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Abstract 

This paper presents some of our findings on the scalability of parallel 3-dimensional (3D) mesh 

generation on distributed memory machines. The primary objective of this study was to 

evaluate a distributed memory approach for implementing a 3D parallel Delaunay-based 

algorithm that converts images to meshes by leveraging a highly efficient shared memory 

implementation.  The secondary objective was to evaluate the effectiveness of labor (i.e., 

reduce development time) while introducing minimal (if possible) overheads to maintain the 

parallel efficiency of the end-product i.e., distributed implementation.  

The distributed algorithm utilizes two existing and independently developed parallel 

Delaunay-based methods: (1) a tightly-coupled fine-grain method that employs multi-

threading and speculative execution on shared memory cc-NUMA nodes and (2) a loosely-

coupled Delaunay-refinement framework for multi-node platforms. The shared memory 

implementation uses a First-In-First-Out work-sharing scheme for thread scheduling, while the 

distributed memory implementation utilizes the Message Passing Interface (MPI) and the 

Master-Worker (MW) model.   

The findings from the specific MPI-MW implementation we tested suggest that the execution 

on (1) 40 cores not necessary in the same single node is 2.3 times faster than the execution on 

ten cores, (2) the best speedup is 5.4 with 180 cores again the comparison is with the best 

performance on ten cores. A closer look at the performance of distributed memory and shared 

memory implementation forced to execute on a single node (40 cores) suggest that the 

overheads introduced in the MPI-MW implementation are high and renter the MPI-MW 

implementation 4 times slower than the shared memory code using the same number of cores 

on a single-nodes. These findings raise several questions on the potential scalability of a “black 

box” approach, i.e., re-using an efficient code designed to execute efficiently on shared 

memory machines without considering its potential use in a distributed memory setting.  

 

1. Introduction 

Mesh generation and refinement software are crucial for function approximation with Finite 

Element/Volume Methods (FEM) [1, 2]. Sequential mesh generation was used in the mid-80s 

(and, in some cases, still is) to set up and initialize the data structures for parallel large-scale 

approximation codes. The setup phase may cause a significant slowdown in the overall 

performance of FEM software. For instance, a study [3] found that the cost of initializing 

distributed memory parallel iterative linear solvers' data structures was about 30 times higher 

(mainly due to the lack of parallel I/O libraries) than the cost of performing 100 iterations of 

solving a specific (Elliptic) Partial Differential Equation (PDE) using a Semi-Iterative linear 

solver [4]. 
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The issue persisted in the mid-90s despite the availability of effective parallel I/O libraries, and 

we suggested parallel mesh generation as a solution to enhance the performance of the setup 

phase for parallel large-scale field solvers [5,6]. Although the solution solved the I/O problems, 

the setup phase was difficult due to increased software complexity for parallel mesh 

generation. Developing industrial strength mesh generation software is a labor-intensive 

process that takes around 100 person-years. Regarding parallel mesh generation, the software 

complexity increases by an order of magnitude due to managing network and memory 

hierarchies, concurrency, workload balancing due to adaptive mesh refinement, and support 

for power optimizations and heterogeneous architectures. 

 

In the early 2000s, we tackled the issue of software complexity in parallel mesh generation 

codes by separating algorithm correctness from performance portability. This approach is even 

more crucial now with highly heterogeneous High-Performance Computing (HPC) parallel 

platforms. For over 20 years, we've developed a runtime system [7, 8, 9, 10, 11] that uses 

domain-specific abstractions to separate parallel architecture intricacies from algorithms. This 

simplifies the parallel algorithm and implementation and improves the efficiency of parallel 

mesh generation and refinement. Because of this “separation of concerns”, we were also able 

to tackle more complex practical aspects, such as transitioning from 2D to 3D geometries, 

experimenting with different meshing techniques, managing real-time 2D/3D and even 4D 

sensor data like medical images, interacting with CAD systems and solvers, and incorporating 

metric-based anisotropy for local reconnection methods.  

 

We tried to implement the newest parallel image-to-mesh conversion algorithm based on 

distributed memory Delaunay method (presented in [12]) on a parallel runtime system [10, 11]. 

We aimed to evaluate the impact of trade-offs due to the “separation of concerns,” i.e., measure 

the impact of our approach on software complexity and end-user productivity while evaluating 

the actual performance of the end-to-end code, i.e., runtime system plus an application. We 

will report our findings elsewhere, as it is beyond the scope of this paper. However, in the 

process, we stumbled into an interesting issue while analyzing the performance of the earlier 

hand-coded MPI + Threads implementation of the parallel mesh generation algorithm and its 

implementation presented in [12].  In this paper, we present new findings (based on this 

experience) that call for reevaluating our previous notions about the ability to scale parallel 

mesh generation in the exascale era of supercomputers. 

 

We tested extensively the MPI-MW implementation using up to 200 cores for fixed-size 

problems with approximately 47 million elements. The best performance was achieved for 180 

cores (90 MPI ranks with two cores per rank) and it was 5.4 times faster than using 10 cores 

(10 MPI ranks with one core per rank).  Although the speed-up was not linear, we consider this 

result noteworthy. However, it is important to note that the MPI-MW execution on 180 cores 

was more than twice slower than the execution of the shared memory multi-threaded code 

using 40 cores on a single node. While the execution of the shared memory on 40 cores (in a 

single node) is seven times faster than the execution of the MPI-MW on 40 cores using multiple 

nodes. This suggests that the overheads introduced in the multi-threaded code to scale for more 

than one node are quite high (more than 50% of the actual refinement time) and reduce its 

efficiency to about 50% for distributed memory platforms.  

 



Although these findings are specific to the MPI-MW implementation we tasted, they raise 

several questions about the expectations for achieving scalability using this study's “black-

box” approach.  

 

2. Background  

Parallel mesh generation methods decompose the original mesh generation problem into 

smaller subproblems that are solved (i.e., meshed) concurrently [13]. The subproblems can be 

either tightly-coupled [14,15], partially-coupled [16,17], weakly-coupled [18,19], or 

completely decoupled [20,21]. The coupling of the subproblems determines the intensity of 

the communication and the amount/type of synchronization required from the algorithm used 

in each subproblem. In this paper, each subproblem (or subdomain) uses the Delaunay mesh 

generation algorithm. The method follows a two-layered approach: (1) a tightly-coupled 

method presented in [15] and is designed to run efficiently at the cc-NUMA multi-core single-

node, and (2) a partially-coupled method presented in [22], works correctly and efficiently for 

uniform mesh refinement [23] and is designed to run efficiently at the distributed memory 

multi-node platforms.   

 

In [15], we presented a tightly coupled method that relied on optimistic (or speculative 

execution) to explore concurrency for Delaunay-based methods at the cavity2 level. This paper 

briefly refers to it as PODM (Parallel Optimistic Delaunay Method). PODM is set to achieve 

the following objective: generate a high-quality surface and volume mesh by accurately 

representing the (segmented) surface of 3-dimensional (3D) medical images (i.e., biological 

objects). PODM’s implementation on shared memory cc-NUMA machines relies on (1) a task 

execution model [24, 25] where the tasks share the data and use low-level locking mechanisms 

and contention managers and (2) load balancing schemes using multi-threaded 

implementations [26, 27] to enhance parallel performance with minimal overhead. An 

evaluation was conducted on the Pittsburgh Supercomputing Center's Blacklight, a Distributed 

Shared Memory (DSM) machine. The results showed that it had good strong and weak scaling 

efficiency of about 80% for up to 64 and 144 cores, respectively. However, for a larger number 

of cores, PODM suffers from communication overheads caused by many remote memory 

accesses (at the page level partly because of false-sharing due to the idiosyncratic way the 

points/elements are created and inserted by the Delaunay method). As a result, PODM’s 

performance deteriorates for a core count beyond 144 due to network congestion [15].  

 

To further optimize PODM’s communications overheads for many more cores, in [28], we 

attempted to “constrain” the Delaunay method at each core to refine elements allocated in the 

same or nearby pages by using data decomposition (i.e., explore memory affinity) as opposed 

to domain decomposition (i.e., explore geometric affinity). Performance data indicated good 

performance for up to 200 cores for cc-NUMA machines. In our quest to further improve the 

effective use of a higher number of cores, in [29], we considered again DSM cc-NUMA 

machines, but with domain decomposition relying on Parallel Delaunay Refinement (PDR) 

method initially presented in [29], but its distributed memory implementation first presented 

in [12] using MPI –this paper and data presented here improve the earlier PDR MPI-MW 

 
2 The cavity represents the set of elements, edges, and vertices affected by inserting a new point. These elements must 

be modified or refined to maintain the Delaunay property, ensuring that no point lies within the circumsphere of any 

triangle or tetrahedron in the mesh. 



implementation in terms of several communication aspects (see Section 3.2). Throughout this 

paper, we refer to this implementation as the PDR.PODM method. PDR was chosen because 

it uses an efficient parallel point-insertion technique and guarantees the correctness of the 

parallel algorithm (i.e., Delaunay property is maintained everywhere as opposed to other 

methods distributed parallel Delaunay mesh generation methods published in the literature). 

Moreover, given that PODM [15] and PDR preserve internal boundaries for multi-material 

(tissues) [22, 31], the PDR.PODM preserves them, too. The multi-tissue mesh generation is a 

very interesting and practical problem with many (mostly topological) challenges, and it will 

not be addressed here; however, the reader could look into earlier work (and cited publications) 

in [32, 33, 34] in addition to work we presented in [15].  

 

In constant time, the PDR method analyzes the dependencies between the concurrently inserted 

points and determines if they can be inserted independently. This approach reduces network 

congestion by eliminating runtime checks for data dependencies in distant regions of space- 

and memory-wise. PDR uses a spatial decomposition tree to split the list of candidate points 

(to be inserted) into smaller (local) lists that can be processed concurrently. The method starts 

by constructing a coarse background mesh for the parallel refinement step. A trade-off exists 

between the degree of concurrency one could exploit and the overhead for generating the 

background mesh. A potential shortcoming is the method's requirement to have access to sub-

meshes of two layers of adjacent subdomains, i.e., excessive data dependencies and, thus, data 

movement. This leads to large data movements and in the presence of data-intensive (as 

opposed to compute-intensive) like Delaunay meshing that can underline the scalability of the 

method. In addition, the coarse background mesh must be refined enough to ensure sufficient 

(and correct) concurrency for parallel refinement. However, constructing such a dense mesh 

prolongs the low-concurrency part of the computation.  Initially, PODM is used to generate the 

coarse background mesh. PODM concurrently refines each subdomain utilizing a group of 

cores from the DSM cc-NUMA machine within the limits of the coarse decomposition 

dependencies.  

 

In [12], we tried to adapt the PDR.PODM method for distributed memory machines. This was 

because fewer supercomputing centers were using large DSM cc-NUMA machines, and 

distributed memory machines could access more ( >  200) cores. We used Massage Passing 

Interface and Master/Worker (MPI-MW) execution model at the coarse grain level presented 

in [12]. However, a clarification is required: the worker process runs PODM with N-cores 

available to any given MPI rank; in each MPI rank, PODM [15] implements the FIFO work-

sharing model, which is used in this study, too. So, the Master (at the MPI rank level) could be 

thought of as the initialization thread that receives the subdomain to be refined, does the 

packing/unpacking of data, sets up the data for PODM, and then the rest of the PODM threads 

manage the workload as it is described in [15]. In [12], the hope was to optimize 

communication by explicitly managing data movement instead of large cc-NUMA DSM 

machines where the Operating System transparently manages page movement. The data 

reported in [12] indicate about 50% weak scalable efficiency for about 900 cores. We could 

not reproduce all the data in [12].  

 

In our recent effort to port the MPI-MW code on the runtime system [11] for exascale 

machines, we stumbled upon a new data set that raised several interesting questions regarding 



the scalability of the specific MPI-MW-based PDR.PODM method/implementation and 

parallel mesh generation in general. Before we continue with the presentation of the 

performance data, it is worth refreshing some fundamental concepts (understanding) of parallel 

mesh generation (and computing more general) by considering the following remarks:  

• The number of MPI ranks determines the maximum concurrency at the system's coarse-

grain (subdomain) level; of course, with PODM, we could increase this concurrency by 

multiplying it with the concurrency at the medium-grain (cavity) level at some cost due to 

thread interference between communication and refinement modules. It's important to 

understand that even if the workload is evenly distributed, some MPI ranks may be inactive 

because the Master is waiting for other subdomains to be completed (i.e., refined).  

• Increasing the background mesh's resolution and the octree's depth results in a larger 

number of subdomains, which can potentially increase concurrency. However, this also 

means less refinement work is left for the Workers. In addition, there is a clear tradeoff 

between the concurrency level and the data movement to computation ratio. As 

concurrency increases, the ratio also rises, ultimately leading to communication costs 

outweighing the costs of parallel computing. This can be seen from strong speedup analysis 

and might not be apparent in a weak scalability study performed in [12].  

 

3. Performance Evaluation  

At Old Dominion University, we have access to two HPC clusters 

used to evaluate the MPI-MW and PODM codes. The first one, 

Turing:  is a 250-node cluster consisting of Intel(R) Xeon(R) (E5- 

2660, E5-2660 v2, E5-2670 v2, E5-2698 v3, E5-2683 v4) 128 GB 

CPUs ranging between 16 to 32 cores spread among two sockets (2 

NUMA nodes). The second platform, Wahab:  is a 200-node cluster 

that utilizes Intel(R) Xeon(R) Gold 6148 @ 2.4 GHz CPUs of 40 

cores each in two sockets (4 NUMA nodes).  In [12], we utilized the 

Turing cluster but opted for the new Wahab machine for this study. 

For all our experiments, the input image used is the abdominal atlas 

CT obtained from IRCAD Laparoscopic Center [35]. Figure 1 shows 

an example of the mesh created using this input. The input images are decomposed using the 

same uniform octree as in [12]. We conducted experiments using two different data 

decompositions for an octree of depths 3 and 4, resulting in 512 (83) and 4096 (84) subdomains, 

respectively. The results are consistent with the finding in [12] and are briefly summarized 

below.  

 

First, we check the correctness and quality of distributed memory MPI-MW PDR.PODM 

implementation against the shared memory PODM code presented in [15]. There are many 

ways to measure the quality of the mesh; in this work with the quality of the mesh, we refer to 

the quality of each element in the mesh which is measured by the dihedral angle distribution. 

Figure 2 depicts the dihedral angle distribution for PDR.PODM (left) and PODM (right); both 

histograms are almost identical, as expected. In contrast to data reported in [12], some slivers 

(dihedral angles close to 0◦ or 180◦) are found in the mesh; they constitute less than 0.001% of 

the total –in this study, we did not attempt to remove slivers by adjusting the parameters of 

PODM– to the best of our knowledge, still there are no theoretical guarantees to eliminate 

slivers.  PODM uses a heuristic to minimize the number of slivers [15]; sometimes, the 

Figure 1. An example mesh was 
created with the abdominal 
atlas image as input. 



heuristic with the “right” choice of parameters can return tetrahedra with a lower bound at 2o 

[12]. 

 
Figure 2. (Left) Dihedral angle distribution of the final mesh created by the PDR.PODM distributed memory 

implementation on several nodes. (Right) Dihedral angle distribution of the final mesh created by the PODM on a 
single node. The final mesh's total size is approximately 47 million elements. 

In the remaining section, we will analyze the overheads of the parallel MPI-MW PDR.PODM 

implementation and strong scalability metric. In this study, we prefer to use strong scalability 

because in a traditional software pipeline with a field solver [36], a given fixed-size mesh is 

refined to meet certain error complexity, and the final mesh size depends on the application 

and error metrics instead of the number of cores used by the solver and/or end-to-end 

application.   

 

For the strong scaling studies, we kept the size of the mesh generated constant (approximately 

47 million elements). Both overheads and strong scalability are studied for single- and multi-

node platforms with core numbers varying from 10 to 800.  The pre-processing and parallel 

meshing time is negligible compared to distributed memory overheads (e.g., communication 

and idle times). When dealing with larger mesh sizes, the percentage of MPI-MW PDR.PODM 

will continue to follow the same pattern as before. This indicates that they will still take up 

much execution time and be much larger than the 50% reported in [12]. 

 

 
Figure 3. Breakdown of the running time for d=3 (left) and d=4 (center), where each MPI rank utilizes ten threads. 

Breakdown of the running time for d=4, where each MPI rank utilizes one thread (right). The final mesh consists of ≈ 
47mil elements for all runs. 

Figure 3 depicts the performance breakdown for the two different domain decomposition 

configurations using the same method (octree-based decomposition described in [12]) but 

varying the number of subdomains.  The breakdown of the running time consists of four parts: 

(i) the pre-processing time is the time that the master process (i.e., host node) spends on loading 

an image from disk, constructing an octree, creating the coarse background mesh, assigning 

the elements of the coarse mesh to subdomains (partitioning); (ii) the meshing time is the time 

that a process spends on mesh refinement (more precisely, the PODM time of an MPI process); 



(iii) the communication time is the time that a process spends on task requests and data 

movement, i.e., packing and unpacking data; (iv) the idle time is the time that a process waits 

in the waiting list and does not perform any mesh refinement work. Each bar is the sum of the 

time a process spends on each part for all iterations of PDR.PODM algorithm3 will continue 

refinement until termination, which means there should be no more elements to refine. The 

process (worker) requests a subregion in each iteration and refines the submesh inside the 

subdomain.  We calculate the average time of each part for all processes. Other metrics like 

min and max execution time could be used [12]; in this study, we are interested in whether the 

MPI-MW PDR.PODM overheads justify the further development of the method, and thus the 

average analysis will suffice. 

 

It is important to note that there are two key parameters at the parallel mesh generation level 

that can improve parallel efficiency: (i) surface/volume ratio and (ii) concurrency, i.e., the 

number of subdomains that could be refined independently to each other —a small 

surface/volume ratio for a large number of independent subdomains helps to amortize the 

parallel computing costs due to communication and data dependencies of the PDR algorithm.  

On the left side of Figure 3, it is evident that low subdomain numbers (approximately 500) 

result in idle time (in red) dominating the execution time, owing to insufficient concurrency at 

the PDR level. When we move to the center of Figure 3, with eight times more subdomains, 

resulting in a total of around 4000, communication time (in orange) increases substantially (in 

contrast to d = 3) as expected (due to a larger surface/volume ratio). Nonetheless, idle time 

remains present and significant, even though we utilize 10 threads per MPI rank to minimize 

these overheads. 

 

It appears that the distributed memory PDR.PODM algorithm is constrained by data 

dependencies3, which continue to restrict concurrency even with an 8x increase in over-

decomposition. For 100 cores, about 50% of the overheads in Figure 3 (center) are caused by 

idle time due to a lack of concurrency. At the same time, the shared memory implementation 

of PODM can explore quite effectively up to 144 cores [15]. Despite the large idle and 

communication overheads, even in the case of d = 4, some relative improvement (about 2x) in 

the performance of PDR.PODM is observed (i.e., the execution time for 100 vs. 500 cores).  

 

Figure 3 (right) displays the execution time of an experiment where each MPI rank has only 

one thread (in contrast to the ten threads shown in Figure 3 left and center). The results show 

that in-node parallelism has a minimal effect when there are approximately 40 MPI ranks. 

When there are around 100 ranks, the performance is similar between 1 and 10 threads per 

rank, with a difference of no more than 20%.  This result is influenced not only by application-

level parameters but also by other factors. One such factor is maintaining a lower thread ratio 

per rank, which allows more workers to execute independent subdomains and distribute 

communication overheads more evenly. Additionally, it helps the scheduler allocate more 

ranks on the same or nearby hardware nodes, reducing communication overheads even further. 

By exploring parallelism solely on the rank level, thread interference (as discussed in Section 

3.2) could be minimized and eliminated in the case of one thread per rank.  

 

 
3 For the detailed description of the PDR.PODM iterative refinement algorithm see [12] and [29].  



Based on the data presented in Figure 3, we have observed that the optimal performance is 

achieved with an octree of level four, which consists of 4096 subdomains. Therefore, unless 

otherwise specified, the octree depth for all subsequent experiments will be set to four. This 

finding is consistent with previous research cited in [12]. 

 

In Figure 4, we provide a detailed analysis of the 

overheads, highlighting the trade-off between polling 

time and waiting-for-work time at the MW-MPI level. 

It's important to note that for the 100-core scenario (10 

ranks x 10 threads), the polling time dominates because 

workers cannot respond to data requests from other 

workers while they are refining and packing/unpacking 

subdomains. As the number of ranks increases (to 500 

and 800), a worker's total time spent in these processes 

is reduced since each worker will be responsible for a 

significantly smaller number of subdomains. Moreover, 

due to the balanced distribution of work (along with the 

respective data) to workers, the burden of serving data to other workers is distributed as more 

workers are included in the execution. As a result of these two aspects, the overall time spent 

in polling is reduced substantially when the number of workers increases. On the other hand, 

by increasing the number of workers (MPI ranks), the time spent waiting for a work assignment 

is increased due to the data dependencies among the available pieces of work. Since the size 

of the problem remains the same, the amount of work that can be executed concurrently reaches 

the point of saturation (at about 500 MPI ranks) before all the available ranks are utilized –

clearly shown in the case of 800 MPI ranks, resulting in an underutilization of the system with 

a significant number of workers waiting for a work assignment. To summarize the data in 

Figure 4, there is a sweet spot for the number of workers needed for a fixed problem (mesh 

size), regardless of the number of subdomains. Going beyond this point may not improve 

performance. 

 

3.1 Single-Node Vs. Multi-Node Performance Evaluation  

Previously, we observed that certain application/software stack parameter values can improve 

performance. But it's still unclear how this improvement compares to the performance of 

single-node multi-core PODM code presented in [15]. In this section, we evaluate the 

performance of two different memory models: distributed memory using the MPI-MW 

PDR.PODM described in [12] and shared memory PODM described in [15] run on a single 

multi-core node. 

 

Single-Node Evaluation. The shared memory PODM takes advantage of multi-threading to 

explore concurrency, which allows for direct memory access and results in super-linear 

speedup for up to 16 cores, linear speedup for up to 64 cores, and parallel efficiency of 0.93 

for up to 128 cores [15]. On the other hand, PDR.PODM utilizes MPI and multi-threading to 

explore concurrency at coarse and fine-grain levels by utilizing: (i) gather/scatter operations 

and (ii) introduces global indexing to manage data movement between subdomains (i.e., 

coarse-level) and PODM at the fine-level.  

 

Figure 4. A detailed breakdown of the 
execution time 



In a previous study [15], we found that hyper-threading can improve the use of shared memory 

resources such as the TLB, LLC, and pipeline, but performance slows down significantly after 

reaching 64 cores. To address this issue for systems with more than 64 cores, we conducted 

another study [29] where we implemented explicit data management through a 2-level 

decomposition approach --since it theoretically could improve the TLB and LLC overheads.  

 

Although the data in Figure 3 and [29] show promise on their own, the results from Table 1 

raise an important question: does the MPI-MW PDR.PODM implementation with explicit data 

management meet expectations for a fixed size problem? Our observation from running the 

MPI-MW PDR.PODM and PODM on a single multi-core node is that the additional overheads 

(i) and (ii) are significant, resulting in a 4x to 7x slowdown, as shown in Table 1. 

 
Table 1. Execution time for PODM and PDR.PODM on a single multi-core node. Both runs use the same input and generate 

approximately the same mesh, about 47 million elements. 

 
Cores   No. of MPI Ranks Execution Time (sec)   Platform  

PODM  
1  0 2105.6  

 Shared Memory  
40  0 90.3  

PDR.PODM 40  40 666.3  Distributed Memory 

PDR.PODM     40 20 370.0  Distributed Memory 

 
Table 2.  Execution time for PDR.PODM on potentially multiple nodes as the cluster scheduler allocates the cores. All runs 

use the same input and generate approximately the same mesh, about 47 million elements. 

Cores  Ranks – Threads  Execution Time (sec)  

10  
10 – 1  1569.2 

5 – 2  1605.5 

20  

20 - 1  873.9  

10 – 2  797.7  

5 - 4  2347.7  

40  

40 – 1  679.3 

20 – 2  794.1 

10 – 4  1312.3  

5 – 8  4435.1 

 

Multi-node Evaluation. After discovering that the MPI-MW PDR.PODM costs are 

significantly higher than the communication costs for PODM on a single DSM node, the 

following question was raised: why wait or pay the high price for a single high-core (DSM) 

node when multiple multi-core nodes are more accessible and perhaps more cost-effective? 

However, our findings from Table 2 suggest that multiple nodes can make the situation even 

more challenging. We conducted tests with a fixed number of 40 cores and let the cluster 

scheduler assign MPI-rank cores per node according to current utilization. The results were 

inconsistent, but we noticed that allocating more than two cores per rank (i.e., PODM process) 

led to a deterioration in overall performance. This could be due to the cluster scheduler or the 



PDR.PODM overheads are becoming more dominant as the MPI implementation no longer 

relies on optimized shared memory access.  

In summary, when performing on multiple nodes, the overall performance of MPI-MW 

PDR.PODM is approximately 7 times slower than PODM’s performance on a single node with 

the same number of cores and a fixed size problem.  

 

3.2 Thread Interference between Communication and Meshing Routines 

Earlier, we have seen the interplay between the polling and wait-for-work time and how they 

can be optimized by choosing “optimum” values for the application/software/hardware stack. 

However, for an optimum over-decomposition (and thus surface/volume ratio), one could try 

“hide” or tolerate some of the communication costs by using the available multi-threading in 

multi-core nodes. To tolerate some of the communication overheads, we modified the 

communication-related routines of the original PDR.PODM implementation is presented in 

[12] by introducing multi-threading in the packing/unpacking routines. However, given that 

PODM also uses multi-threading, there is a potential for thread interference between the 

communication and meshing tasks.  It is important to note here that the number of threads used 

for packing/unpacking is equal to the number of available cores per rank and does not consider 

that PODM’s refining threads are also present. Thus, potentially, the number of active threads 

at a time could be double the number of the available cores in a rank, leading to core 

oversubscription effects. However, as the performance data in Table 3 show, using the 

sequential version (as was the case in [12]) of these routines achieves significantly worse 

results. 

 
Table 3. Execution time of the fixed-size problem (47M elements) using threaded and non-threaded packing and unpacking 

routines for different Ranks-Cores configurations. 

Cores  Ranks – 

Threads  

Execution Time 

with mpirun (sec)  

Execution Time  

(sec) for nonthreaded-

(un)packing 

  60 
30 – 2  370.0  773.5 

15 - 4  450.1  1124.1 

  80 
40 – 2  483.5  700.6 

20 – 4  686.9  1049.1 

 100 
50 – 2  333.4  637.4 

25 - 4  357.8  863.9 

 120 
60 – 2  418.8  606.2 

30 – 4  488.6  843.2 

 140 
70 – 2  326.0  626.7 

35 – 4  343.4  734.5 

 160 
80 - 2  408.5  639.7 

40 - 4  473.7  774.26 

 180 
90 - 2  288.6  572.2 

45 - 4  317.1  696.5 

 200 
100 - 2  353.4  560.4 

50 - 4  409.9  801.0 



 

In this section, we evaluate the MPI-MW PDR.PODM algorithm/implementation performance 

again, but with the single-threaded versions for the packing/unpacking routines, i.e., there is 

no interference between communication threads and PODM’s fine-grained threading.  

 

Table 3 shows execution times for multiple nodes using 2-core and 4-core MPI ranks. Column 

3 reports data on multi-threading to improve communication, while column 4 reports data from 

the original non-threading code for packing and unpacking from [12]. A more comprehensive 

data set is presented in Table 4 (Appendix I, where for additional validation SRUN is used).  

This table demonstrates the algorithm's performance under three different execution modes: 

(1) multi-threaded meshing and communication routines using mpirun4, and no-threading for 

communication. Many important points can be derived from this quite comprehensive table; 

we underline two:  

• Restricting packing/unpacking routines to only utilize a single thread significantly 

impacts the overall performance, which is to be expected since the cost for those two 

operations is the dominating term of execution time. 

• We still observe counterintuitive results, with the overall time increasing when keeping 

the number of MPI ranks constant and adding more threads (for refinement-only) per 

rank, even though there is no case of thread interference.  This might be due to the 

scheduler assigning MPI ranks further away in the hardware topology; by requesting 

more threads per MPI rank, the scheduler can no longer “fit” as many ranks on the same 

or neighboring hardware nodes, thus, the overheads of inter-node communication 

increase due to the overall traffic from other uses in the cluster.  

 

Using sequential refinement but parallel packing/unpacking would be another interesting 

experiment. However, because the parallel implementation of these routines depends on 

structures only exposed when parallel refinement is used, it could not be investigated. Utilizing 

a tasking approach with a shared pool of threads for refinement and packing/unpacking is the 

best implementation approach but is outside the scope of this work and will be explored 

elsewhere. These issues must be studied further as we move HPC applications from dedicated 

computing facilities to Cloud platforms.  

 

4. Discussion 

This study aims to understand the nature of the MPI-MW overheads and potential scalability for 

PDR.PODM uses a strong speedup metric (i.e., fixed size problem) as opposed to a weak 

scalability study (i.e., increase the mesh size along with the number of cores, but keep the per core 

mesh size fixed) presented in [12]. We summarize our experience with several remarks: 

Remark 1. Over-decomposition helps the MPI-MW PDR.PODM distributed memory 

implementation to a degree, but a careful balance needs to be considered. In this study, we observe 

about 2x relative improvement5 in execution time by comparing the results from 500 cores for runs 

with 512 subdomains (one per core) and 4096 subdomains (8 per core).  

 
4 MPIRUN is a command that controls aspects of MPI program execution. Another similar control command is 

SRUN.  
5 Relative improvement (or speed up) is defined by comparing the same implementation for two different core counts 

as opposed to the (absolute) improvement (or speed up) where a comparison is made against the best-known parallel 

implementation, in this case PODM [13].  



Remark 2. We see the fundamental tradeoffs in parallel computing between granularity and 

concurrency: one could decrease the granularity (at the domain decomposition level) for a potential 

increase in the concurrency, but this will introduce more overheads in terms of communication. If 

there is not enough work (number of subdomains to be refined in parallel) compared to the number 

of processing units (hardware cores) to exploit the available concurrency in the system, a data 

decomposition with smaller granularity (i.e., a larger number of subdomains) does not improve the 

algorithm's performance. This is very clear from Figure 3 (center) and for core numbers from 500 

to 800.  

 

Based on these two observations, it's reasonable to ask if either explicit data management using 

MPI or utilizing multiple nodes to decrease execution time is worth it, even if the application's 

memory usage isn't significant enough to warrant it. The following two remarks sum up our 

experience: 

Remark 3. While explicit data management in the distributed memory MPI-MW implementation 

theoretically can reduce TLB and LLC overheads in PODM, certain drawbacks still come with it. 

These include idle time due to limited concurrency caused by data dependencies between data-

decomposed work units (subdomains) in PDR and communication-related overheads resulting 

from the cost of gather/scatter operations and global indexing for managing data movement 

between subdomains.  

Remark 4. When using multiple nodes, the distributed memory MPI-MW implementation 

experiences a 2x slowdown compared to using the same number of cores on a single node. This is 

evident in the "best" entries 20-2 (see Tables 1 and 2). It's important to note that the shared memory 

PODM implementation is several times (about 7x) faster than the MPI-MW PDR.PODM 

implementation using multiple nodes. 

 

To tolerate communication latencies, multi-threading helps (see Table 3), but thread interference 

is a real issue, and our experience is summarized below: 

Remark 5.  The number of threads for communication and mesh refinement varies at runtime due 

to the degree (connectivity) of subdomains and refinement method. Lower and upper bounds could 

be estimated, but generally, it is difficult to control the oversubscription of threads from these 

modules given a fixed number of hardware cores –determined at the initialization of the parallel 

program. So, when selecting the best hybrid algorithm configuration, it's important to weigh the 

trade-offs between thread interference at the mesh refinement module and communication-related 

modules.  

 

This study highlights the possibility of coming to incorrect conclusions if one looks at a relative 

(i.e., weak scalability analysis), and thus, the data presented in [12] should be carefully evaluated 

and examined in the context of this experience, too.  While the performance of using 10 to 40 (and 

similarly from 100 to 500) cores has shown some relative improvement (see Figure 3), it is 

important to note that this study (using strong speed-up analysis) demonstrates the MPI-MW 

implementation and the PDR.PODM presented in [12] is more than twice (at best) slower than the 

PODM approach presented [15]. This suggests that PDR.PODM framework and its MPI-MW 

implementation may not reliably scale the PODM mesh generation and refinement method if the 

goal is to reduce execution time.  If memory footprint is the issue, alternative options like Out-of-

Core (OoC) presented in [37, 38] must be considered.   



Our objective of implementing distributed memory codes using MPI-MW approach and highly 

efficient 3D shared memory implementations like PODM, which are not designed for multiple 

nodes, was not achieved. In addition, labor may be reduced, but at a high cost. Overheads for 

preparing and moving data account for more than 50% of execution time on multi-node platforms. 

Communication costs and idle time due to data dependencies in PDR.PODM framework make the 

distributed version over 7x slower than shared memory code on the same number of cores, 

requiring 8x more resources and electricity to improve end-to-end execution time. 

 

5. Conclusions and Future Work 

Given the experience from the specific implementation (presented in [12]) of PODM on distributed 

memory machines, we must question whether: (i) scalable (weak) speedup studies (i.e., increase 

the problem size as we increase the number of cores) provide any (useful) insight for distributed 

memory parallel mesh generation and by extension,  (ii) the full scalability of PDR.PODM and 

more general parallel mesh generation is a worthwhile goal for parallel machines (with 106 or more 

cores) in the exascale era, and if not, then (iii) one needs to ask: what is the alternative? 

 

We conclude this paper with some final remarks regarding those questions. The scalability of 

parallel mesh generation methods (being data-intensive as opposed to field solvers, which are 

compute-intensive) depends on the ratio of data movement to computation for refinement. As the 

parallel mesh generation and (even more end-to-end function approximation) progresses, the 

opportunities for refinement are reduced after some point, and data movement is unnecessarily 

increased (especially with the PDR framework as we witnessed in this study for PDR.PODM) with 

minimal impact on the overall performance. In a scenario where the end goal is to approximate a 

fixed (unknown) function, the method (field solver) determines the size of the mesh required to 

resolve all the features of the function for a given tolerance (error). In this case, the question is, 

what is the optimum use of resources (cores & network) and electric power to minimize walk-

clock time? This study (with the strong speedup analysis above and Figures 3 and 4) points to 

future directions regarding what is essential and needs to be optimized.  

 

When dealing with the complex task of parallel mesh generation, allocating only a portion of the 

available resources for function approximation is crucial. Proper (strategic) mapping of the mesh 

generation problem to the available hardware for function approximation is key to ensuring 

success. Existing mapping methods, such as [39], can be useful. Minimizing the setup time for 

function approximation codes is best achieved using a strong scalability metric or equivalent since 

the problem is reduced to minimize the end-to-end walk-clock time for setting up (or refreshing) 

the data structure for the function approximation codes [38].  This leads us to wonder if this holds 

for other similar data-intensive unstructured parallel mesh generation algorithms and software. In 

our future work, we should provide more insight into parallel Advancing Front and metric-based 

anisotropic using local reconnection schemes [41] and [42].  

 

In the future, also we plan to consider the parallelization of two existing sequential image-to-mesh 

conversion methods [32-34], using the lessons learned from this study. It is worth noting that most 

image-to-mesh conversion codes used in healthcare are primarily focused on real-time 

applications, such as surgery simulations and image-guided surgery [43-45] for 3D static images 

and 4D moving images [46]. These applications require a fixed, small-size problem to ensure the 

best results within the time constraints of the procedure. 



 

Acknowledgments. We want to acknowledge Dr. Daming Feng and Dr. Andrey Chernikov for 

their work on an earlier version of the MPI-MW code (presented in [12]), which was used after 

several modifications required to address several issues to perform this study.  

 

6. Appendix I 

 
Table 4. Execution time of the fixed-size problem (47M elements) using threaded and non-threaded packing and unpacking 
routines for different Ranks-Cores configurations. 

Cores  Ranks – Threads  Execution Time with 

mpirun (sec)  

Execution Time with srun  

(sec)  

Execution Time  

(sec) for nonthreaded-

(un)packing 

60  

60 – 1  899.8  573.3 643.9 

30 – 2  370.0  388.8 773.5 

15 - 4  450.1  478.8 1124.1 

80  

80 – 1  551.1  532.9 623.2 

40 – 2  483.5  857.1 700.6 

20 – 4  686.9  919.3 1049.1 

10 - 8  1374.9  1740.2 1991.0 

100  

100 – 1  690.6  542.8 641.6 

50 – 2  333.4  357.3 637.4 

25 - 4  357.8  378.2 863.9 

120  

120 – 1  719.3  569.1 617.2 

60 – 2  418.8  702.4 606.2 

30 – 4  488.6  717.6 843.2 

15 – 8  923.6  1156.1 1430.4 

140  

140 – 1  647.2  520.9 572.5 

70 – 2  326.0  319.2 626.7 

35 – 4  343.4  355.6 734.5 

160  

160 - 1  462.9  488.6 577.8 

80 - 2  408.5  319.2 639.7 

40 - 4  473.7  655.7 774.26 

20 - 8  745.9  919.7 1163.7 

180  

180 - 1  502.6  476.4 574.3 

90 - 2  288.6  313.4 572.2 

45 - 4  317.1  342.1 696.5 

200  

200 - 1  457.4  486.2 533.1 

100 - 2  353.4  635.3 560.4 

50 - 4  409.9  601.8 801.0 

25 - 8  618.9  773.1 975.7 
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