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• Brain tumor resection relies on brain visualizations to display seriously compromised 
brain shift, which inevitably occurs during the course of the operation, significantly 
degrading the precise alignment between the pre-operative MR data and the intra- 
operative shape of the brain.

• Deep Brain Stimulation (DBS) surgery makes use of stereotactic systems and image 
guidance to accurately place electrode leads, as well as intra-operative imaging to 
surveil the location of the lead and guide the surgery.
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Denoising Drift Chambers in CLAS12 using Convolutional Auto 
Encoders

Charged Particle Reconstruction in CLAS12 using Machine Learning

Future Work: Quantum Machine Learning For
Use Cases from Nuclear Physics and Medical Image Computing

Putting It All Together: Medical and Physical Sciences
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• Tracking takes most of track reconstruction time
• Computationally intensive ( combinatorics)

• Delegate tracking to a machine learning model
• Classify tracks with machine learning
• Fit only those with highest probability of being valid
• 99% accuracy

• Mitigates the cost of track fitting
• Much fewer candidates to examine
• 35% speedup
• $ 5MM/year

• Denoise used Auto Encoder (AE) and then perform tracking with ML
• Denoising with AE maintains samples with higher efficiency
• ~35% more events in normal operation (45nA)
• ~80% more events in 100 nA beam currents

• In the current state (45nA) we get 65% to 82%  more events
• The higher impact expected in the future
• Almost double the output when 100nA is possible

Use machine learning to directly infer physics parameters
•Parameters include momentum, polar and azimuthal angles
•Conventional methods use Hit-Based reconstruction
• Takes about 380-420 ms per event

Using machine learning takes about 4 ms per event
• ~100 times faster than conventional
• Same accuracy

Particle parameters (i.e., momentum, polar and 
azimuthal angle) distribution for negative (top) 
and positive (bottom) charge from traditional Hit 
Based tracking (filled histogram) and ML-inferred 
tracks (black outline).

• Image data encoding on NISQ hardware provides limitations in fidelity
• This can be mitigated with general circuit optimizations and a distributed 

(D-NISQ) methodology
• Quantum Hadamard Edge Detection relies on an exponential number of CNOT operations 

(n+1 circuit) which are highly error-prone and thus reduce fidelity
• The problem can be mitigated with the addition of a linear number of 

ancillary qubits to create a more efficient decrement unitary (2n circuit), 
general circuit optimizations, and the D-NISQ methodology
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G614 (right). There appears to be a larger region of weak 
positive potential near the cleavage site on the S6-G614 
protein compared to the original S5-D614 one.

Broader Impact: From Endovascular treatment of cerebral 
aneurysms to surgical simulation and Drug discovery 

Shows S5-D614 with furin (left), 
and S6-G614 with furin (right).
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