
Three-Dimensional Delaunay Refinement for Multi-Core
Processors ∗

Andrey N. Chernikov
Department of Computer Science

College of William and Mary
Williamsburg, VA 23185, USA

ancher@cs.wm.edu

Nikos P. Chrisochoides
Department of Computer Science

College of William and Mary
Williamsburg, VA 23185, USA

nikos@cs.wm.edu

ABSTRACT
We develop the first ever fully functional three-dimensional
guaranteed quality parallel graded Delaunay mesh genera-
tor. First, we prove a criterion and a sufficient condition
of Delaunay-independence of Steiner points in three dimen-
sions. Based on these results, we decompose the iteration
space of the sequential Delaunay refinement algorithm by
selecting independent subsets from the set of the candidate
Steiner points without resorting to rollbacks. We use an oc-
tree which overlaps the mesh for a coarse-grained decompo-
sition of the set of candidate Steiner points based on their
location. We partition the worklist containing poor qual-
ity tetrahedra into independent lists associated with spe-
cific separated leaves of the octree. Finally, we describe an
example parallel implementation using a publicly available
state-of-the art sequential Delaunay library (Tetgen). This
work provides a case study for the design of abstractions and
parallel frameworks for the use of complex labor intensive
sequential codes on multicore architectures.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming ; F.2.2 [Theory of Computation]: Analy-
sis of Algorithms and Problem Complexity—Nonnumerical
Algorithms and Problems; I.3.5 [Computing Methodolo-
gies]: Computer Graphics—Computational Geometry and
Object Modeling

General Terms
Algorithms, Performance, Design, Theory

Keywords
Mesh generation, Delaunay triangulation, Multicore Archi-
tectures, Parallel Scientific Computing, COTS Software

∗(Produces the permission block, and copyright informa-
tion). For use with SIG-ALTERNATE.CLS. Supported by
ACM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’08, June 7–12, 2008, Island of Kos, Aegean Sea, Greece.
Copyright 2008 ACM 978-1-60558-158-3/08/06 ...$5.00.

1. INTRODUCTION
The possibilities to accelerate the existing sequential ap-

plications by manufacturing ever faster single-core proces-
sors have approached their physical limits [27]. Our past
expectations of automatic performance gains in sequential
software solely from purchasing newer computers do not hold
any longer. With the development of multicore processors
it has become imperative to write multithreaded parallel
codes. However, for many highly complex codes (like mesh
generation) used in diverse application areas, the sequential
software is constantly under development to accommodate
the functionality requirements from the wide ranges of ap-
plications and input geometries. In mesh generation the
length of the research and development cycle for industrial
strength codes often takes a hundred or more man-years [1].
Therefore, the rewriting of the sequential codes and their
manual parallelization is extremely expensive. In addition,
due to geometric dependencies, there is no known feasible
approach to the automatic compile-time analysis and paral-
lelization [16, 24].

Delaunay refinement is a popular technique for generat-
ing triangular and tetrahedral meshes for use in the finite
element method and interpolation in various numeric com-
puting areas. Among the reasons of its popularity is the
amenability of the method to rigorous mathematical analy-
sis, which allows to derive guarantees on the quality of the
elements in terms of circumradius-to-shortest edge ratio, the
gradation of the mesh, and the termination of the algorithm.
The problem of parallel Delaunay triangulation of a specified
point set has been solved by Blelloch et al. [3]. Delaunay re-
finement algorithms work by inserting additional (so-called
Steiner) points into an existing mesh to improve the quality
of the elements. In Delaunay mesh refinement, the compu-
tation depends on the input geometry and changes as the
algorithm progresses. The basic operation is the insertion
of a single point which leads to the removal of a poor qual-
ity tetrahedron and of several adjacent tetrahedra from the
mesh and the insertion of several new tetrahedra. The new
tetrahedra may or may not be of poor quality and, hence,
may or may not require further point insertions. It is proven
that the algorithm eventually terminates after having elimi-
nated all poor quality tetrahedra, and in addition the termi-
nation does not depend on the order of processing of poor
quality tetrahedra, even though the structure of the final
meshes may vary [25, 11].

The parallelization of Delaunay mesh refinement codes
can be achieved by inserting multiple points simultaneously.
If the points are “far enough,” then the sets of tetrahedra

influenced by their insertion are sufficiently separated, and
the points can be inserted independently. However, if the
points are “close,” then their insertion needs to be serialized
because of possible violations of the validity of the mesh or
of the Delaunay property. One way to address this prob-
lem is to introduce runtime checks [21, 16, 30] which lead to
the overheads due to locking [2] and to rollbacks [21], as well
as to substantial re-structuring and often re-implementation
of the sequential codes. Another approach is to decompose
the initial geometry [18] which has been done for two di-
mensions but is not easily extendable to three dimensions.
The third approach which we pursue here is to use a judi-
cious way to choose the points for insertion, so that we can
guarantee their independence and thus avoid runtime data
dependencies and overheads.

In this paper we analyze the dependencies between the
inserted points and propose a parallel mesh refinement tech-
nique which requires neither the runtime checks nor the ge-
ometry decomposition. Using a carefully constructed oc-
tree, we split the worklist of the candidate points up into
smaller lists such that the available sequential codes can
be used without modifications to process the sublists. In
other words, we use the application-specific knowledge to
resolve the dependencies between data elements and to open
the field up for automatic scheduling and optimization tech-
niques.

For the selection of Steiner point positions there have been
a number of approaches [14, 25, 10, 17]. In [9] we unified the
previous approaches and defined two types of selection disks,
Type I and Type II, inside the circumscribed spheres of poor
quality tetrahedra. With the use of Type I selection disks a
Delaunay refinement algorithm is guaranteed to terminate
and with the use of Type II selection disks it also always
produces well graded meshes. As one would expect, the
selection disk of Type II is always inside the selection disk
of Type I.

In [8] we proposed a parallel two-dimensional Delaunay
refinement algorithm which constructs uniform meshes, i.e.,
meshes with elements of approximately the same size. How-
ever, many applications require that the meshes be graded,
i.e., have smaller elements in the regions of interest and
larger elements everywhere else. In [7] we developed an
algorithm for the construction of graded two-dimensional
meshes.

In the current paper we present a three-dimensional par-
allel graded Delaunay refinement algorithm. We solve the
following problems:

• We resolve the dependencies among the Steiner points
and decompose the iteration space of mesh refinement
by selecting subsets of candidate points that are guar-
anteed to be independent in three-dimensional geome-
tries.
• Our algorithm is independent of the specific positions

of Steiner points, as long as they are inserted inside the
selection spheres of poor quality tetrahedra. There-
fore, any problem-specific (optimization-based) approach
for the selection of points can be accommodated.
• Our parallel algorithm uses a sequential Delaunay re-

finement algorithm with few modifications as a sub-
routine. Our changes in the code only touch the pa-
rameters of the subroutines and the decomposition of
the worklist. We believe that through a joint effort
with the developers of sequential mesh generators these

parts of the code can be represented as higher level ab-
stractions which will allow to make the development of
sequential software transparent to the parallel frame-
works for multi-core processors.

2. DELAUNAY MESHING BACKGROUND
The input to our algorithm is domain Ω described by a

Planar Linear Complex (PLC) [25]. A PLC X consists of a
set of vertices, a set of straight line segments, and a set of
planar facets. Each element of X is considered constrained
and must be preserved during the construction of the mesh,
although it can be subdivided into smaller elements. The
vertices of X must be a subset of the final set of vertices in
the mesh.

Let the mesh MX for the given PLC X consist of a set
V = {pi} of vertices and a set T = {τi} of tetrahedra which
connect vertices from V . We will denote the triangle with
vertices pu, pv, and pw as △ (pupvpw) and the tetrahedron
with vertices pk, pl, pm, and pn as τ (pkplpmpn). We will
use the symbol e (pipj) to represent the edge of the mesh
which connects points pi and pj , and the symbol L (pipj) to
represent the straight line segment connecting points which
are not necessarily part of the mesh.

Delaunay refinement in both two and three dimensions im-
proves the circumradius-to-shortest edge ratio of elements.
Unfortunately, in three dimensions tetrahedra with small
dihedral angles called slivers can survive. Recently, an algo-
rithm was developed for the construction of sliverless meshes
by weighted Delaunay refinement [6]. However, it can of-
fer only a very small angle guarantee made possible by the
weight pumping method. Below we will focus only on the
standard (unweighted) Delaunay refinement algorithm. Al-
though slivers can impose a problem for some numerical
methods, it has been shown in [20] that bounded circumradius-
to-shortest edge ratio of mesh elements is sufficient to ob-
tain optimal convergence rates for some other methods like
the solution of Poisson equation using the control volume
method.

Let us call the open disk corresponding to a triangle’s cir-
cumscribed circle or to a tetrahedron’s circumscribed sphere
its circumdisk. We will use symbols© (t) and r (t) to repre-
sent the circumdisk and the circumradius of t, respectively.
A mesh is said to satisfy the Delaunay property if the cir-
cumdisk of every element does not contain any of the mesh
vertices [13].

Traditional Delaunay mesh generation algorithms start
with the construction of the initial mesh, which conforms
to X , and then refine this mesh until the element quality
constraints are met. Here we focus on parallelizing the De-
launay refinement stage, which is the most memory- and
computation-expensive [8]. The general idea of Delaunay
refinement is to insert additional (Steiner) points inside the
circumdisks of poor quality elements, which causes these el-
ements to be destroyed, until they are gradually eliminated
and replaced by better quality elements.

We will extensively use the notion of cavity [15] which is
the set of elements in the mesh whose circumdisks include a
given point p. We will denote CM (p) to be the cavity of p
with respect to meshM and ∂CM (p) to be the set of bound-
ary triangles of the cavity, i.e., the triangles which belong to
only one tetrahedron in CM (p). When M is clear from the
context, we will omit the index. For our analysis, we will
use the Bowyer-Watson (B-W) point insertion algorithm [4,

p
m

l
p

p
i

p
k

i
p" i

p’

Figure 1: Encroachment in three dimensions.

29], which can be written shortly as follows:

V n+1 ← V n ∪ {p},
T n+1 ← T n \ CMn (p) ∪ {(pξ) | ξ ∈ ∂CMn (p)},

(1)

where ξ is a three-dimensional triangle, whileMn = (V n, T n)
and Mn+1 = (V n+1, T n+1) represent the mesh before and
after the insertion of p, respectively. The set of newly cre-
ated elements forms a ball [15] of point p, denoted B (p),
which is the set of elements in the mesh that are incident
upon p.

In order to avoid the creation of skinny elements close
to the constrained segments and faces, sequential Delaunay
algorithms observe special encroachment rules [25]. In par-
ticular, if a Steiner point p is considered for insertion but it
lies within the open equatorial disk of a constrained subfacet
f , p is not inserted but the circumcenter of f is inserted in-
stead. Similarly, if p is inside the open diametral circle of
a constrained subsegment s, then the midpoint of s is in-
serted instead. Consider the example in Figure 1. The new
point pi is inside the three-dimensional equatorial disk of
a constrained face △ (pkplpm). In this case, pi is rejected
and the algorithm attempts to insert the circumcenter p′

i of
△ (pkplpm). If p′

i does not encroach upon any constrained
segments, it is inserted into the mesh. If, however, it en-
croaches upon a constrained segment, which is e (pkpl) in
our example, p′

i is also rejected and the midpoint p′′
i of the

constrained edge is inserted.

3. POINT DELAUNAY-INDEPENDENCE
In the context of mesh refinement by edge subdivision,

Oliker and Biswas [22] introduced an independence condi-
tion via coloring. They say that “two triangles have differ-
ent colors if they share an edge or a vertex.” In the case of
Delaunay refinement, one needs to consider more complex
relations that involve cavities.

Definition 1. Points pi and pj are Delaunay-independent
with respect to mesh Mn = (V n, T n) if their concurrent in-
sertion yields the conformal Delaunay meshMn+1 = (V n ∪
{pi, pj}, T

n+1). Otherwise, pi and pj are Delaunay-conflicting.

If a candidate Steiner point pi encroaches upon a con-
strained face, let p′

i be the circumcenter of this face, and if
pi or p′

i encroach upon a constrained segment, let p′′
i be the

midpoint of this segment (similarly for pj).

Definition 2. Points pi and pj are strongly Delaunay-
independent with respect to mesh Mn iff any pair of points
in {pi, p

′
i, p

′′
i } × {pj , p

′
j , p

′′
j } are Delaunay-independent with

respect to Mn.

For practical purposes it is not enough to have the defini-
tions of Delaunay-independent points; we need a means to
verify whether two points are Delaunay-independent with-
out actually inserting them into the mesh. Below we prove
a necessary and sufficient condition (criterion).

3.1 Delaunay-Independence Criterion

Theorem 1. Points pi and pj are Delaunay-independent
with respect to mesh Mn iff both (2) and (3) hold:

CMn (pi) ∩ CMn (pj) = ∅, (2)

∀ξ ∈ ∂CMn (pi) ∩ ∂CMn (pj) : pi /∈ © (τ (pjξ)) . (3)

Proof. First,Mn+1 = (V n∪{pi, pj}, T
n+1) is conformal

iff (2) holds. Indeed, if (2) holds, then considering (1), the
concurrent retriangulation of CMn (pi) and CMn (pj) will not
yield overlapping triangles, and the mesh will be conformal.
Conversely, if (2) does not hold, the newly created elements
will intersect, andMn+1 will not be conformal.

Now, we will show that Mn+1 is Delaunay iff (3) holds.
The Delaunay Lemma [15] states that iff the empty circum-
disk criterion holds for every pair of adjacent tetrahedra,
then the tetrahedralization is globally Delaunay. Disregard-
ing the symmetric cases, there are three types of pairs of
adjacent tetrahedra τr and τs, where τr ∈ BMn+1 (pi), that
will be affected:

(i) τs ∈ BMn+1 (pi),

(ii) τs ∈ T n+1 \ BMn+1 (pi) \ BMn+1 (pj), and

(iii) τs ∈ BMn+1 (pj).

The sequential Delaunay refinement algorithm guarantees
that τr and τs will be locally Delaunay in the first two cases.
In addition, condition (3) ensures that they will be locally
Delaunay in the third case. Therefore, the mesh will be
globally Delaunay. Conversely, if (3) does not hold, the
tetrahedra τ (piξ) and τ (pjξ) will not be locally Delaunay,
and the mesh will not be globally Delaunay.

Corollary 1. From Theorem 1 it follows that if (2)
holds and

∂CMn (pi) ∩ ∂CMn (pj) = ∅, (4)

then pi and pj are Delaunay-independent.

3.2 A Sufficient Condition
Let the reflection of disk © (△ (pkplpm)) about the edge

e (pkpl) be the disk©′

e(pkpl)
(△ (pkplpm)) that has the same

radius, whose circle passes through points pk and pl, and
whose center lies on the other side of edge e (pkpl) from
point pm, see Figure 2.

In [8] we proved the following two-dimensional result:

Lemma 1. For any point pi inside the region

© (△ (pkplpm)) \©′

e(pkpl)
(△ (pkplpm)) ,

see Figure 2, the following inequality holds:

r (△ (pkplpi)) < r (△ (pkplpm)) .

l
p

p
k

p
l

p
k

p
i

p
i

p
m

p
o"n

p
m

Φ

©′
ξ
(τ (pmξ))

© (τ (piξ))© (τ (pmξ))

ξ

Figure 3: A three dimensional disk and its reflection cut by a plane.

p
i

u v
o"o o’

p

p

p

k

l

m

Figure 2: The solid circle corresponds to
© (△ (pkplpm)) with center in point o, and the
dashed circle corresponds to ©′

e(pkpl)
(△ (pkplpm))

with center in point o′. Point o′′ is the center of
the variable-radius disk © (△ (pipkpl)), whose circle
passes through pk and pl. We prove that for any
point pi inside the shaded region, r (△ (pkplpi)) <
r (△ (pkplpm)).

Similar to the two-dimensional case, let the reflection of
disk © (τ (pmpkplpn)) about the face ξ = △ (pkplpn) be the
disk ©′

ξ (τ (pmξ)) that has the same radius, whose sphere
passes through the circle of © (ξ), and whose center lies on
the other side of ξ from point pm. The following lemma
extends Lemma 1 to three dimensions.

Lemma 2. For any point pi inside the region

© (τ (pmξ)) \©′
ξ (τ (pmξ)) ,

where ξ = △ (pkplpn), the following inequality holds:

r (τ (piξ)) < r (τ (pmξ)) .

Proof. We reduce the three-dimensional case to the two-

dimensional case by the following construction (see Figure 3).
Draw an arbitrary diameter L (p̄kp̄l) of disk© (ξ). Then let
Φ be the plane which passes through L (p̄kp̄l) and is perpen-
dicular to the plane containing ξ.

Let © (p̄kp̄lp̄i) be the intersection of Φ with © (τ (piξ))
such that p̄i ∈ Φ is obtained by moving pi along the surface
of the sphere of© (τ (piξ)) in the plane perpendicular to Φ.

Let© (p̄kp̄lp̄m) be the intersection of Φ with© (τ (pmξ))
such that p̄m ∈ Φ is obtained by moving pm along the surface
of the sphere of© (τ (piξ)) in the plane perpendicular to Φ.

Also, let ō” be the center of the disk © (τ (pmξ)). Note
that ō” ∈ Φ because L (p̄kp̄l) is a diameter of © (ξ).

By construction, since © (p̄ip̄kp̄l) is a two-dimensional
equatorial disk of the three-dimensional disk© (τ (piξ)), we
have:

r (τ (piξ)) = r (△ (p̄ip̄kp̄l)) , (5)

and, since © (p̄mp̄kp̄l) is a two-dimensional equatorial disk
of the three-dimensional disk © (τ (pmξ)), we have:

r (τ (pmξ)) = r (△ (p̄mp̄kp̄l)) . (6)

Now we can see that the arrangement on the plane Φ is
similar to the two-dimensional arrangement in Figure 2 with
each point p in two dimensions corresponding to point p̄ in
the plane Φ. According to the two-dimensional result of
Lemma 1,

r (△ (p̄ip̄kp̄l)) < r (△ (p̄mp̄kp̄l)) . (7)

Combining inequality (7) with equalities (5) and (6), we
conclude the proof.

Lemma 3. Let τ (pmξ) ∈ C (pi) and τ (prξ) /∈ C (pi), where
ξ = △ (pkplpn) ∈ ∂C (pi). Then

r (τ (piξ)) < max{r (τ (pmξ)) , r (τ (prξ))}.

p
k

p
n

p
l

p
i

p

p

r

m

©′
ξ
(τ (pmξ))

© (τ (prξ))

© (τ (pmξ))

ξ

Figure 4: A face ξ at the boundary of the cavity of a Steiner point pi, first case.

Proof. The conditions τ (pmξ) ∈ C (pi) and τ (prξ) /∈
C (pi) imply that pi lies inside the region Ψ =© (τ (pmξ)) \
© (τ (prξ)). There are two cases:

(i) If r (τ (pmξ)) > r (τ (prξ)), see Figure 4, then

Ψ ⊂
`

© (τ (pmξ)) \©′
ξ (τ (pmξ))

´

,

and, according to Lemma 2, r (τ (piξ)) < r (τ (pmξ)).

(ii) If r (τ (pmξ)) ≤ r (τ (prξ)), see Figure 5, then

Ψ ⊂
`

©′
ξ (τ (prξ)) \© (τ (prξ))

´

and, by Lemma 2, r (τ (piξ)) < r (τ (prξ)).

Theorem 2. Points pi and pj are Delaunay-independent
if there exists a subsegment s of segment L (pipj) such that
all tetrahedron circumdisks which intersect s have diameter
less than or equal to the length of s, i.e.,

∃s ⊆ L (pipj) : ∀τ ∈ T : s ∩© (τ) 6= ∅ =⇒ 2r (τ) ≤ |s|,
(8)

where |s| is the length of s.

Proof. First, condition (8) implies that C (pi)∩C (pj) =
∅. Indeed, if there had been a tetrahedron circumdisk which
included both pi and pj , then the diameter of this circumdisk
would be greater than the length of L (pipj) which would
contradict (8).

Now, there are two possibilities:

(i) If ∂C (pi) ∩ ∂C (pj) = ∅, then, by Corollary 1, pi and
pj are Delaunay-independent.

(ii) Otherwise, let ∂C (pi)∩∂C (pj) 6= ∅ and ξ = △ (pkplpn)
be an arbitrary face in ∂C (pi) ∩ ∂C (pj), such that
τ (prξ) ∈ C (pi) and τ (pmξ) ∈ C (pj). We are going
to prove that pi /∈ © (τ (pjξ)) and, thus, pi and pj

are Delaunay-independent by Theorem 1. The proof

is by contradiction. Suppose condition (8) holds and
pi ∈ © (τ (pjξ)). There are two cases:

(ii-a) If r (τ (pmξ)) > r (τ (prξ)), see Figure 6, then
from Lemma 3 it follows that

r (τ (pjξ)) < r (τ (pmξ)) . (9)

In addition, the assumption that pi ∈ © (τ (pjξ))
implies that

|L (pipj)| < 2r (τ (pjξ)) . (10)

From (9) and (10) we conclude that the following
inequality holds:

|L (pipj)| < 2r (τ (pmξ)) . (11)

Due to (11) and the assumption that (8) holds as
well as the fact that |s| ≤ |L (pipj)|, we conclude
that s cannot intersect © (τ (pmξ)). If pt is the
point of intersection of L (pipj) with the bound-
ary of © (τ (pmξ)), then s is restricted to be the
subsegment of L (pipt) and

|s| ≤ |L (pipt)|. (12)

From the assumptions that pi ∈ © (τ (pjξ)) and
pi /∈ © (τ (pmξ)), it follows that pi has to lie in
the region © (τ (pjξ)) \ © (τ (pmξ)) and the fol-
lowing two inequalities hold:

s ∩© (τ (prξ)) 6= ∅ (13)

and

|L (pipt)| < 2r (τ (prξ)) . (14)

Inequalities (12), (13), and (14) together imply
that the condition (8) does not hold and we have
come to a contradiction.

p
k

p
n

p
l

p
r

p
m

p
i

© (τ (prξ))

© (τ (pmξ))
©′

ξ
(τ (prξ))

ξ

Figure 5: A face ξ at the boundary of the cavity of a Steiner point pi, second case.

(ii-b) If r (τ (pmξ)) ≤ r (τ (prξ)), see Figure 7, then
from Lemma 3 it follows that r (τ (pjξ)) < r (τ (prξ))
and considering that

|s| ≤ |L (pipj)| < 2r (τ (pjξ)) < 2r (τ (prξ))

we conclude that s cannot intersect © (τ (prξ)).
This limits s to lie within the subsegment L (pjpt),
where pt is the point of intersection of L (pipj)
with the boundary of © (τ (prξ)); therefore,

|s| ≤ |L (pjpt)|. (15)

The subsegment L (pjpt) lies completely inside
the region

© (τ (pjξ)) \© (τ (prξ))

which in turn is completely inside © (τ (pmξ)),
hence the following two inequalities hold:

s ∩© (τ (pmξ)) 6= ∅ (16)

and

|L (pjpt)| < 2r (τ (pmξ)) . (17)

Inequalities (15), (16), and (17) together imply
that the condition (8) does not hold and we have
come to a contradiction.

4. OCTREE CONSTRUCTION
Theorem 2 provides a condition which allows to construct

buffer zones between the regions of refinement. Indeed, if,
for given two regions Ri, Rj ⊂ R

3, any line segment L (pipj)
with pi ∈ Ri and pj ∈ Rj intersects some region Rk ⊂ R

3

(Rk ∩ Ri = ∅, Rk ∩ Rj = ∅) such that |L (pipj) ∩ Rk| ≥ w
for some w > 0, and all tetrahedron circumdisks intersecting
Rk have radius less than w/2, then condition (8) holds for pi

and pj . Then all Steiner points in Ri can be inserted concur-
rently with all Steiner points in Rj . This is the idea behind
the use of an octree in our algorithm. For each leaf, we keep
the list of poor quality tetrahedra whose Steiner points fall
inside the square of this leaf. When a leaf is scheduled for
refinement (becomes active), only the corresponding Steiner
points can be inserted. The carefully chosen leaves of the
octree which surround the active leaf Li work as the buffer
zone. The buffer leaves cannot become active simultaneously
with Li, although the changes caused by the refinement of
Li can propagate to its buffer leaves but no further. There-
fore, Li can be refined concurrently with any other leaf in
the octree which is not in the buffer zone of Li.

Callahan and Kosaraju [5] developed a binary tree data
structure for constructing well-separated pair decomposi-
tions of points, which was motivated by an application in
n-body simulations. This data structure is based on a fair
split tree of a point set which associates a leaf with each of
the points. The construction of the octree which we describe
below also uses a notion of separated regions. However, in
the mesh generation context, the separation is based on the
size and the shape of the tetrahedra in the underlying mesh.

De Cougny, Shephard, and Ozturan [12] use an underlying
octree to aid in parallel three-dimensional mesh generation.
After the generation of the octree and template meshing of
the interior octants, their algorithm connects a given surface
triangulation to the interior octants using face removal. The
face removal procedure eliminates problems due to the small
distance between the interior quadrants and boundary faces,
by defining “an entity too close to the boundary triangula-
tion” and “using the distance of about one-half the octant
edge length as the minimum” [12]. We explore a somewhat
similar question in the context of Delaunay refinement and
derive precise distances that are necessary between the inte-
riors and the boundaries of concurrently refined subdomains.

Löhner and Cebral [19] developed a parallel advancing
front scheme. They use an octree to delimit the zones where

p
j

p
k

p
n

p
l

p
i

p
t

p

p

r

m

s

© (τ (prξ))

© (τ (pjξ))
© (τ (pmξ))

ξ

Figure 6: A face shared by the boundaries of cavities of two Steiner points, one point is inside the circumdisk
created by the second point, first case.

elements can be introduced concurrently and set the edge
length of the smallest octree box to be of the order of 20 to
50 times the specified element size. They implement a “shift
and regrid” technique with the shift distance determined by
min(0.5smin, 2.0dmin), where smin is the minimum box size
in which elements are to be generated, and dmin is the min-
imum element size in the active front. These distances are
likely to work well in the case of advancing front meshing,
when there is a clear distinction between triangulated and
empty areas, however, Delaunay refinement, in addition to
maintaining a mesh which at all times covers the entire do-
main, also requires that all triangle circumcenters be empty
of mesh points.

Let Λx = {Left ,Right}, Λy = {Top,Bottom}, and Λz =
{Back ,Front} be the possible directions of face-adjacent leaves
of an octree.

Definition 3. Let the α-neighborhood Nα (L) of an oc-
tree leaf L (α ∈ Λx∪Λy ∪Λz) be the set of octree leaves that
share a face with L and are located in the α direction of L.

Definition 4. Let the set of leaves

BUF (L) =
S

α∈Λx
Nα (L)∪

S

β∈Λy
{Nβ (L′) | L′ ∈ Nα (L)}∪

S

γ∈Λz
{Nγ (L′′) | L′′ ∈ {Nβ (L′) | L′ ∈ Nα (L)}}

under the condition

∀L′ ∈ BUF (L) , ∀τ ∈ T : © (τ)∩L′ 6= ∅ =⇒ r (τ) <
1

6
ℓ

`

L′
´

,

(18)
be called a buffer zone of leaf L with respect to mesh M,
where ℓ (L′) is the length of the edge of cube L′.

Definition 5. Let two regions Ri ⊂ R
3 and Rj ⊂ R

3

be called Delaunay-separated with respect to mesh M iff
any two arbitrary points pi ∈ Ri and pj ∈ Rj are strongly
Delaunay-independent.

Figure 8: The buffer zone of an octree leaf L. The
leaf L is the solid white box in the center. The trans-
parent boxes around it is BUF (L).

Theorem 3. If Li and Lj are octree leaves, i 6= j, and
Lj /∈ BUF (Li), then Li and Lj are Delaunay-separated.

Proof. (Sketch) We start by proving that, for an arbi-
trary pair of points pi ∈ Li and pj ∈ Lj /∈ BUF (Li), pi and
pj are Delaunay-independent. To do that, we enumerate all
possible configurations of the leaves in BUF (Li), up to sym-
metry, and prove that in all cases there exists a sequence of

p
k

p
r

p
mp

j
p
i

p
l

p
n

p
t

s

© (τ (prξ))

© (τ (pjξ))

© (τ (pmξ))

ξ

Figure 7: A face shared by the boundaries of cavities of two Steiner points, one point is inside the circumdisk
created by the second point, second case.

leaves Lk1
, . . . , Lkb

∈ BUF (Li) and w > 0 such that

˛

˛

˛

˛

˛

L (pipj) ∩
b

[

m=1

Lkm

˛

˛

˛

˛

˛

≥ w,

while

∀τ ∈ T n : © (τ) ∩
b

[

m=1

Lkm 6= ∅ =⇒ r (τ) <
1

6
w,

and, thus, the condition of Theorem 2 is satisfied.
Then we extend the proof to show that any pair of points

from {pi, p
′
i, p

′′
i }×{pj , p

′
j , p

′′
j } are Delaunay-independent since

the encroachment can only lead to the insertion of a point
at distance at most 2w from the original point. Therefore,
even with double encroachment by both points, the con-
dition of Theorem 2 can still be satisfied, and pi and pj

are strongly Delaunay-independent; hence, Li and Lj are
Delaunay-separated.

4.1 Implementation and Evaluation
For the implementation of our parallel Delaunay refine-

ment algorithm we were able to utilize the serial Delaunay
refinement code realized in Tetgen [26]. We consider this
as a major accomplishment towards the goal of separat-
ing the parallel and the sequential design issues in paral-
lel mesh generation. Indeed, Tetgen consists of about 33
thousand lines of highly optimized C++ code which took
its author (Hang Si) several years to write. In addition,
the implementation is based on a large number of theoreti-
cal and algorithmic results which were published during the
last several decades and keep being introduced. Therefore,
it is imperative that the development of the sequential part
of the software be separated from the parallel part. The
idea of separating the components of complex software sys-
tems for better maintainability is also used in the design

S
er

ia
l D

el
au

na
y

R
ef

in
em

en
t

Coarse Grain Scheduling

S
er

ia
l D

el
au

na
y

R
ef

in
em

en
t

Selection
Point

Scheduling
Element

Selection
Point

Scheduling
Element

Figure 9: The diagram of the design of our parallel
Delaunay refinement software.

of web-services [28]. Tightly coupled parallel mesh genera-
tion [21] has been shown to perform poorly on the grid due
to intensive communication. The method presented here is
partially coupled, and although the communication between
the subproblems does not lead to high overheads on multi-
core systems, its performance remains to be evaluated in the
distributed (web-service based) environments.

Figure 9 presents a high level diagram of our software de-
sign. The blocks marked “Serial Delaunay Refinement” rep-
resent P instances of sequential Delaunay refinement code
which is Tetgen in our implementation, but could be an-
other code as well, e.g., Pyramid, Tetmesh, or Gridgen. The
“Element Scheduling” boxes represent the management of
poor quality element queues by the sequential code. In our
implementation, we split the Tetgen worklist to create a
separate queue for each of the leaves of the octree. We
schedule only one leaf at a time for refinement by a single
thread, so that each thread pops from and pushes into a sep-
arate poor element queue. The “Point Selection” box is the
abstraction for choosing a particular strategy for inserting

Figure 10: A wireframe model of a flying bat.

points inside the circumdisks of a poor quality elements. As
we have shown in [9], sequential Delaunay refinement algo-
rithms have the flexibility to choose Steiner points from the
regions inside the circumdisk of a poor quality tetrahedron
which we call the selection disks. The box marked “Coarse
Grained Scheduling” represents the construction of the oc-
tree and the scheduling of leaves for the refinement. The
leaves with larger volumes have higher refinement priorities
than the leaves with smaller volumes, and the leaves of the
same size are processed in the first-in-first-out order. This
strategy is designed to achieve maximal concurrency as early
as possible in the progress of the algorithm without intro-
ducing large overheads. The development of more efficient
scheduling algorithms is the topic of our future research.

Figure 10 shows a wireframe model of a flying bat used
in the simulation and visualization of air flow around bat
wings [23]. The modeling is performed by constructing a
large box containing the bat, see Figure 11. A tetrahedral
mesh is constructed in the interior of the box, such that
the face ahead of the bat is considered the inflow, the face
behind is the outflow, and the other faces are paired for
the use of periodic boundary conditions. The mesh is used
as input to the spectral/hp element solver Nektar which
solves the incompressible Navier-Stokes equations in arbi-
trary Lagrangian-Eulerian formulation. The most interest-
ing physical phenomena like high vorticity happen in the
area directly adjacent to the bat and in the trail just behind
it. That is why these areas require a more refined mesh to
capture their details. We defined a second box of parame-
terizable size inside the large box to specify the area of fine
refinement, see Figure 11.

We ran our experiments on the SciClone Cluster at the
College of William and Mary and used one of its “Vortex”
nodes which is a quad-cpu Sun Fire V440 server with 1.28
GHz clock and 8 GB of main memory. Our implementation
first constructs an octree with leaf size reflecting the local
values of the grading function. Then a tetrahedral mesh
is constructed and sequentially refined until inequality (18)
holds. Finally, the mesh is refined in parallel until all ele-
ments satisfy the requested shape and size.

Table 1 shows the breakdown of the total time spent by
the PGDR code on the refinement of the unit cube for dif-
ferent maximum octree depths d. For the experiments with
the unit cube we specified a uniform grading function; there-
fore, all leaves in the resulting octree have the same depth,
and the number of leaves is 8d−1. These data reflect the
tradeoff between the available concurrency and the sequen-
tial overheads in our approach: in order to increase the con-
currency (number of octree leaves) we need to increase the
sequential preprocessing time. However, as we did in our
two-dimensional implementation [7], the construction of the
tree and the initial mesh refinement can also be parallelized;

Table 2: The total time (in seconds) spent by the
three-dimensional PGDR code on refining the mesh
of the bat model: r̄ = 0.25 if (−19.89 < x < 6.50) ∧
(−5.65 < y < 8.05) ∧ (−5.61 < z < 5.61); and r̄ = 0.5
otherwise; 5.8 million tetrahedra.

Number of available compute threads
1 2 3 4

235.2 142.1 120.0 111.2

we are going to address this issue for three dimensions in
the future work. Table 2 summarizes the running times of
our experiments for the bat model with the maximum oc-
tree depth equal to 5. Since the mesh is non-uniform, some
leaves have larger size than the smallest possible leaf (which
corresponds to the maximum depth).

The scalability of our approach is influenced not only by
the sequential overheads, but also by the smoothness of the
user-specified grading function. For example, if the grading
function has a sharp peak at one point of the domain, then
the computation time associated with the corresponding leaf
may dominate the entire running time and, as a result, the
speedup from using multiple cores may be poor to none.
Therefore, the analysis needs to be conducted separately for
different classes of grading functions. For constant grading
functions, for example, one can use a number of optimiza-
tions and simplifying assumptions which allow to improve
the performance.

Our previous experiments with a two-dimensional imple-
mentation and constant grading functions, which result in
uniform meshes, indicate that one can achieve almost lin-
ear speedup in practice on a cluster of up to 121 nodes [8].
Assuming linear mesh refinement time with respect to the
final number of triangles, as well as no sequential scheduling
overheads (since refinement can follow a regular pattern), we
can estimate the theoretical asymptotic speedup in terms of
the number P of Processing Elements (PEs) and the size
N in triangles of the final mesh. From the arrangement
of the PEs in a regular grid, such that each PE is respon-
sible for the refinement of a specific area (square) of the
domain, each PE communicates with a constant number of
PEs that refine the adjacent squares. The total communi-

cation time in this case is O
“

p

N/P
”

. Since the number

of squares is O (P), and the number of triangles required
to satisfy the relation between the upper bound on trian-
gle circumradius and the side length of the square is con-
stant, the sequential preprocessing required to reach con-
currency P takes O (P) time. Assuming the preprocessing
can also be parallelized, the time to reach concurrency k is

O
“

1 +
Pk−1

i=1 1/i
”

, and, therefore, the time to reach concur-

rency P can be reduced to O (log P). Thus, the total parallel

running time is O
“

log P + (N − log P)/P +
p

N/P
”

. For

practical problems N ≫ P , and, therefore, the speedup of
the algorithm is linear with respect to P . The constants,
however, may be non-negligible and will be studied experi-
mentally in our future work.

5. SUMMARY
We presented the the first to our knowledge three-dimensional

parallel Delaunay mesh generator which, compared to the

Figure 11: A nonuniform mesh of the bat inside a box.

Table 1: The breakdown of the time (in seconds) spent by the PGDR code on the refinement of the unit
cube for different maximum octree depths, r̄ = 0.01, 6.4 million tetrahedra.

Maximum
Time measured

Number of available compute threads
octree depth 1 2 3 4

2

Total 245.77 same same same
Octree construction (sequential) 0.00 same same same
Initial refinement (sequential) 0.11 same same same
Parallel refinement (maximum) 245.62 same same same

3

Total 246.52 same same same
Octree construction (sequential) 0.02 same same same
Initial refinement (sequential) 0.69 same same same
Parallel refinement (maximum) 245.78 same same same

4

Total 250.20 145.62 126.67 115.76
Octree construction (sequential) 0.26 same same same
Initial refinement (sequential) 5.24 same same same
Parallel refinement (maximum) 244.61 140.05 121.10 110.19

5

Total 262.36 156.39 121.52 104.08
Octree construction (sequential) 2.74 same same same
Initial refinement (sequential) 42.98 same same same
Parallel refinement (maximum) 216.30 110.34 75.51 58.08

6

Total 761.38 575.26 514.01 483.50
Octree construction (sequential) 24.74 same same same
Initial refinement (sequential) 359.84 same same same
Parallel refinement (maximum) 374.69 190.03 128.59 98.30

previous approaches, benefits from all of the following prop-
erties: (1) offers quality guarantees on the shape of the ele-
ments in terms of circumradius-to-shortest edge ratio (that
are directly inherited from the underlying sequential algo-
rithms and software); (2) offers asymptotic proofs of element
good grading (which are also inherited from the sequential
counterparts); (3) makes it possible to use a user-defined
grading function to control element sizes; (4) makes it pos-
sible to use custom point placement strategies; (5) replaces
the solution of a difficult domain decomposition problem
with an easier data distribution approach without relying
on the speculative execution model [21]; (6) leverages se-
quential algorithms and software for Delaunay mesh refine-
ment; (7) offers more than 50% performance improvement

over the state-of-the-art sequential software, even on work-
stations with just a few hardware cores.

6. ACKNOWLEDGMENTS
We thank George Karniadakis for the bat model. This

work was performed using computational facilities at the
College of William and Mary which were enabled by grants
from Sun Microsystems, the National Science Foundation,
and Virginia’s Commonwealth Technology Research Fund.
This work was supported (in part) by the NSF grant CCS-
0750901 and by the John Simon Guggenheim Foundation.
We thank the anonymous referees for their comments.

7. REFERENCES
[1] http://www.distene.com/en/build/index.html.

Accessed on Jan. 13, 2008.

[2] C. D. Antonopoulos, X. Ding, A. N. Chernikov,
F. Blagojevic, D. S. Nikolopoulos, and N. P.
Chrisochoides. Multigrain parallel Delaunay mesh
generation: Challenges and opportunities for
multithreaded architectures. In Proceedings of the 19th
Annual International Conference on Supercomputing,
pages 367–376, Cambridge, MA, 2005. ACM Press.

[3] G. E. Blelloch, J. Hardwick, G. L. Miller, and
D. Talmor. Design and implementation of a practical
parallel Delaunay algorithm. Algorithmica,
24:243–269, 1999.

[4] A. Bowyer. Computing Dirichlet tesselations.
Computer Journal, 24:162–166, 1981.

[5] P. B. Callahan and S. R. Kosaraju. A decomposition
of multidimensional point sets with applications to
k-nearest-neighbors and n-body potential fields.
Journal of the ACM, 42(1):67–90, 1995.

[6] S.-W. Cheng, T. K. Dey, and T. Ray. Weighted
Delaunay refinement for polyhedra with small angles.
In Proceedings of the 14th International Meshing
Roundtable, pages 325–342, San Diego, CA, Sept.
2005. Springer.

[7] A. N. Chernikov and N. P. Chrisochoides. Generalized
Delaunay mesh refinement: From scalar to parallel. In
Proceedings of the 15th International Meshing
Roundtable, pages 563–580, Birmingham, AL, Sept.
2006. Springer.

[8] A. N. Chernikov and N. P. Chrisochoides. Parallel
guaranteed quality Delaunay uniform mesh
refinement. SIAM Journal on Scientific Computing,
28:1907–1926, 2006.

[9] A. N. Chernikov and N. P. Chrisochoides.
Three-dimensional semi-generalized point placement
method for Delaunay mesh refinement. In Proceedings
of the 16th International Meshing Roundtable, pages
25–44, Seattle, WA, Oct. 2007. Springer.

[10] L. P. Chew. Guaranteed quality mesh generation for
curved surfaces. In Proceedings of the 9th ACM
Symposium on Computational Geometry, pages
274–280, San Diego, CA, 1993.

[11] L. P. Chew. Guaranteed-quality Delaunay meshing in
3D. In Proceedings of the 13th ACM Symposium on
Computational Geometry, pages 391–393, Nice,
France, 1997.

[12] H. L. de Cougny, M. S. Shephard, and C. Ozturan.
Parallel three-dimensional mesh generation.
Computing Systems in Engineering, 5:311–323, 1994.

[13] B. N. Delaunay. Sur la sphere vide. Izvestia Akademia
Nauk SSSR, VII Seria, Otdelenie Mataematicheskii i
Estestvennyka Nauk, 7:793–800, 1934.

[14] W. H. Frey. Selective refinement: A new strategy for
automatic node placement in graded triangular
meshes. International Journal for Numerical Methods
in Engineering, 24(11):2183–2200, 1987.

[15] P.-L. George and H. Borouchaki. Delaunay
Triangulation and Meshing. Application to Finite
Elements. HERMES, 1998.

[16] M. Kulkarni, K. Pingali, B. Walter,
G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions.
SIGPLAN Not., 42(6):211–222, 2007.

[17] X.-Y. Li. Generating well-shaped d-dimensional
Delaunay meshes. Theoretical Computer Science,
296(1):145–165, 2003.

[18] L. Linardakis and N. Chrisochoides. Algorithm 870: A
static geometric medial axis domain decomposition in
2D Euclidean space. ACM Transactions on
Mathematical Software, 34(1):1–28, 2008.

[19] R. Löhner and J. R. Cebral. Parallel advancing front
grid generation. In Proceedings of the 8th
International Meshing Roundtable, pages 67–74, South
Lake Tahoe, CA, 1999.

[20] G. L. Miller, D. Talmor, S.-H. Teng, and
N. Walkington. A Delaunay based numerical method
for three dimensions: Generation, formulation, and
partition. In Proceedings of the 27th Annual ACM
Symposium on Theory of Computing, pages 683–692,
Las Vegas, NV, May 1995.

[21] D. Nave, N. Chrisochoides, and L. P. Chew.
Guaranteed–quality parallel Delaunay refinement for
restricted polyhedral domains. In Proceedings of the
18th ACM Symposium on Computational Geometry,
pages 135–144, Barcelona, Spain, 2002.

[22] L. Oliker and R. Biswas. Parallelization of a dynamic
unstructured application using three leading
paradigms. In Supercomputing ’99: Proceedings of the
1999 ACM/IEEE conference on Supercomputing
(CD-ROM), page 39, New York, NY, USA, 1999.
ACM Press.

[23] I. Pivkin, E. Hueso, R. Weinstein, D. Laidlaw,
S. Swartz, and G. Karniadakis. Simulation and
visualization of air flow around bat wings during
flight. In Proceedings of the International Conference
on Computational Science, pages 689–694, Atlanta,
GA, 2005.

[24] K. Psarris and K. Kyriakopoulos. The impact of data
dependence analysis on compilation and program
parallelization. In Proceedings of the 17th annual
international conference on Supercomputing, pages
205–214, New York, NY, USA, 2003. ACM.

[25] J. R. Shewchuk. Tetrahedral mesh generation by
Delaunay refinement. In Proceedings of the 14th ACM
Symposium on Computational Geometry, pages 86–95,
Minneapolis, MN, 1998.

[26] H. Si. Tetgen version 1.4.1. http://tetgen.berlios.de/.
Accessed on Aug. 3, 2006.

[27] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s Journal,
30(3), Mar. 2005.

[28] R. A. van Engelen and K. Gallivan. The gSOAP
toolkit for web services and peer-to-peer computing
networks. In Proceedings of the 2nd IEEE
International Symposium on Cluster Computing and
the Grid, pages 128–135, Berlin, Germany, May 2002.

[29] D. F. Watson. Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytopes.
Computer Journal, 24:167–172, 1981.

[30] C. Wen and K. Yelick. Compiling sequential programs
for speculative parallelism. In Proceedings of the
International Conference on Parallel and Distributed
Systems, Taiwan, Dec. 1993.

