
Future particle accelerators will exceed by far the current data size (1015) per experiment, and high-
luminosity program(s) will produce more than 300 times as much data. Classical Machine Learning (ML)
likely will benefit from new tools based on quantum computing. Particle track reconstruction is the
most computationally intensive process in nuclear physics experiments. A combinatorial approach
exhaustively tests track measurements (“hits”), represented as images, to identify those that form an
actual particle trajectory, which is then used to reconstruct track parameters necessary for the physics
experiment. Quantum Machine Learning (QML) could improve this process in multiple ways, including
denoising the data, classifying candidate tracks, and reconstructing the track parameters without
conventional processing.
We will present our contributions to the candidate track classification problem using a quantum
convolutional network, for Noisy Intermediate-Scale Quantum (NISQ) computers: (1) an artifact-free
image decomposition of the particle images into sub-images to cope with the 5% fidelity of a 12-qubit
circuit required for the encoding of the full image (currently used in classical ML); (2) improve fidelity by
70% utilizing Distributed NISQ (D-NSIQ) model that utilizes 128 cores to run our simulations on 5-qubit
Quantum Processor Units with different and realistic noise models; (3) evaluation of D-NISQ QML in
terms of accuracy against the 99% precision of an optimized classical convolutional network we
published recently.
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The CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12) is located at Hall B, one of the 
experimental halls at the Jefferson Lab in Newport News, VA, serving a variety of physics experiments with 
different running conditions. The forward part of CLAS12 is built around a superconducting toroidal 
magnet (Figure 1). The six coils of the toroid divide the detector azimuthally into six sectors. Each sector 
contains three multi-layer drift chamber (DC) for reconstructing the trajectories of charged particles 
originating from a fixed target. One sector is composed of three drift chambers (called “regions”), each 
consisting of two sections (called “super-layers”). 
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Fig. 1: View of CLAS12 detector showing Drift Chambers and Toroidal Magnet

• The Drift Chambers are used for tracking charged particles. Each super-layer has six layers of wires (12 
wire planes in each “region”) and each layer of wires has 112 hexagonal cells. 

• Figure 2 presents some example events shown for one sector at a time.

• The efficiency of track reconstruction relies on cleanly identifying segments (clusters) in each super-
layer. With increased noise, which arises from running with high beam intensity, removal of noise hits 
with conventional algorithms becomes less efficient, and with loss of segment the tracking efficiency 
suffers. 

• With this work, we study how Convolutional Auto-Encoders can improve the segment finding algorithm 
by removing uncorrelated hits from noisy raw data. 

Fig. 2: Example of Drift Chamber data with wire hits (gray circles) and hits identified as belonging to a 
track by tracking algorithm (red circles). Each plot presents data from one sector from different events. 
Cases with one and two tricks in one sector are shown.

• CNNs are a type of neural network known to perform better on data where spatial locality is important. 

• The convolutional layer reads an N-dimensional array as an initial input to the network or produced by a 
previous layer.  A kernel is a 2-dimensional array of weights, usually 3x3, that is used to apply 
convolution on the input. 

• The pooling layer reduces the dimensionality of the convolutional output

• The weights of the kernel are the parameters learned by the neural network and are adjusted between 
iterations through the process of backpropagation and gradient decent. 

Fig. 3: Architecture of the CNN network including the feature maps of each convolutional layer and fully 
connected layer. The number of neurons per layer is also included. 

We also explore the use of an analogous quantum circuit, the Quantum Convolutional Neural Network 
(QCNN) shown in Figure 4.

• First, a feature mapping of our image is encoded as a quantum circuit.

• The QCNN pooling layer reduces the dimensionality by discarding dependent qubits between layers.
• Each layer of the QCNN is parameterized meaning the circuit output can be attenuated towards a 

minimized loss function by classical computational means.

Fig. 4: Four qubit example of a QCNN architecture. Note that after the first pooling layer, qubits 𝑞! and 𝑞"
are “discarded” and are no longer part of the QCNN reducing the input dimensionality of the next layer. 
The final output is reliant on a single qubit existing in one of two states. Image taken from IBM’s Qiskit.

• The number of parameters to attune the network will rely heavily on our initial number of encoding 
qubits n

• Prior methods have shown that a feature mapping of encoding n qubits for an n pixel image yields 
quality results for the QCNN

• We will experiment with using an amplitude encoded feature mapping requiring only 𝑛 = log#𝑀𝐿
qubits for an 𝑀×𝐿 pixel image

We will be exploring a variety of parameterized unitary matrices for both the pooling and convolutional 
layers. These are to include the full generalized 15 parameter unitary gates as well as the sub space 
encoded 3 parameter 𝑁(𝛼, 𝛽, 𝛾) gate. The computational bottleneck lies in the attenuation of an 
increasing number of parameters depending on the composite unitary chosen as well as the exponential 
time it takes to execute quantum simulations. To mitigate this computational bottleneck on modern 
hardware, we propose to execute our computations on a simulated Distributed Noisy Intermediate Scale 
Quantum (D-NISQ) system.
• The first of four D-NISQ layers is the decomposition which is a partition of the image data as is common 

with classical neural networks.
• The classical to quantum layer is second with the distributed calculation of the quantum encoding 

(feature mapping) portion of the newly partitioned data.
• The quantum computation layer is the parallel execution of our encoded circuits for an epoch.

• The final layer is the quantum fusion layer where we may coalesce our data to find the cumulative 
error, update the QCNN parameters, then begin the process again.

• Past experiments have shown that the Old Dominion University Wahab cluster is an ideal candidate for 
the execution of these simulations in parallel on both GPU’s and CPU’s.

Fig. 5: Circuit implementation of 𝑁(𝛼, 𝛽, 𝛾) comprised of 5 single qubit rotations, 3 of which are 
parameterized, with 3 CNOT gates. This two qubit unitary covers a subspace of the full 𝑆𝑈 4 . Vatan, 
Farrokh, and Colin Williams. “Optimal quantum circuits for general two-qubit gates.”

• Each layer can be constructed as a series of two qubit unitary gates 𝑈 = 𝐴!⨂𝐴" 𝑁(𝛼, 𝛽, 𝛾) 𝐴#⨂𝐴$
• 𝑁(𝛼, 𝛽, 𝛾) ∈ 𝑆𝑈 4 constructed with three parameterized rotations

• 𝐴% ∈ 𝑆𝑈 2 which gives 𝑈(4) a total of 15 parameters to span the entire Hilbert space to find the 
optimal QCNN solution

• The required number of parameters required will most likely rely on the encoding method chosen

Fig. 6: Amplitude encoding circuit for a binary particle trace image broken into domain sizes of n
qubits. Metrics are average across all circuits for each domain.

We first show promising image encoding results on NISQ era hardware. The image encoding portion 
of the QCNN methodology is applied before the first convolutional layer.

https://qiskit.org/documentation/machine-learning/tutorials/11_quantum_convolutional_neural_networks.html

