ad-
vantageous from a productivity perspective. Given thersgpeoductivity obstacles in par-
allel computing, off-loading the complexity of memory al&ion and hiding hard to gauge
architectural details from the programmer are major stepsutds improved productivity.
This effort is relevant and timely, due to an acute need fpidrporting and prototyping of
applications on multithreaded and multicore processongs& processors are becoming a
commodity at a fast pace.

We evaluate custom and generic multithreaded allocatatts tviee parallel guaranteed
quality mesh generation codes. These codes (briefly refé¢oras PCDM, MPCDM and

PDR) have been developed and extensively optimized oveagiiéen years. The codes
stress different aspects of allocation, including bothusedjal and parallel allocation la-
tency, locality and scalability in multithreaded envirosmts. Their memory allocation,
deallocation and usage patterns are highly irregular asttuctured. For realistic problem
sizes, the codes generate tens of millions of objects ofipheilsizes. All three codes rely
heavily on custom memory allocators to mitigate the prolsl@fstandard system alloca-
tors. Alongside the evaluation of different allocators, meeisit the question of viability

of generic multithreaded memory allocators for demandppieations, by examining the



design aspects of multithreaded memory allocators thatawapscalability and locality,
while preserving good sequential performance.

Parallel Mesh Generation

Parallel mesh generation procedures in general decompeseriginal mesh generation
problem intoN, smaller subproblems which are solved (i.e., meshed) comatly using

P <« N, processors. The subproblems can be formulated to be tigbtigled, partially
coupled, weakly coupled, or decoupled [7]. The couplinghaf subproblems determines
the intensity of the communication and the amount and typgyn€hronization required
between the subproblems. Existing parallel mesh generatigthods are based on either
Delaunay triangulation, the advancing front technique dgessubdivision methods. A
complete review of all these methods appears in [7]. In thisep we use parallel guar-
anteed quality Delaunay mesh generation methods as oucatimph testbed. The custom
memory manager we build is specific for unstructured meslergéion but does not rely
on a highly efficient compact representation of simpliciasimes as is the one presented
in [3]; it is representative of any typical adaptive and gutar multithreaded application.
For instance, in [12] the authors evaluate the parallétinadf a dynamically adapting, un-
structured mesh application. They mention the memory afion-related problems that
they observed, such as poor cache reuse due to pointer ghtsdge sharing, and memory
hot-spots. These problems are similar to those we encashteith the applications de-
scribed in this paper, and are relevant to a wide class ofuststed codes. In this paper
we take a closer look on the issue of multithreaded memoogation [13], for dynamic
and irregular codes like parallel mesh generation, andrtepw experience on trade-offs
between custom and generic allocators.

Parallel Delaunay Refinement The Parallel Delaunay Refinement (PDR) code is a two-
dimensional, partially coupled multithreaded mesh genefd]. It is written in C++ using
POSIX threads for parallelism. The algorithm implementethe PDR code has the fol-
lowing characteristics: i) allows the construction of walilaped elements with bounded
minimal angle; ii) produces graded meshes, i.e., meshéseMment size specified by a
user-defined function; iii) termination and size optimalitan be proved; iv) allows the
use of custom point placement strategies (e.g., circuracenif-center, etc.); v) replaces
the solution of a difficult domain decomposition problemwén easier data distribution
approach without relying on the speculative execution rhf@]e vi) offers performance
improvement over the best available sequential softwareyarkstations with just a few
hardware cores.



Parallel Constrained Delaunay Meshing The Parallel Constrained Delaunay Meshing
(PCDM) software [5] is a weakly-coupled distributed membwg-dimensional mesh gen-
erator which uses domain decomposition [10] to divide tlabfgm among the processes.
It is written in C++ and uses MPI for communication among psses. The units of work
are represented by subdomain objects.

Each subdomain contains the collections of the constraéalggs, the triangles, and the
points. Each triangle contains three pointers to its vestind three pointers to the neigh-
boring triangles. For the point insertion, we use the B-Wodtgm. The constrained
(boundary) segments are protected by diametral lenses gbd] each time a segment is
encroached, it is split in the middle; as a resulépkit message is sent to the neighboring
subdomain.

Since PCDM follows the MPI process model, each process iéis iown address space
and uses its own copy of a custom memory allocator. ThereREHOM is not expected
to benefit from scalability or other optimizations of muitiéaded allocators. However, its
allocation intensity stresses the speed of sequential meatiocation and tests the adap-
tivity of multithreaded allocators to sequential allooatipatterns. Furthermore, the small
object sizes stress the capability of the allocator to akglmatial locality. Both multiple
triangles and multiple vertices can fit in a single L2/L3 aadime on our experimental
platforms.

In addition to the distributed memory version of PCDM, weleste a medium-grain mul-
tithreaded implementation of PCDM (MPCDM) [1]. MPCDM usesltithreading within
each domain. Threads create and refine individual caviteswrently, using the B-W
algorithm. MPCDM is synchronization-intensive mainly base threads need to tag each
triangle while working on a cavity, to detect conflicts dgriconcurrent cavity triangula-
tion. The data for MPCDM are from an execution which uses a pipss-section model.

MPCDM adopts the memory pools for triangles and verticed us@® CDM, and uses one
memory pool per thread instead of global memory pools. Elaatl allocates only from
its local pool, therefore no synchronization instructi@ns needed for accessing memory
pools.

The Custom Memory Pool Data Structure

Meshing is an extremely memory-intensive application atdance, the performance of
a particular meshing application is dependent on the padace of its underlying mem-
ory allocator. If the standard memory allocation facibtiare insufficient to provide the
necessary performance and scalability, application dpest are forced to write their own
customized allocators. The standard memory allocatoribgokewanddel et e on our ex-
perimental platforms imposed unacceptable overhead,hahitivated developing a cus-
tom allocation scheme.



The three codes use the same memory pool class, which canstenized to allocate

objects of different sizes. PCDM uses a custom allocatockviias originally tuned for

UltraSparc ll-based uniprocessors. The original code makgensive use of the C++ STL,
which introduces its own layer of memory allocation for imt&l data structures.

At initialization, the memory pool class takes the size eftimderlying object as parameter
and at runtime it allocates blocks of memory which can accodate a certain number
of objects. Since triangles are the only type of objects taat be deleted in all three
applications, the memory pool class does not provide a géperpose facility to reuse
deleted objects. Instead, the applications manage an@ulitector to store the pointers
to the memory addresses of the triangles which can be retyslemethods of the memory
pool class are implemented in a header file, so that the calieese methods can be inlined
by the compiler.

The memory pool class does not address such issues as glitpeirobjects to memory
addresses and choosing appropriate block sizes. Furtheredbmemory pools of PDR
and MPCDM are strictly thread-local; they do not requirek®or other forms of synchro-
nization since they do not serve concurrent accesses frdtipfauhreads.

Performance Evaluation

Our experimental setting consists of two hardware platfowith layered shared-memory
parallelism. The first is a Dell PowerEdge 6650 server, witHyperthreaded Intel pro-
cessors. Each Hyperthreaded processor has two executitext® The second platform
is an IBM OpenPower 720 node. The node has 2 IBM Power5 proessach of which
is a dual-core processor with 2-way SMT cores. Although oyreemental platforms
are small-scale shared-memory machines, they still peovéduable insight on scalability
trends on systems with SMT and multicore components, asaséfisights on the implica-
tions of multiprocessor memory allocators on both muléttded codes and multi-process
MPI codes. Our results are also relevant for clusters of Isshalred-memory systems, a
still quite popular hardware platform for high-end compagti

As a representative example of the state-of-the-art inithtdaded memory allocation,
and as a competitive design to compare against custom &tscave select two recently
developed allocators, Streamflow [13] and Google’s TcnedB.

The allocators and their variants that we evaluate are sliwwable 1. In addition to the
custom memory allocators hard-coded in each applicatierewaluate the standard system
allocator (labeledtandard in the results), the multithreaded allocator included iro@e’s
performance tools (labeledmalloc), Streamflow, and a hybrid scheme which uses the cus-
tom allocator for all objects and Streamflow’s page managenfanaging memory pools
from which objects are allocated and recycled (labelestom+pageman). This configura-



Allocator Characteristics

standard glibc, thread-safe for MPCDM and PDR, or optimized
sequential for PCDM2"™ object sizes

tcmalloc [8] no headers, lock®™ object size classes

Streamflow no headers, no locks, lock-free page block recycling,
4|8 % object size classes

custom application-specific

custom + page manager | custom allocator uses Streamflow’s page manager for
block allocations

Table 1: Memory allocators evaluated in the experiments.

tion tests whether a generic page manager can be benefieraf@custom allocators. The
standard glibc allocator is configured differently for seqtial and multithreaded execution
in Linux, a property we discovered via experimentation. Teéult sequential allocator
is based on Doug Lea’s segregated object allocator, whigtegates objects according to
size, and uses object sizes which are powers of two [9]. Heweahen the C compiler de-
tects that the POSIX threads library is used, it switchesdifferent thread-safe allocation
scheme, which is slower—according to our experiments—thawnléfault sequential allo-
cator. Glibc adds metadata to each object, for linking dbjéx free lists and facilitating
object recycling.

There are other well-known general purpose multithreadechany allocators, such as
Hoard [2] and Maged Michael’s lock-free allocator [11], tha have not included in our
study. We have focused on Streamflow and Tcmalloc becaugehthes exhibited the

best performance with these applications on our experiahegstems. For a more com-
prehensive comparison of all four memory allocators (HoMithael’s, Streamflow and

Tcmalloc), see [13].

We examine the performance of multithreaded allocatonsgusiPCDM and PDR, with
executions up to 8 threads on our two experimental platforms

MPCDM requires the available processors to always be a poievo. Its input is the

same pipe cross-section model as used with PCDM. The protiless were scaled to fit
in available physical memory on each system, generatingll®mtriangles on the Intel

system, and 30 million triangles on the IBM system. For PDR,wse a model of the
Chesapeake Bay as input, and generate 3 million trianglethemntel system, and 11
million triangles on the IBM system.

Single-threaded performance of MPCDM stresses a memarygadbir's latency, and for
memory allocators designed mainly for scalability, thdiility to adapt to an allocation
pattern that does not require synchronization. The gemdlocators perform reasonably
close (within 7%) to theustom allocator in MPCDM.Streamflow is only 3% slower than
thecustom allocator in single-threaded executions. The resultcatdithat the generic al-



locators we evaluate, with the exceptionstfndard, exhibit good sequential performance.
Standard memory allocation shows the highest latency, ariiynbecause thatandard
allocator uses a slower sequential allocation path whercdkde spawns threads via the
POSIX library. Thecustom allocator is 13% faster thastandard on the Intel system, and
15% faster on the IBM systenstreamflow adapts consistently well to single-threaded and
multi-threaded execution with MPCDM on both platforms.

PDR’s custom allocator outperforms the general purpose allocators ¢h platforms by
a wide margin. On the IBM platform, PDR&ustom allocator outperformstandard by
69%, streamflow by 58%, andtcmalloc by 37%. On the Intel platform, PDR'sustom
outperformsstandard by 71%,streamflow by 30%, andcmalloc by 34%. The application-
specific allocator in PDR takes advantage of applicationstedge in two ways. First,
due to the workings of the algorithm, no synchronizationéeaed for memory allocation,
therefore no expensive atomic instructions are imposederctitical path of sequential
allocation. Second, the custom allocator exploits thetfatt memory usage constantly in-
creases over the life of the application. When member obgdd¢tee critical data structures
are no longer needed, their memory is not returned to menaolgplnstead, that memory
is recycled in thread-local vectors, as new instances aitllata structures are guaranteed
to be needed very soon.

Recycling through local vectors involves only the manigiola of one pointer. Recycling
through any generic memory allocator involves at least atfan call and several pointer
manipulations, since the allocator needs to look up pagekbiretadata in order to locate
the memory pool which should host the recycled object.

On the Intel platform, MPCDM witlstreamflow performs on par with, or outperforms,
the custom allocator by up to 2% in MPCDM. On the IBM platfoi®reamflow is within
3% of the performance of theustom allocator.Tcmalloc achieves noticeably lower perfor-
mance than theustom allocator, by 7-16% on the Intel platform and 4—7% on the IBM
platform.

The reason for the difference betwestmeamflow and Tcmalloc is their synchronization
mechanisms. MPCDM is an extremely synchronization intenapplication; point-to-
point synchronization is performed between threads apmately every Lsec. While
both Streamflow and Tcmalloc eliminate additional synchronization overhead on thread-
local operations, when synchronization is need@@amflow uses non-blocking, lock-free
algorithms whileTcmalloc uses locks. Non-blocking, lock-free algorithms allow finer
grain allocations because threads never have to busy-waitooitical resource within the
allocator.

On the IBM system, a 64-bitonpar e&swap operation takes 83, which is 157 cycles
on the 1.65GHz processor. On Intel, a 64dmtpar e&swap takes 137s, or 274 cycles
on a 2.0GHz processor. Sintaalloc relies more on synchronization, it is more suscepti-
ble to the increased cost of atomic operatiagseamflow overcomes this problem due to



its decoupled design of allocation operations.

We also observe that the page managestdamflow improves the performance of the
custom allocator even further, by 3-5% on the Intel platform and by% on the IBM
platform. This result indicates that customized and genaliocators can also work in
synergy, with generic allocators responsible for managange memory blocks and cus-
tomized allocators responsible for managing small objedtsin memory blocks.

In MPCDM, thecustom allocator achieves a speedup of up to 1.69 on the Intel syatein
up to 2.6 on the IBM system. The latter architecture is gdlyenaore scalable due to the
use of dual- core processors, instead of SMT processors aruteascalable implementa-
tion of the SMT microarchitecture within the cores. On thkesthand, we observe that
absolute performance is noticeably higher on the Intefgiat. Part of this difference is
attributed to the quality of the compilers used. We usediorrg of the Intel compiler on
the Intel platform and g++ on the IBM platform.

PDR is characterized by a wider disparity between allosatoan MPCDM. On the Intel
system, thatandard allocator exhibits poor sequential performance (more #@# slower
thancustom) and the worst scalability, achieving a maximum speedup®férsus a max-
imum speedup of 2.5 achieved withstom. Streamflow achieves a maximum speedup of
2.0, while its sequential performance is 30% lower thandifiatistom. Tcmalloc performs
within 34% ofcustom with a single thread, and achieves a 2.0 speedup with up t@8dk.
Thecustom allocator scales well because it avoids synchronizatitwgather. This is pos-
sible becauseustom is implemented with knowledge of the algorithm’s behavkasrther,
the code otustom can be inlined and optimized with the rest of the applicatwinile call-
ing the external generic allocators inevitably includesction call overheads and makes
inlining harder, even if the generic allocators are contpttegether with the applications.
Finally, as explained earlietustom uses an application-specific zero-cost recycling policy
which avoids entirely the overhead of returning and retnigsmemory back to and from
the allocator via sequences méw anddel et e calls. Objects are recycled with a single
pointer bump. The overhead of function calls and pointeefdeencing negatively affects
the performance of generic allocators, which have to recgeéry object through a call to
del et e and a subsequent call tew.

Once again, we observe that merging thstom allocator with the page block and large
object manager istreamflow, yields performance improvements, which reach up to 17%
on the Intel platform. Theustom allocator benefits from the page block caching capa-
bilities of streamflow. We have verified with experiments that the page block mamiage
streamflow reduces the latency of both tlastom allocator and the generigtreamflow
small object allocator via a drastic reduction of minor pégéts and TLB misses.

The trends observed with PDR on the IBM system are mostlyiaira the trends observed
on the Intel system. We only outline the most important ddfeces. The IBM system
again exhibits better scalability than the Intel systerhjadng speedups of 3.0-4.0 (versus



1.7-2.5 on the Intel system), due to the inherently bettehiactural scalability of the
multicore and SMT-core design of the IBM Power5. The exeessbst of unnecessary
synchronization hurts the performanceaafalloc beyond 4 threads, rendering it inferior to
streamflow. The gain from merging Streamflow’s page manager withctlsom allocator
is wider than on the Intel system, giving rise to up to 27%édygperformance than page
management directly from Linux.

Conclusions

This paper explored the performance and productivity iogtions of using generic multi-

threaded memory allocators for parallel mesh generatide€on emerging multiproces-
sors. We have investigated the merits and disadvantagsesof generic memory allocators
in the context of three applications with challenging andipalarly demanding memory

allocation patterns by providing a qualitative and quatitie comparison of custom and
generic allocators. Our quantitative comparison used3&&I' and multicore-based mul-

tiprocessors, and three real applications which are hedependent on dynamically allo-
cated and managed data structures, producing finite elenesit sizes in the order of tens
of millions of elements each.

The main findings of this paper are summarized as follows:

e Although custom memory allocators achieve on average teegaeformance in mesh
generation codes, generic multithreaded memory allosatesigned simultaneously
for fast locality-aware sequential allocation, and sdalatultithreaded allocation come
very close to and occasionally outperform custom allosat@eneric allocators also
have negligible deployment costs.

e Generic multithreaded allocators are efficient, only ifthdapt well to both sequential
and parallel object allocation/deallocation patternsr f@sults stress the fact that se-
guential optimizations in a multithreaded memory allocatie critical for the overall
performance of adaptive and irregular applications. Incéese of parallel mesh gener-
ation, sequential optimizations in the allocator can imprperformance by as much as
a 70%.

e Generic and custom allocators can be used in synergy. Welhalte generic page
block manager to support both custom and generic allogatgrproviding user-level
caching and recycling of page blocks for both small and latgjects, using a unified
strategy. We show that using a page block manager to suppsidra allocators, we
achieve substantial performance improvement on multied and multicore proces-
sors, by reducing TLB misses and minor page faults.
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