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Abstract

In this article, we present the results of using Convolutional Auto-Encoders for de-noising raw

data for CLAS12 drift chambers. The de-noising neural network provides increased efficiency in

track reconstruction, also improved performance for high luminosity experimental data collection.

The de-noising neural network used in conjunction with the previously developed track classifier

neural network [1] lead to a significant track reconstruction efficiency increase for current luminosity

(0.6 × 1035 cm−2 sec−1 ). The increase in experimentally measured quantities will allow running

experiments at twice the luminosity with the same track reconstruction efficiency. This will lead to

huge savings in accelerator operational costs, and large savings for Jefferson Lab and collaborating

institutions.
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INTRODUCTION

During the past few years, there was a big interest in using Artificial Intelligence (AI) in

various areas of nuclear physics, from data processing to physics analysis. With continuously

improving methods of Machine Learning (ML) and computational hardware, it becomes

easy to substitute some computational tasks with ML algorithms leading to a smaller and

computationally more efficient codebase. In this article, we discuss the implementation of

Convolutional Auto-Encoders for de-noising data from CLAS12 [2] tracking detectors (Drift

Chambers [3]). The de-nosing was used to analyze simulated data to measure improvement

in track reconstruction efficiency.

CLAS12 DRIFT CHAMBERS

The Drift Chambers (DC), which are part of the large detector system of CLAS12 located

in the experimental Hall-B at Jefferson Lab. They are used for charged particle detection in

the forward direction (covering polar angles 5− 35◦). The CLAS12 forward detector is built

around a six-coil toroidal magnet which divides the active detection area into six azimuthal

regions called “sectors”. For each sector, there are separate drift chambers installed con-

sisting of 3 regions. Each region contains two super-layers, each of them containing 6 layers

of wires. Each layer of the drift chamber consists of 112 signal wires making each region

a matrix of 12x112. The raw signal from one sector makes a matrix of 36x112, which is

analyzed independently from other sectors to extract trajectories of charged particles from

raw signals.

Each super-layer is analyzed separately for each sector and hits grouped together along

the track trajectory are combined into clusters (or segments). In Figure 1 the procedure is

shown for one region where all the hits (dark gray) are shown on the left panel, and clusters

(red) are shown on the right panel, by grouping neighboring wires after removing noise hits.

Each super-layer may have multiple clusters. The tracking algorithm creates a list of track

candidates consisting of one cluster per super-layer and then analyzes the list to determine

which candidates form a valid track. The identified tracks are further refined by passing

them through Kalman filter [4]. Examples of analyzed events in one sector can be seen in

Figure 2, where 36x112 matrices for four sectors are shown (not from the same event) with
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FIG. 1. Example of clustering for one region of Drift Chambers. The left panel shows all the

hits detected in the drift chamber (for this particular region), and the right panel shows results of

clustering where some hits were identified as a background and were removed, and the remaining

hits were grouped to form a cluster.

all signal hits in all layers (top row). The hits for clusters for identified tracks are shown on

the bottom row.

FIG. 2. Example of reconstructed tracks in drift chambers. The signal hits in drift chambers are

shown on the top row. The hits (clusters) belonging to identified tracks are shown on the bottom

row. Dashed lines represent the boundaries of super-layers.
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As can be seen from the figure one or multiple tracks can be detected in one sector for the

event. The efficiency of finding these tracks depends on the cluster finding algorithm. With

increased luminosity, the number of background hits increases, and it becomes difficult to

separate background hits from signal hits due to heavy overlap between them. This results

in lost clusters and eventually in a decrease in track finding efficiency. In this work, Machine

Learning is used to remove background hits prior to the clustering algorithm to improve

cluster finding and consequentially track finding efficiency. The reconstructed experimental

data is used to train Convolutional Auto-Encoder for de-noising the drift chamber signal [5].

NEURAL NETWORK

The Convolutional Auto-Encoder is used to de-noise raw data from the CLAS12 drift

chambers [5]. The input and output for the network are matrices of size 36x112 representing

hits in one sector of drift chambers. The training data was extracted from experimental data

processed with CLAS12 reconstruction software. The raw hits (converted into a matrix) are

used as an input for the neural network and a matrix constructed only from hits that belong

to reconstructed tracks as an output (see Figure 2). In the training data set multiple track

hits were allowed in the output matrix, shown on Figure 2. The structure of the neural

network can be seen in Figure 3, where the input and the output are images of size 36x112.

Convolutional and Max Pool layers are used for encoding the image into smaller latent space

and then decoding it into an output image (of the same size as input) that contains only

the desired pixels activated.

FIG. 3. De-noising Convolutional Auto-Encoder architecture.

The networks are validated on experimental data where the number of hits along the
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track trajectory from de-noised are compared to the hits reconstructed by the conventional

algorithm as part of a valid track. An example of comparison can be seen in Figure 4 where

raw data (left column) are shown along with data with hits belonging to reconstructed

tracks identified by the conventional tracking algorithm (middle column) and reduced data

processed by a de-noising neural network (right column).
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FIG. 4. Results from the de-noising auto-encoder. The raw hits are shown in the left column for

five random events, along with hits reconstructed by the CLAS12 tracking algorithm in the middle

column. The resulting hits matrix from the de-noising raw hits are shown in the right column.

(Systematic studies of de-noiser performance can be found here [5])

As can be seen from the figure, the de-noising neural network removes all background hits

not associated with a track, while preserving hits belonging to a track. Systematic studies [5]

showed that more than 95% of the track related hits are preserved in the output of denoiser

while background hits are significantly suppressed for normal experimental conditions of

45 nA incident beam current. Systematic studies showed that in more than 85% of cases all
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6 clusters belonging to the track are fully identified by the algorithm after de-noising, and in

more than 97% of the cases, 5 clusters from the original track are recovered. The CLAS12

track reconstruction algorithm can reconstruct tracks with 6 or 5 clusters along the track

trajectory, which means that even if some clusters are lost due to de-noising procedure the

track efficiency does not suffer significantly from this.

For our implementation of de-noising software, we used TensorFlow/Keras [6] to train and

evaluate the network. The resulting network parameters (weights) were saved in a HDF5

file. The denoiser implementation for the CLAS12 reconstruction software is done using

DeepLearning4J [7] which supports model imports through HDF5 files. The data analy-

sis and data visualization are done using the GROOT [8] visualization package, developed

for the CLAS12 software infrastructure (in Java) and is publicly available through github

releases. GROOT is also included in Jas4pp[9] (data-analysis framework for physics and

detector studies). The de-noising is not yet implemented as a part of the CLAS12 recon-

struction workflow and works as a standalone package to process raw data before they are

analyzed with reconstruction software.

DATA DESCRIPTION

Monte-Carlo Simulation

For these studies, we used physics reactions generated using Pythia Monte-Carlo [10]

event generator, and generated events were processed with GEMC [11] (GEANT4 [12]

based detector simulation program) to produce data similar to experimental data. The

four charged particle final state (namely e−, π+, π−, p) is selected in the output of Pythia for

our studies. In addition, any number of neutral particles is allowed.

Simulated physics events were processed with the CLAS12 emulation software (GEMC)

that produces raw signal data (similar to experimental). Using these generated files new

files were generated emulating different luminosity experimental conditions using CLAS12

standard background merging program [13].

The background merging software uses real experimental data for given luminosity to

extract background hits from all detector components that can later be overlayed on top

of simulated data to emulate the realistic background conditions of the experiment. For
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our studies, we used background files from runs with beam currents of 45 nA, 50 nA, and

55 nA. Combining them sequentially we generated data corresponding to 45 nA, 95 nA,

and 150 nA. The 95 nA data sample was produced by merging the 45 nA background file

with the output of GEMC and then merging it with 50 nA background data. Similarly by

merging 45 nA, 50 nA, and 55 nA in a sequence we obtained a data sample corresponding to

150 nA. In further discussions, we refer to the original data sample simulated with Pythia

and processed with GEMC without background as 0 nA data. All comparisons of single

track efficiency and physics final state statistics are presented relative to those quantities

obtained from the 0 nA data sample.

Most CLAS12 experiments so far have run with a 45 nA−50 nA beam on a liquid hydrogen

target, and we want to measure the performance impact of the de-noising procedure for

standard running conditions, and also see if we can run at higher beam currents (luminosity)

which will increase the statistical power of experiments at given run time.

Data Analysis

To study the effect of the de-noising on particle reconstruction efficiency we processed the

produced data samples through the stand-alone denoiser program to create de-noised coun-

terparts of simulated data for each luminosity setting. Both data samples were processed

using the CLAS12 data reconstruction program. Then the track reconstruction efficiency

was calculated for both data samples (original and de-noised) as a function of luminos-

ity. The track reconstruction efficiency was calculated following the standard procedure for

CLAS12 [13]. The efficiency for positive tracks is defined as a ratio of events containing an

electron and a positive hadron (Neh+) to the number of inclusive events with an electron

reconstructed (Ne). The efficiency for negative tracks is calculated similarly:

L+
t =

Nh+e

Ne

, L−t =
Nh−e

Ne

(1)

where L+
t is the multiplicity for positive particles and L−t is the multiplicity for negatively

charged particles, respectively. In order to estimate the charged-particle reconstruction

efficiency as a function of the beam current, the multiplicity, L
+/−
t , is fitted with a linear

function:

L
+/−
t = a+ b× I (2)
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Here a and c are the fit parameters and I is the beam current. Then it is assumed that

the reconstruction efficiency, E = 1 at I = 0 nA:

E+/− = 1 + c× I (3)

with c = b
a
. The slope parameter c represents the variation of the reconstruction inefficiency

per unit of the beam current (nA) [13].

Artificial Intelligence Assisted Tracking

The CLAS12 data reconstruction software already contains neural networks helping to

identify track candidates from combinations of clusters reconstructed in each of the super-

layers of drift chambers [14]. This network already provides a big improvement in the

tracking efficiency compared to the conventional reconstruction algorithm. The impact on

physics (depending on the number of particles in the reaction) is a 15% − 35% increase

in statistics. In the recently developed reconstruction software, the user can choose to use

assistance from AI in identifying tracks or use purely the conventional algorithm to identify

track candidates. In our studies, we first investigated the improvement of the de-noising

algorithm by using the conventional algorithm to identify tracks. Then we extended these

studies to include AI track identification when processing raw and de-noised data. By doing

this we want to disentangle the performance improvements arising from de-noising and from

AI assistance.

PSEUDO-DATA ANALYSIS WITH DE-NOISING

In this section, we compare results from the analysis of the background merged MC

data sample with files that were de-noised prior to running through CLAS12 reconstruction

software. The comparison is done for data samples with different luminosities (namely

45 nA, 95 nA, and 150 nA electron beam incident on a 5cm long liquid hydrogen target).

The data for the raw sample and the de-noised sample is processed with the same settings of

CLAS12 reconstruction software and the tracks reconstructed in each sample are analyzed.
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Luminosity dependence

The track reconstruction efficiency is calculated according to Eqs. (1), (2) and (3) for

positively and negatively charged particles. The results are shown in Figure 5. The track

reconstruction efficiency is an integrated quantity over the particle phase space. In our

studies, we used a pre-selected simulation sample of three particles in the final state, which

does not necessarily have angular and momentum dependence similar to experimental data

and the efficiency dependence on beam current can reflect this. In these studies, we show a

relative increase in efficiency when our methods are applied to simulated data.

FIG. 5. Tracking efficiency as a function of luminosity (beam current) for positively (a) and

negatively (b) charged particle. The efficiency is shown for conventional algorithm running on

background merged files (diamonds), and on files with merged background then de-noised with AI

(circles).

As can be seen from the figure the number of reconstructed hadron-electron pairs relative

to the number of reconstructed electrons is higher for the de-noised data sample compared

to the raw data sample. This is due to an increased number of clusters reconstructed by

the conventional clustering algorithm in the de-noised data samples. Detailed studies of

cluster reconstruction efficiency are performed in our previously published article [5]. The

results show that the slope of the efficiency degradation as a function of the luminosity

is significantly improved in the de-noised data sample. It is worth noting that the track

reconstruction efficiency at 75 nA with a de-noised data sample is the same as for the 45 nA

when reconstructing raw data sample (without de-noising). This implies that the experiment
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can run effectively at 75 nA, collecting data twice faster while maintaining the same track

reconstruction efficiency, which will lead to higher experimental significance in measured

observables.

Physics Impact

The processed data was also evaluated to extract physics observables from both data

samples to discern the impact on physics for the de-noising algorithm. As mentioned be-

fore, the data selected from the Pythia simulation was for the final state H(e, e′π+π−p)X

containing exactly four charged particles. From this sample the missing mass distribution of

H(e, e′π+π−)X is analyzed showing a peak around proton mass where the selected reaction

is inclusive ρ meson production and some background (above proton mass) where other

reactions are present (with missing neutral particles).

In Figure 6 the results of the analysis are shown, where the missing mass distribution

H(e, e′π+π−)X is shown for different beam currents, in panels a), b) and c) the histograms

show relative reconstructed distributions. The graph with points shows the missing mass

reconstructed by the conventional tracking algorithm before any background is 0 nA for

reference. The filled histogram shows the missing mass distribution reconstructed from

background merged data with the conventional algorithm. The solid line histogram is the

missing mass distribution reconstructed by a conventional algorithm after the background

merged file is processed with a de-noising neural network to remove noise hits. The sum-

mary of the number of protons in the missing mass distribution relative to the original (no

background merged) distribution is presented in Figure 6 d). It can be seen from the figure

that the conventional algorithm reconstructs more tracks after de-noising the data. The

number of reconstructed proton final states at 75nA from de-noised data is equal to the

number of reconstructed final states at 45nA when using conventional track reconstruction

algorithms. Conducting experiments with higher incident beam current allows accumulating

the necessary statistics for the proposed experiments in significantly less time, leading to

huge savings in accelerator operations.
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FIG. 6. The de-noised data sample reconstructed with conventional algorithm (diamonds) for

45 nA, 95 nA and 150 nA. a), b) and c) reconstructed missing mass distributions for back-

ground merged data set reconstructed with conventional tracking (filled histogram) and de-noised

data sample reconstructed with conventional algorithm (solid line histogram). d) The number of

reconstructed protons from missing mass of H(e→ e′π+π−)X for background merged data set re-

constructed with conventional tracking (squares) compared to de-noised data sample reconstructed

with conventional algorithm (diamonds) for 45 nA, 95 nA and 150 nA.

ANALYSIS OF DE-NOISING DATA WITH AI ASSISTANCE

The two data samples, background merged and de-noised were also processed with

the new reconstruction software, which includes AI-assisted track candidate identifica-

tion [15],[16]. The reconstruction software is designed to be able to process data in two

parallel branches: in one branch it reconstructs tracks with the conventional algorithm where

track candidates are identified by fitting all combinations of clusters forming a candidate and

choosing candidates that pass the “goodness” of the fit criteria; and in the second branch,

AI classifies tracks from the list of candidates created from all combinations of clusters

forming a track. The details on track candidate identification, software implementation,

and the resulting outcome for increased track reconstruction efficiency can be found in [1].

Two samples were processed and a comparison was made between conventional tracking
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algorithms from raw background merged files and the output of the de-noised data sample

with and without AI-assisted tracking.

Luminosity dependence

The track reconstruction efficiency was calculated for the three samples using Eqs. (1),(2)

and (3). The results are presented in Figure 7. It can be seen from the figure that using AI-

assisted tracking on the de-noised data sample further improves reconstruction efficiency.

The raw background merged data sample exhibits a tracking efficiency decline of 0.23%

per nA, while the combination of de-noising and AI-assisted tracking reduces this slope to

0.12% per nA (almost a factor of 2), resulting in an efficiency of 86% at beam current 150 nA

compared to 88% at 45 nA beam current.

FIG. 7. Tracking efficiency as a function of luminosity (beam current) for positively (a) and

negatively (b) charged particles. The efficiency is shown for conventional algorithm running on

background merged files (diamonds), and on files with merged background then de-noised (circles),

and de-noised data reconstructed with AI assistance (triangles).

This is a significant improvement in tracking efficiency when using both AI-assisted track-

ing with de-noising for a beam current 3 times higher than the current data collecting con-

ditions.
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Physics Impact

Furthermore, the physics impact was studied for the de-noised data sample processed

with AI-assisted tracking. The same data sample was used in these studies with selected

H(e, e−π+π−p)X event from Pythia Monte-Carlo simulations, and analyzed for missing

mass of H(e, e−π+π−)X, where the number of protons was extracted from the missing mass

distribution.

FIG. 8. The de-noised data sample was reconstructed with an AI-assisted tracking algorithm

(triangles) for 45 nA, 95 nA, and 150 nA. a), b) and c) reconstructed missing mass distributions

for background merged data set reconstructed with conventional tracking (filled histogram) and de-

noised data sample reconstructed with AI-assisted algorithm (solid line histogram). Missing mass

distribution for data sample before background merging (0 nA) is shown (circles) for reference. The

number of reconstructed protons from missing mass of H(e → e′π+π−)X for background merged

data set reconstructed with conventional tracking (squares) compared to de-noised data sample

reconstructed with conventional algorithm (diamonds) d).

The distributions of missing mass spectra are shown in Figure 8 for different beam current

backgrounds. In a), b) and c) the missing mass distributions are shown for the background

merged data samples processed with the conventional algorithm (filled histogram) and the

reconstructed missing mass after data de-noising and reconstructing with AI-assisted track-
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ing (line histogram). The graphs (circles) on all three plots show the missing mass distri-

bution reconstructed from the generated data sample before any background is added for

reference. In Figure 8 d) the summary of the studied data samples is presented. The back-

ground merged data samples analyzed with the conventional tracking algorithm (squares)

show a sharp decline in the number of reconstructed protons in the missing mass peak.

Pre-processing data with the de-noising auto-encoders and processing with the conventional

algorithm (diamonds) improves the physics outcome due to improved single-track efficiency.

The biggest improvement comes from using AI-assisted track classification software after

de-noising the drift chambers data (triangles).

DISCUSSION

Studies with simulated data indicate that using de-noising auto-encoders significantly

improves the performance of the conventional CLAS12 tracking algorithm, see Figure 6 d).

Further improvements come from using the already established AI-assisted track classifier

network with the de-noised data, see Figure 8 d).

It is evident from these studies that the analysis of existing data can benefit from this

approach to tracking by an increase of statistical significance of physics observables. The

numbers for reconstructed protons for each background setting and method of track recon-

struction are summarized in Table I. Using de-noising and AI-assisted tracking the statistics

(in this particular case of three detected particles) increases by 26%.

As can be seen from the table, background merged simulated data processed with de-

noising and the AI-assisted tracking leads to more events in the missing mass peak than

data reconstructed with the conventional tracking algorithm.

Conducting experiments with 95 nA incident beam energy will take twice less time to

accumulate the same number of events as at 45 nA analyzed with the conventional tracking.

Even though the number of reconstructed nucleons is bigger when running at 45 nA and

using improved tracking (including AI de-noising and the AI classifier), the argument can

be made that the collected statistics at 95 nA (because of the rate of interactions at higher

incident beam current) will lead to more physics relevant statistics even with slightly lower

track reconstruction efficiency. The second half of Table I shows the ratio of the number of

nucleons in the missing mass peak for different beam currents and algorithms used. It can
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Stats Conventional De-noised De-noised + AI CL

nucleons (45 nA) 27225 30576 34277

nucleons (95 nA) 17125 23845 29428

nucleons (150 nA) 1576 17018 23601

ratio to conventional 45nA 1.0 1.12 1.26

ratio to conventional 95nA 1.0 1.39 1.72

ratio to conventional 150nA 1.0 10.80 14.97

TABLE I. Number of extracted nucleons from missing mass distribution for different beam currents

and different reconstruction methods. The bottom of the table presents the ratio of the number of

nucleons for different methods to the number for conventional tracking algorithm at 45 nA for all

incident beam currents.

be seen that with increased beam current the denoiser gain over the conventional algorithm

is exponentially increasing, indicating that the denoiser is very efficient in isolating hits that

potentially belong to a “true” track candidate. This study suggests that augmenting tracking

algorithms with artificial intelligence opens the possibility of conducting experiments at

higher luminosity collecting larger data samples for physics reactions in a shorter time.

This will definitely affect the estimation of experimental running conditions for the CLAS12

detector for future experiments.

SUMMARY

In this article we present a Machine Learning approach to de-noising detector data, the

CLAS12 drift chambers specifically, using Convolutional Auto-Encoders. The data processed

with the neural network and further processed with conventional tracking resulted in a

significant increase in the number of reconstructed tracks. The study performed on simulated

data shows a significant improvement in track reconstruction efficiency as a function of

experimental luminosity. Using de-noising in combination with AI-assisted tracking further

improves the track reconstruction efficiency. The resulting increase of physics events in MC

is estimated to be 26% for three-particle final Staten the reaction H(e, e′π+π−)p for the

nominal experimental luminosity of CLAS12 (45 nA electron beam and a 5 cm long liquid
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hydrogen target). The efficiency of track reconstruction from the 95 nA beam background

merged MC data using the de-noising and AI-assisted tracking are equal to the efficiency of

the conventional tracking from the 45 nA background merged data. This can lead to the

possibility of running experiments at a higher luminosity and accumulating the same physics

statistics in 2.5 times shorter time.

16



ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office

of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and NSF grant

no. CCF-1439079 and the Richard T. Cheng Endowment. This work was performed using

the Turing and Wahab computing clusters at Old Dominion University.

17



[1] G. Gavalian, P. Thomadakis, A. Angelopoulos, N. Chrisochoides, R. De Vita, and V. Ziegler,

“CLAS12 Track Reconstruction with Artificial Intelligence,” 2 2022.

[2] V. Burkert et al., “The CLAS12 Spectrometer at Jefferson Laboratory,” Nucl. Instrum. Meth.

A, vol. 959, p. 163419, 2020.

[3] M. Mestayer et al., “The CLAS12 drift chamber system,” Nucl. Instrum. Meth. A, vol. 959,

p. 163518, 2020.

[4] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of

Basic Engineering, vol. 82, pp. 35–45, 03 1960.

[5] P. Thomadakis, A. Angelopoulos, G. Gavalian, and N. Chrisochoides, “De-noising drift cham-

bers in CLAS12 using convolutional auto encoders,” Comput. Phys. Commun., vol. 271,

p. 108201, 2022.

[6] “Keras library.” https://keras.io/. Accessed: 2020-07-14.

[7] “Deep learning for java.” https://deeplearning4j.konduit.ai. Accessed: 2020-07-14.

[8] “Groot data visualization library.” https://github.com/gavalian/groot. Accessed: 2022-

01-26.

[9] S. V. Chekanov, G. Gavalian, and N. A. Graf, “Jas4pp — A data-analysis framework for

physics and detector studies,” Comput. Phys. Commun., vol. 262, p. 107857, 2021.

[10] C. Bierlich, “Pythia, high energy physics event generator.” https://pythia.org.

[11] M. Ungaro, “Geant based monte-carlo.” https://gemc.jlab.org/gemc/, 2020.

[12] “Geant simulation toolkit.” https://geant4.web.cern.ch.

[13] S. Stepanyan et al., “CLAS12 FD charge particle reconstruction efficiency and the beam

background merging,” CLAS12-NOTE, 2020-005, 2020.

[14] G. Gavalian, P. Thomadakis, A. Angelopoulos, V. Ziegler, and N. Chrisochoides, “Using

Artificial Intelligence for Particle Track Identification in CLAS12 Detector,” 8 2020.

[15] G. Gavalian, P. Thomadakis, A. Angelopoulos, V. Ziegler, and N. Chrisochoides, “Using Ar-

tificial Intelligence for Particle Track Identification in CLAS12 Detector,” 2008.12860, arXiv,

cs.CV, 2020.

[16] G. Gavalian, “Auto-encoders for Track Reconstruction in Drift Chambers for CLAS12,” 9

2020.

18

https://keras.io/
https://deeplearning4j.konduit.ai
https://github.com/gavalian/groot
https://pythia.org
https://gemc.jlab.org/gemc/
https://geant4.web.cern.ch

	CLAS12 Track Reconstruction with Artificial Intelligence
	Abstract
	 Introduction
	 CLAS12 Drift Chambers
	 Neural Network
	 Data Description
	 Monte-Carlo Simulation
	 Data Analysis
	 Artificial Intelligence Assisted Tracking

	 Pseudo-data analysis with de-noising
	 Luminosity dependence
	 Physics Impact

	 Analysis of De-Noising data with AI assistance
	 Luminosity dependence
	 Physics Impact

	 Discussion
	 Summary
	 Acknowledgments
	 References


