
Towards Distributed Speculative Adaptive Anisotropic Parallel
Mesh Generation

Kevin Garner∗, Christos Tsolakis†, Polykarpos Thomadakis‡ and Nikos Chrisochoides§

Center for Real-time Computing, Old Dominion University, Norfolk, VA 23529, USA

I. Nomenclature

𝑆 = subdomain of a partitioned grid
𝐼1,2 = interface boundary between subdomains 1 and 2
M = continuous metric field
𝑀 = discrete metric field defined at the vertices of a grid
𝐶 (·) = complexity of a metric field
𝐿𝑎 = Euclidean edge length evaluated in the metric of vertex a
𝑀𝑚𝑒𝑎𝑛 = metric tensor interpolated at the centroid of a tetrahedron
|𝑘 | = volume of a tetrahedron in evaluated metric 𝑀𝑚𝑒𝑎𝑛

𝑄𝑘 = mean ratio shape measure

II. Introduction
This paper presents the foundational elements of a distributed memory method for mesh generation that is designed

to leverage concurrency offered by large-scale computing. To achieve this goal, meshing functionality is separated from
performance (scalability) aspects by utilizing a separate entity for each - CDT3D [1, 2] for mesh generation and PREMA
[3–5] for parallel runtime support. CDT3D is a shared memory code that is intended to be used as a "black box" for
scalability up to thousands of cores. Its meshing operations are designed to operate within the broader scope of scalable
data-parallel and partially coupled methods within a framework we term the Telescopic Approach [6]. The Telescopic
Approach provides a layout of multiple memory hierarchies within an exascale architecture and how different meshing
kernels might be utilized at each level to achieve maximum concurrency. CDT3D is specifically built to operate within
the lowest level of the hierarchy, exploiting fine-grain parallelism at the core and node levels. Although designed for
scalability, lessons are presented regarding design oversight given that this code is optimized for execution within a
single multicore node, and what additional measures were taken to enable the code’s integration into the distributed
memory method as a black box. Whereas CDT3D targets the chip level, the distributed memory method serves to
exploit coarse-grain parallelism at the node level.

In the presented method, an initial mesh is data decomposed and subdomains are distributed amongst the nodes of
a high performance computing (HPC) cluster. Meshing operations within the shared memory code are designed to
adopt a speculative execution model, enabling the strict adaptation of interior subdomain elements so that interface
elements can be adapted in a separate step to maintain mesh conformity. Interface elements undergo several iterations
of shifting so that they are adapted when their data dependencies are resolved. To aid in this endeavor, a runtime system
called PREMA is utilized, which alleviates the burden of work scheduling and load balancing for distributed memory
applications. This system provides constructs which enable asynchronous message passing between encapsulations of
data, work load balancing, and migration capabilities all within a globally addressable namespace. PREMA offers a
particularly useful "event" feature which aids in establishing data dependencies between subdomains, thus enabling
"neighborhoods" of subdomains to work independently of each other in performing interface shifts and adaptation.
The distributed memory CDT3D method is designed to avoid the use of collective communication techniques that are
utilized in existing state-of-the-art methods [7, 8] due to the fact that they have been shown to hinder potential scalability
[9–11]. Preliminary results show that after several passes of interface shifts and adaptation, the presented method is

∗Research Assistant, Center for Real-time Computing, AIAA Member.
†Research Assistant, Center for Real-time Computing, AIAA Member
‡Research Assistant, Center for Real-time Computing, AIAA Member.
§Richard T. Cheng Chair Professor of Computer Science, AIAA Member.

1

able to produce meshes of comparable quality to those generated by the original shared memory CDT3D code. Relative
communication performance also suggest that the interface shift operation presents a potentially viable solution in
achieving scalability for mesh adaptation when targeting configurations with large numbers of cores (building upon the
shared memory CDT3D method which only utilized up to 40 cores in an earlier study [11]).

III. Background

A. Shared Memory Mesh Generation
The shared-memory CDT3D implements a tightly-coupled method and exploits fine-grain parallelism at the cavity

level using data decomposition, targeting shared memory multicore nodes using multithreaded execution at the chip
level. Multiple mesh operations (e.g., point insertion, edge/face swapping, etc.) are performed concurrently on different
data by using fast atomic lock instructions to guarantee correctness. These locks are used to acquire the necessary
dependencies for the corresponding operation. Failure to do so will result in unlocking any acquired resources (rollback)
and attempting to apply an operator on a different set of data. This is the essence of the speculative execution model,
which is to exploit parallelism “everywhere possible” from the beginning of refinement when there is no, or very
coarse, tessellation (contrary to existing methods that require sequential preprocessing and are in some cases just as
expensive as the parallel mesh refinement itself). The speculative execution model is implemented using the separation
of concerns ideology [12] [13]. As mentioned previously, functionality is separated from performance components,
even at the lowest level of the Telescopic Approach with CDT3D as well. Meshing operations are abstracted as tasks,
and these tasks are only performed when their corresponding dependencies are satisfied (i.e. successfully locked). Such
abstractions provide easy interoperability with a low level runtime system such as PREMA (discussed in more detail in
section III.B).

One capability of CDT3D is to generate boundary-conforming isotropic tetrahedral meshes with element sizes
defined by a point distribution function. The pipeline for isotropic mesh generation can be divided into three steps (also
seen in Figure 1): initial grid construction, grid refinement, and grid quality improvement. CDT3D was compared with
AFLR in terms of its qualitative and quantitative results in its isotropic grid generation [1]. Across several aerospace
configurations, CDT3D exhibited comparable quality to all those generated by AFLR.

Fig. 1 CDT3D Pipeline of Isotropic Grid Generation [1]

CDT3D also offers metric-based anisotropic mesh adaptation, where the metric can be derived from analytic or
discrete fields, and can be combined with Computer-Aided Design (CAD)-based information to accomplish adaptation
[2]. This pipeline can be seen in Figure 2.

CDT3D was compared with three other parallel anisotropic mesh adaptation methods used extensively within the
industry [11]. Again, the quantitative and qualitative results of each method were compared from testing on a benchmark
created by the Unstructured Grid Adaptation Working Group (UGAWG) [15]. This benchmark served to evaluate
adaptive mesh mechanics for analytic metric fields on planar and simple curved domains. In each case, CDT3D was
shown to maintain stability of metric conformity (with both element shape size and edge length). It also showcased
good performance when utilizing up to 40 cores on a single multicore node, exhibiting good weak scaling speedup and
almost linear speedup amongst its strong scaling cases.

B. Parallel Runtime System
Message passing and data migration within the presented distributed memory method is handled by utilizing

the Parallel Runtime Environment for Multicore Applications (PREMA) system [3–5]. This system provides work
scheduling and load balancing on both shared and distributed memory architectures, alleviating the application developer

2

Fig. 2 CDT3D Pipeline of Anisotropic Adaptive Grid Generation [14]

of these responsibilities. PREMA introduces constructs called mobile objects, which are encapsulations of data (not
necessarily residing in contiguous memory), and mobile pointers which are used to identify mobile objects within a
global namespace. Interactions between data can be expressed as remote method invocations (handlers) between mobile
objects rather than between processes or threads. While non-conflicting handlers are executed concurrently across
processing elements, PREMA offers the ability to utilize multiple hardware threads to share work within the context
of individual handlers [16]. Due to the nature of adaptive applications, especially in the context of mesh generation,
workload disparity is often witnessed amongst the mobile objects processed by handlers. This fine-grain parallelism
allows for more efficient utilization of shared memory resources to help bridge this disparity in workload processing
time.

Distributed memory load balancing is achieved by PREMA’s ability to monitor work loads between ranks and
perform migrations of mobile objects to available workers without interrupting execution. Communication and execution
are separated into different threads to provide asynchronous message reception and instant computation execution at
the arrival of new work requests. As stated previously, the mobile pointer construct allows method invocations to be
made to mobile objects regardless of their location (potential migration to another rank). PREMA also provides the
ability to establish dependencies between mobile objects and to execute user-defined events once all dependencies have
been satisfied. This functionality becomes particularly useful when migrating cavity data needed for the adaptation of
interface boundary elements within subdomains (discussed in more detail in section V.A).

IV. Related Work
The presented distributed memory method is motivated by past investigations of “black-box approaches," where

parallelization was attempted for mesh generation programs (most of them were originally sequential) while making
the least amount of modifications possible to their source code. One such approach is termed "functionality-first,"
which involves the parallelization of state-of-the-art mesh generation software that are fully functional and optimized for
single-core architectures. Several studies addressing the viability of functionality-first black box approaches included
VGRID [17], TetGen [18], and AFLR [19]. Another black-box approach focused on the integration of a shared memory
method, called PODM [20], into a distributed memory framework [21]. PODM is a Delaunay-based mesh generation
method that was not originally designed for execution within a distributed setting (as opposed to the presented method
which utilizes local reconnection techniques and is designed to fit the Telescopic Approach). This approach strictly
utilized PODM as a black box and involved the migration of large amounts of data (entire subdomains) throughout
execution in order to resolve data dependencies that were required to satisfy the Delaunay property. This overhead
accounted for more than 50% of execution time, making this distributed approach 7x slower than the shared memory
PODM when utilizing the same numbers of cores [21]. Evaluations of these black-box approaches exhibited the recurrent
conclusion that if a code is not originally designed for scalability, it cannot be simply integrated into a parallel framework
as a black box. Rather than devoting significant amounts of time to redesigning such codes, these studies encourage the
development of "scalability-first" approaches (those designed with scalability as the focus and functionality added as
needed), if one wishes to leverage the maximum potential speedup offered by large-scale architectures.

A goal of the presented distributed memory method is to avoid collective communication, as this is not ideal
for large-scale computing. The overhead of collective communication was reported in an extensive study involving

3

numerous proxy applications within DoE’s Exascale Computing Project (ECP) [9, 10]. The purpose of the ECP study is
to understand communication patterns utilized by these applications and to identify where optimization efforts may
be focused. It was observed that most of the applications spent more than 50% of their runtime in communication
(as opposed to computation). While the majority of communication calls were primarily point-to-point (messages
between individual processes), the amount of runtime spent in communication was dominated by collective calls (e.g.
MPI_Allreduce, MPI_Alltoall, etc.).

Another observation of note is that none of the applications in the study utilized neighborhood collectives, a feature
introduced in MPI 3.0 that permits collective communication calls within subgroups of processing elements [22]. This
feature is designed to operate based on a process topology. Neighborhood collectives, in addition to several other
MPI functions, are suggested as potential resources in helping drive forth optimizations for these exascale applications
represented by their proxy counterparts.

The parallel meshing strategies utilized by the aforementioned state-of-the-art codes (that were compared to the
shared memory CDT3D) all exhibit good speedup in the strong scaling and weak scaling cases presented in [11].
However, there are implicit global synchronization points in these codes that induce increasingly noticeable overhead
when utilizing up to several hundred cores. Given the observations presented in the study of DoE’s ECP, this overhead
may be exacerbated when meshing billions of elements on much higher configurations of cores. For example, Feflo.a, a
functionality-first, partially-coupled coarse-grained approach developed by Inria [7], solves the interface problem by
freezing interfaces during adaptation and then re-partitioning the domain to focus on adapting interface elements. This
re-partitioning occurs only after all subdomains have completed adaptation and is repeated over several passes. This
domain decomposition was reported to be one of the main parallel overheads. A scalability-first, partially-coupled
coarse-grained approach developed by NASA, called refine [8], also re-partitions the domain at the end of each
adaptation pass. Interior elements are adapted while interfaces initially remain frozen. Then, the method focuses on
adapting interface elements while simultaneously performing communication to update neighboring subdomains of the
changes to shared interface elements. Global identifiers are utilized to denote duplicate points between subdomains.
Moreover, all-to-all communication occurs at the end of an adaptation pass. Each subdomain communicates with all
other subdomains to ensure that each newly inserted grid point has a unique global identifier.

The distributed memory method presented aims to avoid collective communication, and does not perform global
re-partitioning. Additionally, it does not require global synchronization to update global identifiers for duplicate
data between subdomains. It instead takes a similar approach to EPIC [23], a functionality-first, partially-coupled
coarse-grained approach developed by Boeing. EPIC freezes interfaces during an initial adaptation pass and then
shifts the interface elements into the interiors of subdomains. Only a subset of mesh operations within EPIC utilize
multi-threading however and the software does not take a speculative execution approach, similar to the shared memory
CDT3D software, for individual subdomains. The presented distributed memory method performs an adaptation pass
with frozen interfaces (fully utilizing the multithreaded speculative execution model for adapting interior elements
within each subdomain), and then shifts cavities of data needed to adapt those interface elements between subdomains
over several passes. Message passing is performed within neighborhoods of subdomains, avoiding any all-to-all
communication.

V. Distributed Memory Method

A. High-level Algorithm
Given its scalable design and performance in stability, the shared memory CDT3D (SMCDT3D) was abstracted as a

library to be used in the adaptation of individual subdomains in the distributed memory method. A high-level overview
of the distributed memory method (DMCDT3D) is shown in Figure 3. It essentially includes six steps, the latter three of
which are executed in a loop until the quality of the entire mesh is satisfied. These steps include: initial coarse mesh
generation (which is optional if a geometry volume is provided as input), decomposition, interior refinement/adaptation
of all subdomains, interface shift, interior refinement/adaptation of colored subdomains, and a topology update of
subdomain adjacency.

Different methods of decomposition may be applied to the grid; moreover, the method of decomposition applied in
the current implementation is called PQR, which uses a sorting-based method to partition elements into subdomains
based on a boundary-conforming curvilinear coordinate system [24]. A geometry graph partitioning heuristic is
utilized, where the mesh itself is considered to be a Euclidean graph (the elements are vertices and their face-connected
neighbors establish edges). This heuristic uses Euclidean metrics and minimizes the diameter of subdomains, delivering

4

Fig. 3 High-level Algorithm of Early Distributed Memory CDT3D Implementation

quasi-uniform partitions. Once all subdomains have been created, they are packed and distributed among processes
using PREMA.

After data decomposition, the interior elements within each subdomain are adapted. Whenever a subdomain
undergoes adaptation, all of its interface elements are frozen. Let a mesh be partitioned into N subdomains 𝑆1...𝑆𝑁 . If
𝑆1 ∩ 𝑆2 ≠ ∅ then 𝑆1 and 𝑆2 are neighbors. Let 𝐼1,2 = 𝑆1 ∩ 𝑆2. All points in 𝐼1,2 are interface points. Any edge, face, or
tetrahedron defined by an interface point in 𝐼1,2 is an interface edge, interface face, or interface tetrahedron, respectively.
Any other subdomain which contains elements that are defined by a point in 𝐼1,2 is also considered a neighbor of both
𝑆1 and 𝑆2 and will contain a copy of that same interface point.

Let 𝑛𝑒𝑖𝑔ℎ𝑠 be the set of all neighbor subdomains for 𝑆1. The set of interior points in 𝑆1 is defined as: ∀𝑝𝑜𝑖𝑛𝑡𝑠 ∈
𝑆1𝑎𝑛𝑑 ∉ 𝐼1,𝑛𝑒𝑖𝑔ℎ𝑠. Elements that are solely defined by interior points are permitted to undergo adaptation. Interface
elements remain frozen to maintain conformity between subdomains.

Due to how interface elements can affect the overall quality of the final mesh (as seen in the study regarding the
parallelization of AFLR) [19], they are shifted to the interiors of subdomains over several iterations so that they may
undergo adaptation. This mixed interior/interface (MII) adaptation phase begins immediately after a subdomain has
completed its initial stage of interior adaptation. Subdomain adjacency can be considered as an undirected graph,
where a subdomain is a vertex and an edge is a neighbor connection between two subdomains that share an interface
point. Many subdomains within this graph are selected, or "colored," to receive data while particular neighbors are
selected to send their corresponding interface data to those that are colored. Subdomains colored to receive data are
prioritized by their number of low quality elements. The interface data sent consists not only of the interface elements
themselves but also their corresponding cavities plus several layers of elements that are required to successfully permit
their adaptation in each meshing operation. Consider a single tetrahedron as a single layer. The set containing each
tetrahedron connected to each of its faces are considered to be a second layer, and all of the tetrahedra connected to
each of their faces are considered to be the third layer, and so on. PREMA’s aforementioned event feature is utilized,
where colored subdomains designate their neighbors as dependencies. Once this event activates (neighbor subdomains
have completed their own interior adaptation), all neighbor subdomains gather interface data, send it to their colored
counterpart, and the receiver scatters the interface data. Once all data has been received and scattered, the colored
subdomain initiates interior adaptation. Those elements that were considered interfaces in the previous iteration are now
considered to be interior elements due to this "padding" of cavities and layers of additional elements. These elements
combined with the original interior elements will all now be processed for adaptation. Figure 4 shows an example of
this process with a data decomposition of a delta wing geometry.

As in the shared memory method (which requires multiple grid generation passes of adaptation to obtain satisfactory
grid quality, i.e. metric conformity) [1, 2], several iterations of interface shift and adaptation passes are required to
attain sufficient grid quality in the distributed memory method. Before an iteration of MII adaptation can commence

5

(a) Data Decomposition (b) Interface Shift (c) Mixed Interior/Interface Adapta-
tion

Fig. 4 The interface shift and adaptation process is shown on a data decomposition of a delta wing geometry.
Red elements contain edges that do not conform to the target metric, as they are affected by the frozen interface.
(a) shows a data decomposition where two subdomains have each undergone interior adaptation. (b) shows the
transfer of interface elements (and corresponding cavities) from the right subdomain to the left subdomain. (c)
shows the adaptation of those elements that were previously interface elements in the left subdomain.

for a set of subdomains, the graph of subdomain adjacency must be up-to-date to ensure correct communication
between subdomains. After a gather/scatter operation, subdomain adjacency may change (i.e., loss of adjacency or
new adjacency). Each subdomain must communicate with its prospective neighbors to verify which of them are still
neighbors, which are new neighbors (if any), and which are no longer neighbors. The distributed memory method
performs this communication between subdomains asynchronously while other subdomains may still be undergoing
adaptation. This subdomain adjacency update algorithm, and how it guarantees up-to-date adjacency before subsequent
interface shift iterations, will be shown in the final manuscript. Once the quality of all elements in each subdomain
(interior plus interface) are found to be satisfactory, interface shifting ends, the final mesh is output, and the distributed
memory method terminates.

Additional challenges regarding the interface shift and MII adaptation include: (1) determining how many interface
shift iterations are required to attain satisfactory quality when subdomains are colored to send data based on interface
elements that are point-connected to the receiving subdomains vs. gathering data using only elements that are
face-connected and (2) how to maintain simple connectivity within subdomains (i.e. ensuring that no tetrahedron,
or partition of tetrahedra, are connected to others by only a point or an edge within a subdomain) given that the
shared memory software is designed to process only manifold geometries. Gathering data based on face-connectivity
helps to ensure simple connectivity (although it doesn’t guarantee it); however, gathering based on point-connectivity
ensures that all mesh operations will have the needed cavities for interface elements (some operations, such as vertex
smoothing, operate on points and edge connections rather than tetrahedra and face connections). Gathering based
on point-connectivity collects more elements, giving the shared memory code more flexibility to achieve adaptation,
allowing the distributed memory method to generate a mesh of sufficient quality quicker (as opposed to performing
more interface shifts and phases of MII adaptation). The challenge of performing point-connected gathering while
maintaining simple connectivity amongst all subdomains has been addressed in the current implementation and will be
further detailed in the final manuscript.

B. Distributed Data Structures
One should identify and encapsulate only data that is essential for jumpstarting the shared memory code in a

distributed setting. There is a clean separation between the shared memory code and distributed code. The shared
memory code itself is not distributed-aware. It is rather utilized as a library, where a number of adaptation operations can
be executed on the interior of each subdomain while keeping interface elements fixed. Therefore, information pertaining
to mesh elements within each subdomain must be extracted as input for the shared memory method. Simultaneously, the
distributed memory method must maintain global identifiers specifying duplicate data between subdomains. These
global identifiers are essential when receiving and scattering interface data. Further details regarding these data
structures, and their maintenance throughout interface shifting and adaptation, will be expanded upon in the final
manuscript (as they are maintained without the need of global synchronization techniques).

The distributed memory method is implemented in the C++ programming language and as such, the standard library
memcpy function is utilized for the packing/unpacking of data during migration. It is preferable to organize subdomain

6

data into the simplest data structures possible (arrays, plain old data types, etc.) to make the utilization of this function
seamless; otherwise, careful attention must be given to more complex data structures, as they are more likely to induce
memory errors if not handled correctly (e.g. container types, dynamically allocated pointers, etc.). These simple
distributed memory method data structures are converted into the complex data structures utilized by the shared memory
code (linked lists of dynamically allocated pointers to class objects representative of mesh elements, for example) when
jump-starting a subdomain for adaptation, and vice-versa after a subdomain has completed adaptation (for an upcoming
interface shift).

C. Requirements for the Distributed Method’s Design
The below requirements serve as a guide to understanding how a shared memory code should be designed if one

wishes to use it as a black box for distributed computing. These are based on lessons learned in needing to re-design the
shared memory CDT3D code, and will be explored in more detail (giving specific cases) in the final manuscript.

1) Operations should be designed to execute successfully based only on subdomain input data provided (without
assuming access to the entire input domain).

2) If a subdomain becomes larger or smaller throughout program execution, the accompanying data structure(s)
utilized within the shared memory code must also be updated before any subsequent processing of that subdomain,
i.e., MII adaptation.

3) All operations should be implemented using the speculative execution model (locking/unlocking of data), thus
allowing the precursory freezing of specific data without needing to further modify each operation to process a
new input type (interface data).

4) Point creation/insertion on elements adjacent to interface elements inhibits grid generation convergence; therefore,
a buffer zone must be established around locked (interface) elements to reach convergence.

5) Assumptions regarding operation input must be identified and successful processing should remain consistent
regardless of input size.

6) The order in which operations are designed to be executed in the shared memory method should also be reflected
in their order of execution in the distributed method.

VI. Preliminary Results

A. Grid Adaptation Method
The same grid adaptation method utilized in [11], for the shared memory CDT3D’s evaluation and comparison

to other parallel meshing strategies, is utilized here for a progress and viability evaluation of the distributed memory
method. The goal is to adapt a given grid so that it conforms to an anisotropic metric field M. A comprehensive
introduction to the definition and properties of the metric tensor field is provided in [25]. The complexity C of a
continuous metric field M is defined as:

𝐶 (M) =
∫
Ω

√︁
𝑑𝑒𝑡 (M(𝑥))𝑑𝑥. (1)

Complexity on the discrete grid is computed by sampling M at each vertex i as the discrete metric field M,

𝐶 (𝑀) =
𝑁∑︁
𝑖=1

√︁
𝑑𝑒𝑡 (𝑀𝑖)𝑉𝑖 , (2)

where 𝑉𝑖 is the volume of the Voronoi dual surrounding each node. The complexity of a grid is known to have a
linear dependency with respect to the number of points and tetrahedra, shown theoretically in [25] and experimentally
verified in [26][27]. The number of vertices are approximately 2C while the number of tetrahedra are approximately
12C. As shown in [25][11], scaling the complexity of a metric can generate the same relative distribution of element
density and shape over a uniformly refined grid compared to the original complexity. The metric tensor 𝑀𝐶𝑟

that
corresponds to the target complexity 𝐶𝑟 is evaluated by [25]:

𝑀𝐶𝑟
=

(
𝐶𝑟

𝐶 (𝑀)

) 2
3

𝑀, (3)

7

where M is the metric tensor before scaling and C(M) is the complexity of the discrete metric before scaling.
In order to evaluate the progress made in the distributed memory method’s implementation, quantitative results are

examined with respect to overhead incurred by the interface shift operation, as opposed to alternative methods which use
global synchronization and re-partitioning to process interface elements during mesh generation. Qualitative results are
examined with respect to metric conformity of the adapted mesh. These qualitative measures described below are the
same as those used by the Unstructured Grid Adaptation Working Group∗. The adapted meshes of the early distributed
memory method are compared to those of the shared memory method in order to verify the viability of performing
interface shifts in the distributed memory method and its impact on the method’s stability.

The aim of metric conformity is the creation of a unit grid, where edges are unit-length and elements are unit-volume
with respect to the target metric. For calculating edge length, we adopted the same definition that appears in [28]. For
two vertices a and b, an edge length in the metric 𝐿𝑒 can be evaluated using:

𝐿𝑒 =

{
𝐿𝑎−𝐿𝑏

𝑙𝑜𝑔 (𝐿𝑎/𝐿𝑏) |𝐿𝑎 − 𝐿𝑏 | > 0.001
𝐿𝑎+𝐿𝑏

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐿𝑎 = (𝑣𝑇𝑒 𝑀𝑎𝑣𝑒)
1
2 , 𝐿𝑏 = (𝑣𝑇𝑒 𝑀𝑏𝑣𝑒)

1
2

(4)

and an element mean ratio shape measure can be approximated in the discrete metric as:

𝑄𝑘 =
36

31/3

(
|𝑘 |

√︁
𝑑𝑒𝑡 (𝑀𝑚𝑒𝑎𝑛)

) 2
3∑

𝑒𝜖 𝐿 𝑣
𝑇
𝑒 𝑀𝑚𝑒𝑎𝑛𝑣𝑒

, (5)

where v is a vertex of element k and 𝑀𝑚𝑒𝑎𝑛 is the interpolated metric tensor evaluated at the centroid of element
k. Since the goal is to create edges that are unit-length, edges with length above or below one are considered to be
sub-optimal. The measure for mean ratio is bounded between zero and one since it is normalized by the volume of an
equilateral element. One is the optimal quality for an element’s mean ratio shape.

B. Experimental Setup
PREMA 2.0, shared memory CDT3D, and the early distributed memory CDT3D codes were all compiled using the

GNU GCC 7.5.0 and Open MPI 3.1.4 compilers. Data were collected on Old Dominion University’s Wahab cluster
using dual socket nodes that each featured two Intel® Xeon® Gold 6148 CPUs @ 2.40 GHz (20 slots) and 384GB of
memory.

C. Delta Wing Geometry
Figure 5 shows a delta wing geometry with a solution-based metric field derived from a laminar flow. This geometry

was also utilized in the aforementioned shared memory CDT3D evaluation study [11].
The delta wing geometry is made of planar facets. Its multiscale metric [29] is constructed based on the Mach

field of a subsonic laminar flow. The initial grid is adapted to a complexity of 50,000 and is scaled to a complexity of
5,000,000 (generating approximately 50 million elements) for a quantitative evaluation. It is scaled to a complexity
of 500,000 (generating approximately 5 million elements) for a qualitative evaluation (for reasons discussed below).
Details of the verification of the delta wing/grid adaptation process is provided in [30].

1. Qualitative Improvement from Interface Shifts and MII Adaptation
There are several factors that affect the distributed memory method’s output grid’s metric conformity and scalability

- the method of decomposition, the number of interface shift iterations, and the number of layers of elements gathered to
use for the aforementioned "buffer zone" surrounding cavities needed for interface element adaptation. The optimal
settings of these heuristics are undergoing investigation, as they vary between different geometries and require careful
consideration when meshing larger geometries. Consequently, qualitative results are shown for the delta wing geometry
adapted at 500,000 complexity. Qualitative results adapted at the larger complexity will be provided in the final
manuscript. Metric conformity, characterized by element shape measure and edge length histograms, for the output
meshes generated by the shared memory CDT3D and distributed memory method are compared in figures 6 and 7. The

∗https://ugawg.github.io/

8

https://ugawg.github.io/

Fig. 5 Delta wing with multiscale metric derived from a laminar flow and a complexity of 50,000

results from the distributed memory method were generated from a decomposition (strictly across the x-axis using PQR)
of 128 subdomains and 5 layers of elements gathered by subdomains that have not undergone MII adaptation (and 10
layers gathered by those that have). Subdomains that have undergone MII adaptation will need to send more layers in
order to include their newly adapted elements; otherwise, they are likely to simply send back the non-adapted layers they
had received in a previous iteration. Each graph also shows the distributed memory method’s results after performing
6 MII adaptation iterations vs. 12 iterations. When performing 12 MII adaptation iterations, the grid generated by
DMCDT3D exhibits good overall quality similar to that generated by the original shared memory method.

Fig. 6 Comparison of the mean ratio of elements within the generated grids, utilizing a decomposition of 128
subdomains, for the delta wing at 500,000 complexity in linear and logarithmic scales

2. Relative Performance When Avoiding Global Synchronization
As stated previously, the distributed memory method aims to avoid collective communication. PREMA gives the

method the capability to avoid any explicit or implicit global synchronization. Establishing dependencies between
mobile objects (subdomains) helps facilitate the execution of interface shifting using PREMA’s event system. As soon
as all relevant subdomains (within a neighborhood) have completed interior adaptation, they are colored to distinguish
which will send or receive interface data, the shift is performed between corresponding neighbors, colored subdomains

9

Fig. 7 Comparison of the edge lengths of elements within the generated grids, utilizing a decomposition of 128
subdomains, for the delta wing at 500,000 complexity in linear and logarithmic scales

are adapted, and the topology of neighboring subdomains is updated. Any processing element, with regards to a
particular subdomain, has the flexibility to proceed in its execution of these steps as long as the dependencies of this
subdomain are satisfied (i.e. are available for communication whether it’s an interface shift or topology update). While
the current implementation of the distributed memory method utilizes a centralized model in testing the correctness
and stability of the method (e.g. the master process colors subdomains after workers have communicated amongst
themselves and finally the master about the topology update), its final implementation will utilize a decentralized
variant of Luby’s algorithm to create maximal independent sets of subdomains [31], thus allowing neighborhoods
of subdomains to operate independently of each other (while working in tandem with PREMA’s event functionality)
without needing to communicate with the master process for coloring.

Figure 8 shows the relative performance costs of communication within the distributed memory method when
adapting the delta wing geometry at 5,000,000 complexity, with regards to executing 6 iterations of interface shifts and
MII adaptation. The communication surrounding the adaptation of mixed interior/interface data includes: coloring
subdomains, gathering interface data (for those subdomains designated to send), scattering interface data (on those
subdomains designated to receive), updating the topology of subdomain adjacency, converting between the distributed
memory data structures and the shared memory method’s data structures, checking the quality of subdomains (to
influence coloring), and miscellaneous operations (declaring variables, resizing data structures, cleanup, profiling, etc.).
In each case presented in figure 8, the number of subdomains matches the number of processing elements (e.g. 16
subdomains/16 cores, 256 subdomains/256 cores, etc.). The percentages represent the sum runtime spent performing
each particular operation. While these operations occupy more time on lower configurations of subdomains/cores, they
become smaller as the number of subdomains/cores are increased, occupying less than 15% of total runtime on average
and approximately 5% of total runtime on larger configurations of cores. As opposed to traditional communication
methods that induce overhead of more than 50% (as reported in the ECP study [9]), the cost of communication in
permitting the adaptation of interface elements in the distributed memory method saves approximately 35% - 45% of
communication overhead thus far.

The percentage of runtime occupied by mixed interior/interface adaptation occupies much of the adaptation time due
to the fact that a subdomain becomes larger after scattering interface data and therefore requires more processing time in
adaptation. This is an ongoing challenge that we intend to address in the final manuscript. The shared memory software
requires significant time when processing elements that have already been adapted, resulting in longer adaptation
times for subdomains than the original interior adaptation times. The shared memory software will likely undergo
some further redesign to remedy this behavior (and the ensuing lesson from these changes will be included as another
requirement for the distributed design). The requirement regarding the order of operations stems from this issue. The
shared memory CDT3D method utilizes several mesh operations to accomplish adaptation. Understanding the nature of
these operations and their intended use becomes vital for the distributed method. Originally, all operations (in figure
2) were executed over each subdomain within each iteration of adaptation. When performing MII adaptation, worst
performance than our current results would occur. This is because the edge collapse operation is designed to be a
pre-refinement and post-refinement operation. It initially overcoarsens a domain (because this can potentially lead to

10

better end quality for the mesh) and in the end removes short edges created during refinement/adaptation. Executing this
operation repeatedly over the same sets of data (shifted with interface data between subdomains) causes the shared
memory method to repeatedly overcoarsen and then recreate/re-insert new points over previously adapted elements
that already satisfied qualitative criteria. Therefore, the distributed memory method now utilizes the beginning edge
collapse operation only when performing the initial interior adaptation pass. It does not utilize a final edge collapse
operation until the interface shifting phase has completed. After this final edge collapse, the quality improvement phase
commences over subdomains. Preserving this order of operations improved the MII adaptation runtime but has not
fully remedied the problem. This is why quantitative data regarding scalability is not yet shown. It must also be noted
that the percentages shown in figure 8 are relative to the current implementation. Once this particular problem has
been remedied, all other percentages of operations are likely to increase. However, it should also be noted that the
communication operations will be further optimized in the final implementation.

Sequential pre-processing time was a consistently small fraction across all runs, as data decomposition maintained a
runtime of approximately 1 second. Time spent coloring subdomains was also a consistently small fraction of total
runtime (less than 1 second across all runs). While producing meshes of sufficient quality over multiple interface shifts
and MII adaptation, more detailed statistics (timing profiles of operations across different configurations of cores) will
be provided in the final manuscript.

Fig. 8 Percentage Breakdown of Adaptation Time for the Distributed Memory Method in Adapting Delta Wing
Geometry at 5,000,000 complexity

VII. Conclusion
The foundational elements of a distributed memory method for mesh generation are presented. Meshing functionality

is separated from performance aspects in order to fit a scalable framework that is designed to leverage maximum
concurrency offered by large-scale architectures. Mesh adaptation is handled by a shared memory code called CDT3D.
Several requirements regarding the distributed method’s design are given based on lessons learned from redesigning
the shared memory code, enabling its integration into the distributed memory method. Most importantly, all major
operations within the shared memory code are designed to adopt the speculative execution model, enabling the strict
adaptation of interior subdomain elements so that interface elements can be adapted in a separate step to maintain

11

mesh conformity. Interface elements undergo several iterations of shifting so that they are adapted when their data
dependencies are resolved. Communication, work load balancing, and migration of data are handled by a parallel
runtime system called PREMA. PREMA offers a particularly useful "event" feature which aids in establishing data
dependencies between subdomains, thus enabling "neighborhoods" of subdomains to work independently of each other
in performing interface shifts and adaptation.

Preliminary results show that after several passes of interface shifts and adaptation, the distributed memory CDT3D
method is able to produce meshes of comparable quality to those generated by the original shared memory CDT3D
code. Relative communication performance also suggest that the interface shift operation presents a potentially viable
solution in achieving scalability for mesh adaptation when targeting configurations with large numbers of cores (building
upon the shared memory CDT3D method which only utilized up to 40 cores in an earlier study [11]). Given the costly
overhead of collective communication identified within the study of DoE’s Exascale Computing Project [9, 10] and seen
in existing state-of-the-art software [11], the distributed memory method’s emphasis on avoiding global synchronization
will likely prove beneficial (and shall be further tested on larger configurations of cores with larger geometries in the
final manuscript, providing more comprehensive quantitative data).

Acknowledgments
This research was sponsored by the Richard T. Cheng Endowment, the Southern Regional Education Board (SREB)

State Doctoral Scholar Fellowship, and the National Institute of General Medical Sciences of the National Institutes
of Health under Award Number 1T32GM140911-03. The content is solely the authors’ responsibility and does not
necessarily represent the official views of the National Institutes of Health.

References
[1] Drakopoulos, F., Tsolakis, C., and Chrisochoides, N., “Fine-grained Speculative Topological Transformation Scheme for Local

Reconnection Methods,” AIAA Journal, Vol. 57, 2019, pp. 4007–4018. Https://doi.org/10.2514/1.J057657.

[2] Tsolakis, C., and Chrisochoides, N., “Parallel Metric-based Anisotropic Mesh Adaptation using Speculative Execution,”
Engineering with Computers, to be submitted.

[3] Barker, K., Chernikov, A., Chrisochoides, N., and Pingali, K., “A load balancing framework for adaptive and asynchronous
applications,” IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No. 2, 2004, pp. 183–192. https://doi.org/10.
1109/TPDS.2004.1264800.

[4] Thomadakis, P., Tsolakis, C., Vogiatzis, K., Kot, A., and Chrisochoides, N., “Parallel Software Framework for Large-Scale
Parallel Mesh Generation and Adaptation for CFD Solvers,” AIAA Aviation Forum 2018, Atlanta, Georgia, 2018.

[5] Thomadakis, P., Tsolakis, C., and Chrisochoides, N., “Multithreaded Runtime Framework for Parallel and Adaptive Applications,”
Engineering with Computers, Vol. 38, 2022, p. 4675–4695. https://doi.org/https://doi.org/10.1007/s00366-022-01713-7.

[6] Chrisochoides, N., “Telescopic Approach for Extreme-Scale Parallel Mesh Generation for CFD Applications,” 46th AIAA Fluid
Dynamics Conference, Washington D.C., USA, 2016. https://doi.org/10.2514/6.2016-3181, aIAA 2016-3181.

[7] Loseille, A., Menier, V., and Alauzet, F., “Parallel Generation of Large-size Adapted Meshes,” Procedia Engineering, Vol. 124,
2015, pp. 57–69. https://doi.org/https://doi.org/10.1016/j.proeng.2015.10.122, URL https://www.sciencedirect.com/science/
article/pii/S1877705815032233, 24th International Meshing Roundtable.

[8] Park, M., and Darmofal, D., “Parallel Anisotropic Tetrahedral Adaption,” 46th AIAA Aerospace Sciences Meeting and Exhibit,
Reno, Nevada, USA, 2008. https://doi.org/10.2514/6.2008-917, aIAA 2008-917.

[9] Sultana, N., Ruefenacht, M., Skjellum, A., Bangalore, P., Laguna, I., and Mohror, K., “Understanding the use of message
passing interface in exascale proxy applications,” Concurrency and Computation: Practice and Experience, Vol. 33, 2020.
https://doi.org/10.1002/cpe.5901.

[10] Klenk, B., and Fröning, H., “An Overview of MPI Characteristics of Exascale Proxy Applications,” International Conference
on High Performance Computing, 2017, pp. 217–236. https://doi.org/https://doi.org/10.1007/978-3-319-58667-0_12.

[11] Tsolakis, C., Chrisochoides, N., Park, M. A., Loseille, A., and Michal, T., “Parallel Anisotropic Unstructured Grid Adaptation,”
AIAA Journal, Vol. 59, 2021, pp. 4764–4776.

[12] On the Role of Scientific Thought, Springer-Verlag, Berlin, Heidelberg, 1982.

12

https://doi.org/10.1109/TPDS.2004.1264800
https://doi.org/10.1109/TPDS.2004.1264800
https://doi.org/https://doi.org/10.1007/s00366-022-01713-7
https://doi.org/10.2514/6.2016-3181
https://doi.org/https://doi.org/10.1016/j.proeng.2015.10.122
https://www.sciencedirect.com/science/article/pii/S1877705815032233
https://www.sciencedirect.com/science/article/pii/S1877705815032233
https://doi.org/10.2514/6.2008-917
https://doi.org/10.1002/cpe.5901
https://doi.org/https://doi.org/10.1007/978-3-319-58667-0_12

[13] Tsolakis, C., Thomadakis, P., and Chrisochoides, N., “Tasking Framework for Adaptive Speculative Parallel Mesh Generation,”
The Journal of Supercomputing, Vol. 78, 2022, pp. 1–32. https://doi.org/https://doi.org/10.1007/s11227-021-04158-9.

[14] Tsolakis, C., “A Unified Framework for Parallel Anisotropic Mesh Adaptation,” Ph.D. thesis, Old Dominion University, 2021.
https://doi.org/10.25777/ask4-r595.

[15] Ibanez, D., Barral, N., Krakos, J., Loseille, A., Michal, T., and Park, M., “First benchmark of the Unstructured Grid Adaptation
Working Group,” Procedia Engineering, Vol. 203, 2017, pp. 154–166. https://doi.org/https://doi.org/10.1016/j.proeng.2017.09.
800, URL https://www.sciencedirect.com/science/article/pii/S1877705817343618, 26th International Meshing Roundtable,
IMR26, 18-21 September 2017, Barcelona, Spain.

[16] Thomadakis, P., and Chrisochoides, N., “Toward runtime support for unstructured and dynamic exascale-era applications,” The
Journal of Supercomputing, Vol. 79, 2023, p. 9245–9272. https://doi.org/https://doi.org/10.1007/s11227-022-05023-z.

[17] Zagaris, G., Pirzadeh, S., and Chrisochoides, N., “A Framework for Parallel Unstructured Grid Generation for Practical
Aerodynamic Simulations,” 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace
Exposition, Orlando, Florida, USA, 2013. https://doi.org/10.2514/6.2009-980.

[18] Chrisochoides, N., Chernikov, A., Kennedy, T., Tsolakis, C., and Garner, K., “Parallel Data Refinement Layer of a Telescopic
Approach for Extreme-scale Parallel Mesh Generation for CFD Applications,” 2018 Aviation Technology, Integration, and
Operations Conference, Atlanta, Georgia, 2018. https://doi.org/10.2514/6.2018-2887, aIAA 2018-2887.

[19] Garner, K., “Parallelization of the Advancing Front Local Reconnection Mesh Generation Software Using a Pseudo-Constrained
Parallel Data Refinement Method,” Ph.D. thesis, Old Dominion University, 2020. https://doi.org/10.25777/appr-3169.

[20] Foteinos, P. A., and Chrisochoides, N. P., “High quality real-time Image-to-Mesh conversion for finite element simulations,”
Journal of Parallel and Distributed Computing, Vol. 74, No. 2, 2014, pp. 2123–2140. https://doi.org/https://doi.org/10.1016/j.
jpdc.2013.11.002, URL https://www.sciencedirect.com/science/article/pii/S0743731513002232.

[21] Thomadakis, P., and Chrisochoides, N., “Experience with Distributed Memory Delaunay-based Image-to-Mesh Conversion
Implementation,” arXiv, 2023.

[22] Hoefler, T., and Träff, J., “Sparse collective operations for MPI,” 23rd IEEE International Symposium on Parallel and Distributed
Processing, 2009, pp. 1–8. https://doi.org/10.1109/IPDPS.2009.5160935.

[23] Michal, T., and Krakos, J., “Anisotropic Mesh Adaptation Through Edge Primitive Operations,” 50th AIAA Aerospace Sciences
Meeting Including the New Horizons Forum and Aerospace Exposition, 2012. https://doi.org/10.2514/6.2012-159, aIAA
2012-0159.

[24] Chrisochoides, N., Houstis, E., and Rice, J., “Mapping Algorithms and Software Environment for Data Parallel PDE
Iterative Solvers,” Journal of Parallel and Distributed Computing, Vol. 21, No. 1, 1994, pp. 75–95. https://doi.org/https:
//doi.org/10.1006/jpdc.1994.1043, URL https://www.sciencedirect.com/science/article/pii/S0743731584710434.

[25] Loseille, A., and Alauzet, F., “Continuous Mesh Framework Part I: Well-Posed Continuous Interpolation Error,” SIAM Journal
on Numerical Analysis, Vol. 49, No. 1, 2011, pp. 38–60. https://doi.org/10.1137/090754078, URL https://doi.org/10.1137/
090754078.

[26] Loseille, A., and Alauzet, F., “Continuous Mesh Framework Part II: Validations and Applications,” SIAM Journal on Numerical
Analysis, Vol. 49, No. 1, 2011, pp. 61–86. https://doi.org/10.1137/10078654X, URL https://doi.org/10.1137/10078654X.

[27] Park, M. A., Loseille, A., Krakos, J. A., and Michal, T. R., “Comparing Anisotropic Output-Based Grid Adaptation Methods by
Decomposition,” 2015. AIAA 2015-2292.

[28] Alauzet, F., “Size gradation control of anisotropic meshes,” Finite Elements in Analysis and Design, Vol. 46, No. 1, 2010, pp.
181–202. https://doi.org/https://doi.org/10.1016/j.finel.2009.06.028, URL https://www.sciencedirect.com/science/article/pii/
S0168874X09000912, mesh Generation - Applications and Adaptation.

[29] Alauzet, F., and Loseille, A., “High-order sonic boom modeling based on adaptive methods,” Journal of Computational Physics,
Vol. 229, No. 3, 2010, pp. 561–593. https://doi.org/https://doi.org/10.1016/j.jcp.2009.09.020, URL https://www.sciencedirect.
com/science/article/pii/S0021999109005129.

[30] Park, M., Balan, A., Anderson, K., Galbraith, M., Caplan, P., Carson, H., Michal, T., Krakos, J., Kamenetskiy, D., Loseille, A.,
Alauzet, F., Frazza, L., and Barral, N., “Verification of Unstructured Grid Adaptation Components,” AIAA Scitech 2019 Forum,
2019. https://doi.org/10.2514/6.2019-1723, aIAA-1723.

13

https://doi.org/https://doi.org/10.1007/s11227-021-04158-9
https://doi.org/10.25777/ask4-r595
https://doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://doi.org/https://doi.org/10.1016/j.proeng.2017.09.800
https://www.sciencedirect.com/science/article/pii/S1877705817343618
https://doi.org/https://doi.org/10.1007/s11227-022-05023-z
https://doi.org/10.2514/6.2009-980
https://doi.org/10.2514/6.2018-2887
https://doi.org/10.25777/appr-3169
https://doi.org/https://doi.org/10.1016/j.jpdc.2013.11.002
https://doi.org/https://doi.org/10.1016/j.jpdc.2013.11.002
https://www.sciencedirect.com/science/article/pii/S0743731513002232
https://doi.org/10.1109/IPDPS.2009.5160935
https://doi.org/10.2514/6.2012-159
https://doi.org/https://doi.org/10.1006/jpdc.1994.1043
https://doi.org/https://doi.org/10.1006/jpdc.1994.1043
https://www.sciencedirect.com/science/article/pii/S0743731584710434
https://doi.org/10.1137/090754078
https://doi.org/10.1137/090754078
https://doi.org/10.1137/090754078
https://doi.org/10.1137/10078654X
https://doi.org/10.1137/10078654X
https://doi.org/https://doi.org/10.1016/j.finel.2009.06.028
https://www.sciencedirect.com/science/article/pii/S0168874X09000912
https://www.sciencedirect.com/science/article/pii/S0168874X09000912
https://doi.org/https://doi.org/10.1016/j.jcp.2009.09.020
https://www.sciencedirect.com/science/article/pii/S0021999109005129
https://www.sciencedirect.com/science/article/pii/S0021999109005129
https://doi.org/10.2514/6.2019-1723

[31] Luby, M., “A Simple Parallel Algorithm for the Maximal Independent Set Problem,” Proceedings of the Seventeenth Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York, NY, USA, 1985, p. 1–10.
https://doi.org/10.1145/22145.22146, URL https://doi.org/10.1145/22145.22146.

14

https://doi.org/10.1145/22145.22146
https://doi.org/10.1145/22145.22146

	Nomenclature
	Introduction
	Background
	Shared Memory Mesh Generation
	Parallel Runtime System

	Related Work
	Distributed Memory Method
	High-level Algorithm
	Distributed Data Structures
	Requirements for the Distributed Method's Design

	Preliminary Results
	Grid Adaptation Method
	Experimental Setup
	Delta Wing Geometry
	Qualitative Improvement from Interface Shifts and MII Adaptation
	Relative Performance When Avoiding Global Synchronization

	Conclusion

