
Towards Runtime Support for Domain-Specific
Languages of Adaptive and Irregular

Applications

Polykarpos Thomadakis and Nikos Chrisochoides
{pthomadakis,nikos}@cs.odu.edu

Old Dominion University, Norfolk VA 23508, USA

Abstract. We present performance and ease-of-use improvements to a
runtime for Domain Specific Languages of irregular applications. Support
for message-driven global address space is integrated with lightweight
threads which in combination with fine-grained concurrency improves the
system’s performance and load balancing in shared and distributed mem-
ory. We observe up to 100% difference in performance behavior for dif-
ferent lightweight thread creation strategies. Evaluations on a 1960-core
distributed memory machine show that the integration of fine-grained
concurrency with the runtime achieves performance improvements of
12% on a seismic wave simulation benchmark, as opposed to 50% degra-
dation with OpenMP. Studies on workload decomposition on the same
benchmark showed that over-decomposition on both data and task level
produces the best results.

Keywords: Active Messages, Distributed Computing, Tasking, Adaptive and
irregular applications, Runtime support software.

1 Introduction

Developing efficient applications for modern, large scale, heterogeneous comput-
ing platforms require a lot of effort and expertise in both the application and the
systems domain. This is even more relevant for unstructured and irregular appli-
cations whose workflow is not statically predictable and heavily depends on the
input. Our solution is the introduction of a high-level Domain Specific Language
(DSL) that hides the idiosyncrasies of the hardware and the effort required for
maintaining correctness, to transparently scale applications. In this work, we
focus on the runtime framework, namely the Parallel Runtime Environment for
Multicore Applications (PREMA) [1, 2] that serves as its backend.

An effective runtime should address the following fundamental issues in par-
allel computing: a) global namespace, b) scheduling and load balancing, c) la-
tency hiding, d) fault resilience, e) heterogeneity and performance portability.
Currently, PREMA addresses the former three while work is in progress for the
latter two. In the process of designing and implementing high-level DSL con-
structs on top of PREMA, we realized some of its limitations, also found in other

2 Polykarpos Thomadakis et al.

similar systems, that inhibit its performance and ease-of-use. These limitations
include: 1) remote method invocations (Active Messages) or tasks have to run
to completion to avoid delaying the progress engine, 2) inability to preempt task
execution, 3) lack of fine-grained parallelism inside remote method invocations.
We overcome these limitations by integrating PREMA with Argobots [3].

Parallel Runtime Environment for Multicore Applications (PREMA)
supports applications targeting large-scale computing platforms. Its goal is to
alleviate users from the burden of dealing with work scheduling and load balanc-
ing on both shared and distributed memory. To achieve this, PREMA introduces
a mobile object-driven (MOD) programming model where interactions are ex-
pressed as remote method invocations (handlers in PREMA) between mobile ob-
jects rather than processes or threads. A mobile object is a location-independent
container that encapsulates semi-isolated, coarse-grained application data which
can be located anywhere in the distributed memory and can be implicitly moved
by the runtime. Handlers can be invoked on mobile objects uniformly, regardless
of whether their data are local or remote.

By utilizing the MOD programming model and associating remote handlers
with access privileges, an application is able to transparently run on multi-core
distributed platforms without explicitly handling concurrency. PREMA is able
to extract shared-memory parallelism by running non-conflicting handlers con-
currently and allowing threads to shared their workload. On the distributed
memory level, it can migrate mobile objects between different computing nodes
in order to provide distributed-memory load balancing. To increase flexibility,
the framework exposes a simple and isolated module that allows easy experimen-
tation/development of new 2-level load balancing/scheduling policies without
affecting the application code.

Argobots is a low-level, lightweight, threading, and tasking framework devel-
oped with exascale computing platforms in mind. Argobots’ execution model
consists of two levels of parallelism: Execution Streams (ESs) that map to a
hardware thread and guarantee progress, and Work Units (WUs) which rep-
resent execution units running within a ES. A WU can either be a User-level
Thread (ULT), which has its own stack and can explicitly yield, or a Tasklet,
which shares the stack of an ES and runs to completion. Apart from opera-
tions to create, join, and yield a ULT, Argobots provide a set of synchronization
tools (e.g., mutexes) that leverage the ULTs’ ability to yield. Libraries such as
OpenMP, Intel TBB1, and others [4–6] also deliver fine-grained and efficient
task scheduling. However, they provide little to no control over task scheduling,
hide thread pools, and do not allow thread yielding explicitly. Argobots pro-
vide all these and also incorporate hooks for integration with MPI and power
management systems which renders it the best choice for our runtime.

Contributions This paper presents an effort to address challenges related to
message-driven runtime frameworks, like PREMA, by using lightweight threads

1 https://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.html

Towards Runtime Support for DSL of Adaptive and Irregular Applications 3

tightly integrated with message-passing. We use Argobots to demonstrate a num-
ber of optimizations, including threads capable of preemption. In [7], we demon-
strate that Argobots perform on par or better than OpenMP and TBB as a
tasking framework in the context of Adaptive Speculative Parallel Mesh Gen-
eration. We extend this work to provide distributed intra-handler parallelism,
allowing applications to further decompose handlers into shared tasks (tasklets)
that avoid resource over-subscription and are able to utilize PREMA’s underly-
ing threads. We experiment with different approaches for handler/task creation,
and utilize lightweight threads that allow blocking in handler invocations while
avoiding possible cases of live-locks and other pertinent latencies. Finally, we
evaluate the performance of our fine-grained tasking module on top of PREMA
on a seismic wave simulation benchmark. We observe significant performance
improvements when exploiting domain and task over-decomposition.

2 Related Work

Distributed memory runtime systems have been used since the beginning of the
field of High-Performance Computing [8]. Systems like Split-C [9] and UPC [10]
introduced the partitioned global address space (PGAS) environment for parallel
computing as an extension to the C language, using globally accessible arrays dis-
tributed among the computing nodes. Hiding message-passing into global array
accesses makes it feasible to achieve functional programs by sharing a common
virtual address space; however, it is difficult for developers to optimize remote
accesses since they are implicit. In addition, data allocation is static and cannot
change based on dynamic load. Titanium [11] made inter-node communication
explicit; however, data migrations are still not supported.

Chapel [12] extends the PGAS languages model with an asynchronous ap-
proach and the abstraction of locales. Locales can be either an abstracted or
real machine component where data or computations can reside; work and data
are then assigned to them explicitly. Even though Chapel supports shared mem-
ory tasking, distributed load balancing has to be explicitly implemented by the
application developer. HPX [13] is another task-based runtime using the asyn-
chronous PGAS approach. HPX does not support distributed load balancing,
although it does so in the shared memory. Thus, these systems are not suitable
for developing irregular applications that require dynamic data redistributions.

3 Integration of PREMA and Argobots

In this section, we present the integration PREMA’s software layers, namely
the Data Movement and Control Substrate (DMCS), the Mobile Object Layer
(MOL), and the Implicit Load Balancing (ILB) with Argobots.

DMCS incorporates MPI to utilize multiple computing nodes in a high-
performance computing platorm, as well as PThreads to take advantage of the
hardware cores of each node. DMCS provides functionality similar to Active
Messages, i.e., each message sent is associated with a function call to be invoked

4 Polykarpos Thomadakis et al.

Task Pool
Empty

Deadlock

Task Pool

T1

A1
A3

T2

T3

X
X

Scheduler context
if(check_task_pool())
 run_next_task();

Scheduler contextTask Pool

A1
A3

T2

T3

X
X

check_task_pool();

run_next_task();

T1 context
do_work1();
wait_until(A3);

Task Pool

T2 context
do_work2();
wait_until(A1);

do_more_work2();

check_task_pool();

run_next_task();

T1 context
do_work1();
wait_until(A3);

Task Pool

A1
A3

X
✓

T3 context
do_work3();

check_task_pool();

run_next_task();

T1 context
do_work1();
wait_until(A3);

Task Pool

A1
A3

X
✓

wait_until(condition)
{
 while(!condition)
 {
 if(!check_task_pool())
 run_next_task();
 }
}

if(check_task_pool())
 run_next_task();

POSIX Threads

T1
pushed back
to task pool

T2
pushed back
to task pool

Scheduler context
if(check_task_pool())
 run_next_task();

Suspended Tasks

T1 context
do_work1();

wait_until(A3);

do_more_work1();

T2 context
do_work2();
wait_until(A1);

do_more_work2();

Scheduler context
if(check_task_pool())
 run_next_task();

Task Pool

A1
A3

X
✓

T3 context
do_work3();

Suspended Tasks

T1 context

Task Pool

A1
A3

✓
✓ do_more_work1();

T2 context

Task Pool

A1
A3

✓
✓ do_more_work2();

wait_until(condition)
{
 if(!condition)
 {
 save_context();
 suspend_task();
 }
}

Argobots

A1
A3

T3

X
X

Scheduler context

if(check_task_pool())
 run_next_task();

T1 context
do_work1();
wait_until(A3);

do_more_work1();

do_more_work1();

Scheduler context

if(check_task_pool())
 run_next_task();

T2 context
do_work2();
wait_until(A1);

do_more_work2();

do_more_work1();

Scheduler context

if(check_task_pool())
 run_next_task();

T2 context
do_work2();
wait_until(A1);

do_more_work2();

do_more_work1();

Task Pool

T1

A1
A3

T1

T1

T2

T3

X
X

Task Pool

A1
A3

T2

T3

X
X

Scheduler context
if(check_task_pool())
 run_next_task();

Task Pool

A1
A3

T2

T3

X
X

T2

Scheduler context
if(check_task_pool())
 run_next_task();

Scheduler context
if(check_task_pool())
 run_next_task();

Scheduler context
if(check_task_pool())
 run_next_task();

T2

Fig. 1. An example of a blocking handler causing deadlock (left), and how using Ar-
gobots solves this issue (right).

on the receiver side once the message is received. This layer is divided into three
components: the application, the communication, and the handler-execution
component. The application component runs on the default, implicitly-created
Argobots ES. The handler-execution component consists of multiple ESs, usu-
ally one less than the number of cores residing on a computing node, responsible
of executing remote handlers. The application and handler-execution compo-
nents run customized Argobots schedulers, each assigned with a primary work
pool while accessing each others’ pools for work-stealing. The communication
component encapsulates all the message-passing related operations and is either
handled by a dedicated stream or the handler-executing and application compo-
nents when the rest of their work has been completed. When a remote method
invocation request is received in the communication component, a new ULT is
created that is pushed to a randomly selected pool of the handler execution com-
ponent or to the application component’s work pool. In section 5.1, we evaluate
different approaches for handler/task creation using Argobots.

By encapsulating remote handler invocations in ULTs their execution can
be interrupted at any point allowing others handlers to execute on the same
hardware thread. Using the yielding functionality, an application can suspend
a running ULT that has to wait for some resource to mitigate latencies. In
contrast, in the PThreads implementation, using busy waiting inside a handler
for reasons other than for sending a message was discouraged as it could cause
starvation or even deadlocks. The issue arises by the implementation of the
wait until([condition]) operation, which blocks the running thread until the given
condition evaluates to true. To avoid wasting cycles while waiting, PREMA tries
to find another task to run by popping the next task available in the work-pools;
however, when used from inside a handler, it can lead to live-lock cases.

Let us assume a scenario of three tasks, namely T1, T2, and T3 (see Figure
1 left) where T1 needs to wait for some acknowledgment A3 from T3, T2 waits
for acknowledgment A1 from T1, and T3 does not wait for any acknowledg-
ments. PREMA starts running T1 until it blocks waiting for acknowledgment
A3, then switches to T2 until it blocks waiting for acknowledgment A1, and
finally switches to T3, which acknowledges A3. Even though A3 has been ac-

Towards Runtime Support for DSL of Adaptive and Irregular Applications 5

knowledged, the control will never return to T1 to unblock it. Once T3 finishes
its execution, the control returns to T2’s wait until() operation, which will keep
checking the task pool but will never run T1 since T1 has already been popped
and is running T2 from its wait until() operation. The Argobots implementation
avoids such a scenario by using separate stacks for each task, saving their states
before switching control of the execution stream, and resubmitting them to the
task pool when unblocked. This also allows blocked tasks to be stolen in case
the currently running thread starts a long-running process.

The ILB layer is implemented as an Argobots’ stackable scheduler that is
pushed to the dedicated pool of each available execution stream to change the
DMCS scheduling policy. It inherits the pools created by DMCS to continue
executing remote handlers of the lower layers while also handling pools dedicated
to the ILB. Handlers need to be issued through the ILB messaging operation for
their loads to be monitored. Such requests are routed to the current location of
the target mobile by the MOL. The ILB is notified about the new handler, the
handler’s load is calculated, and it is pushed to the list of pending work of the
target mobile object. The scheduler maintains the workload of all local mobile
objects and, thus, the workload of the each node. To schedule new work it picks
a pending handler from the next available mobile object and creates a ULT.
ULTs created at this level are then pushed to the fine-grained tasking module,
presented in section 4. If no pending handlers are available, ILB starts a phase of
distributed load balancing that might result in the migration of mobile objects
along with their workload. The distributed memory load-balancing scheduler is
also implemented as a ULT, allowing load balancing policies to use blocking
operations without affecting performance.

4 Fine-grained Recursive Task Parallelism

The need for finer-grained parallelism inside a handler arises from the large
workload disparity witnessed among handlers of irregular and adaptive applica-
tions. Even though workload is diffused through decomposing application data
into multiple mobile objects, the difference among handlers targeting different
mobile objects can still be large. To cover this gap, we decided to develop a stand-
alone tasking parallelism module on top of Argobots that can run as part of a
remote handler or independently, in order to utilize multiple hardware threads
in the context of a single handler execution. When used as an integrated part
of PREMA, this module can utilize the existing execution streams, avoiding the
creation of new threads and the possible over-subscription overheads. To distin-
guish between ULTs used in other parts of PREMA and tasks created by this
module, the latter will be called tasklets for the rest of the paper.

The goal of the tasking framework’s scheduling policy is to maximize paral-
lelism and minimize memory use by using a hybrid of depth-first and breadth-
first execution policy and recursive creation of work units. Each processing el-
ement (e.g., ES) is associated with a work-pool of tasklets. Each time a new
tasklet is created, it is pushed to the bottom of the PE’s pool. To execute a new

6 Polykarpos Thomadakis et al.

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(a)

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(b)

1 2 4 8

vs pthreads

abt_dedicated

abt_no_dedicated

pt_no_dedicated

pt_dedicated

1 2 4 8
1

2

3

4

5

6

dedicated

revive

named

unnamed

La
te

n
cy

 (
s)

1 2 4 8

no dedicated

revive

named

unnamed

#Threads

(c)

Fig. 2. Latency observed on ping pong benchmark for different task creation ap-
proaches using dedicated streams for communication (a) or not (b) and comparison
of the best approaches with the PThreads implementation (c).

tasklet, the PE simply pops one from the bottom of its pool; if empty, it tries
to steal from the top of another PE’s pool. Provided that the tasklets creation
is performed recursively, this scheduling algorithm minimizes memory consump-
tion and prioritizes tasklets that are hot in the cache when the tasklet pool is
not empty. When stealing is required, the policy maximizes the amount of stolen
work by picking tasklets that were created early in the recursion steps.

To implement this scheduling algorithm, the Argobots abstraction of custom
pools was used to encapsulate a lock-free implementation of a circular double-
ended queue (deque)[14]. The abstract pools API only provides push and pop
operations2 to manipulate their contents, thus, stealing is implemented as part of
the pop operation, and each abstract pool is implemented as an array of pointers
to all available deques, instead of associating it with a single deque. When an
ES is ready to pick a new task, it calls the pop function, which checks its deque
and, if empty, randomly steals a tasklet from another deque.

5 Performance Evaluation

In this section, we measure the performance of PREMA using synthetic mi-
crobenchmarks as well as real world applications. The computing platform used
is a 200-node cluster which utilizes Intel(R) Xeon(R) Gold 6148 @ 2.4 GHz CPUs
of 40 cores each in two sockets (4 NUMA nodes). We use OpenMPI version 3.1.4,
Argobots version 1.0 and gcc version 7.5 for all benchmarks.

5.1 Handler Task Creation

In this subsection, three approaches to creating handler tasks are examined.
Performance is measured as the latency in handler creation, with and without
a dedicated communication stream, in a ping pong benchmark. Two nodes ex-
change 20000 64B-sized messages in total, where the sender sends a message and
then waits for an acknowledgment. The three approaches are described below:

2 They also provide a remove operation but is not needed in our case

Towards Runtime Support for DSL of Adaptive and Irregular Applications 7

– Unnamed: The Argobots runtime is responsible for monitoring and releasing
the memory of ULTs when they complete.

– Named: PREMA checks ULTs for completion and frees their resources ex-
plicitly. An array of handles is maintained per handler executing ES.

– Revive: A variation of the second approach where the completed ULTs in
the preallocated arrays are reused through the ABT revive() function.

Figure 2a shows the latency observed when using a dedicated communication
stream. The “revive” approach performs best, maintaining a latency of 3µs. In
contrast, “named” and “unnamed” achieve lower performance (of 6 and 4 µs,
respectively) and increasing overheads as the number of streams increases. The
performance degradation comes from the fact that new ULTs require a new stack
memory to be allocated, increasing the critical path of ULT creation. In contrast,
“revive” reuses the memory of previously completed ULTs. When no dedicated
stream is used (Figure 2b) the three approaches have a lower effect, especially
on a single stream because Argobots use memory pools for the stacks of com-
pleted ULTs per ES. When a ES executes a ULT, it stores the stack memory in
its memory pool for later use to avoid allocations. However, when one ES cre-
ates most ULTs (producer) which other ESs execute (consumers), the producer’s
pool is depleted without being reused since consumers keep the stack memory in
their own pools, forcing the producer to steal/allocate memory. This is observed
in “named” and “unnamed” when two or more streams are used but in a less
significant level than in Figure 2a because all streams have the same chance of
producing/consuming ULTs and, thus, refilling their pools. Figure 2c compares
the revive approach with the PThreads implementation. For a single thread, us-
ing no dedicated thread exhibits the least overhead and PThreads achieves the
best performance. When more threads are available, using a dedicated stream
shows lower latency for both the Argobots and PThreads implementation, with
Argobots achieving 15% better performance. A slightly lower performance is
observed without a dedicated stream, with Argobots exceeding PThreads’ per-
formance by up to 10%.

5.2 Blocking Operations in Handler Execution

An important feature stemming from the integrating with Argobots is the ability
to yield handler execution either explicitly by calling the respective function or
implicitly when a blocking call is detected. The potential benefit provided is
presented through a synthetic benchmark. An allocation of ten cores is used
along with ten mobile objects, each using an exclusive mutex to provide access
to its data. For each mobile object, 100 handler invocations are issued where a
specific percentage of them needs to take control of the mutex before executing.
We set the time that the mutex is held to 50ms at a time and experiment with
standard PThread mutexes and ULT-aware mutexes that can suspend handlers
when locked. Figure 3a shows an evaluation of the two implementations with
different percentages of handlers acquiring the mutexes, ranging from 0.1 to
0.9 (10 - 90 handlers/mobile object). One can observe the tremendous difference

8 Polykarpos Thomadakis et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% compete for lock

0

5

10

15

20

25

30

35

Ti
m

e
(s

)

abt_mutex

pt_mutex

(a)

1 2 4 10
Parallelism

0

50

100

150

200

Ti
m

e
(s

)

omp-for

omp-taskloop

prema-taskfor

(b)

Fig. 3. (a) Execution time with respect to percentage of tasks competing for the same
mutex. (b) Intra-handler parallelism with OpenMP for, taskloop and PREMA tasklets.

observed in the two implementations (up to 1000%). The issue with the PThread
implementation is that a handler that tries to access a taken mutex will block
the hardware thread it executes on, preventing handlers targeting a different
mobile object/mutex from running. In contrast, the Argobots implementation
will suspend the running handler ULT, allowing another handler to run on the
same thread. In similar cases, the user might know that acquiring a resource
exclusively could cause delays and, thus, may explicitly yield competing handlers
to mitigate the propagation of such effects.

5.3 Seismic Wave Simulation Benchmark

In this section, we evaluate the new features of PREMA on the SW4lite3 bench-
mark. We study its performance on different work unit allocations (mobile ob-
jects, PREMA tasklets) for multi-node experiments. In Figure 3b, we exploit
inter-/intra-node parallelism using one mobile object per core for 640 cores, and
also explore intra-handler parallelism using OpenMP and PREMA tasklets. Us-
ing OpenMP causes over-subscription of hardware resources since it is unaware
of the threads already running in PREMA, resulting in high overheads. In con-
trast, tasklets efficiently utilize the existing threads, achieving performance up
to 10% better over the base case and 60% over OpenMP. Next, we perform more
experiments with work unit allocations to explore how different combinations of
domain and task decomposition can affect the performance of an application.
We evaluate (over-)decomposion at domain level, task level and a combination
of the two. The different work unit allocations allow different levels of freedom
for PREMA to take advantage of (e.g., load balancing and latency hiding) since
both domains and tasklets in a PREMA instance are shared among its threads.
Figure 4 presents studies for different core allocations where the overall running
time is normalized by the run time achieved when using one mobile object per
hardware core, one tasklet per handler, and one instance of PREMA per 10 hard-
ware cores (base case). The x-axis shows the work-unit allocations as a pair of
the number of mobile objects per PREMA instance and number of tasklets per

3 https://github.com/geodynamics/sw4lite

Towards Runtime Support for DSL of Adaptive and Irregular Applications 9

Fig. 4. Normalized performance of the SW4 benchmark for different PE allocations
with respect to the performance achieved when mapping one mobile object per PE
and one tasklet per handler (10-1).

mobile object handler. As can be seen from the figure, the application benefits
from increasing the number of mobile objects per instance (green bars) when
the number of cores is low and the work enclosed in each handler is substantial
but this benefit degrades as the number of cores increases and the work per
handler decreases. Utilizing task decomposition only (orange bars) falls short,
but its performance improves as the number of taskles increases and the size of
data domains per PREMA instance decreases. Combining the two approaches
has better results when the number of mobile objects is close to the number
of threads, and task decomposition is performed on top of that (purple bars).
The best results (12% improvement) in most cases were achieved when using a
combination of 10 mobile objects and 10 tasklets (yellow bars).

6 Conclusion and Future Work

We have presented the integration of PREMA with lightweight threads utilizing
Argobots. The product of this effort overcomes the previously exhibited limita-
tions while incorporating a tasking framework that allows for fine-grained intra-
handler parallelism. We have experimented with multiple design choices for task
creation where we observed up to 100% difference in latency. Moreover, we have
shown that the lightweight threads remove constraints of previous implemen-
tations while mitigating overheads of synchronization semantics. The tasking
framework achieves performance better than OpenMP by up to 60% when used
in the context of PREMA. Our experimentation with different combinations of
workload decomposition both on the domain and task level showed up to 12%
improvements on the SW4lite benchmark. The product of this work allows for
an easier-to-use and more efficient runtime backend for our new DSL. In the
future we plan to extend this framework to handle needs such as heterogeneity
and fault-tolerance arising from the emerging computing platforms.

Acknowledgments

This work is funded in part by the Dominion Fellowship, the Richard T. Cheng
Endowment at Old Dominion University and NSF MRI grant no: CNS-1828593.

10 Polykarpos Thomadakis et al.

The authors would like to thank the Argo team and especially Dr. P. Beckman
and Dr. S. Iwasaki for their support in configuring Argobots to accommodate
PREMA’s extreme requirements.

References

1. K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, “A load balancing
framework for adaptive and asynchronous applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 15, pp. 183–192, February 2004.

2. P. Thomadakis, C. Tsolakis, K. Vogiatzis, A. Kot, and N. Chrisochoides, “Parallel
software framework for large-scale parallel mesh generation and adaptation for cfd
solvers,” in AIAA Aviation Forum 2018, (Atlanta, Georgia), June 2018.

3. S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns, A. Castelló,
D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé, S. Krishnamoorthy, J. Lif-
flander, H. Lu, E. Meneses, M. Snir, Y. Sun, K. Taura, and P. Beckman, “Argobots:
A lightweight low-level threading and tasking framework,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 3, pp. 512–526, 2018.

4. J. Nakashima and K. Taura, MassiveThreads: A Thread Library for High Produc-
tivity Languages, pp. 222–238. Berlin, Heidelberg: Springer, 2014.

5. K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api for programming
with millions of lightweight threads,” in IEEE Int. Symposium on Parallel and
Distributed Processing, pp. 1–8, 2008.

6. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An efficient multithreaded runtime system,” Journal of Parallel
and Distributed Computing, vol. 37, no. 1, pp. 55–69, 1996.

7. C. Tsolakis, P. Thomadakis, and N. Chrisochoides, “Tasking framework for adap-
tive speculative parallel mesh generation,” J. Supercomput., vol. 78, pp. 1–32, 2022.

8. P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, T. Fahringer, K. Ka-
trinis, E. Laure, and D. S. Nikolopoulos, “A taxonomy of task-based parallel pro-
gramming technologies for high-performance computing,” J. Supercomput., vol. 74,
p. 1422–1434, apr 2018.

9. A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta, T. von
Eicken, and K. Yelick, “Parallel programming in Split-C,” in Int. Conf. on Super-
computing, p. 262–273, ACM, 1993.

10. W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren, “Intro-
duction to UPC and language specification,” tech. rep., UC Berkeley, 1999.

11. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,
P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken, “Titanium: A
high performance Java dialect,” Conc. - Pract. & Exp., vol. 10, pp. 825–836, 1998.

12. B. Chamberlain, D. Callahan, and H. Zima, “Parallel programmability and the
chapel language,” Int. J. High Perf. Comp. Appl., vol. 21, pp. 291–312, Aug. 2007.

13. H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, “HPX: A task
based programming model in a global address space,” in Int. Conf. on Partitioned
Global Address Space Programming Models, pp. 1–11, ACM, 2014.

14. D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Annual ACM
Symposium on Parallelism in Algorithms and Architectures, p. 21–28, ACM, 2005.

