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Abstract

Introduction

Method

Nuclear physics is a challenging scientific domain where experiments are
often expensive due to the high cost of the machinery involved. Experimental
setups record terabytes of data each day and process them to identify
interacting particles from information provided by a series of detectors. One of
the most important parts of data processing is identifying trajectories of
charged particles in wire chambers. This process is computationally expensive
and comprises about 94% of computational time. Charged particles are
identified by combinatorially considering all possible combinations of
segments. In this work, we used machine learning to identify possible valid
combinations of track segments to reduce the number of combinatorics to be
considered and reduced the computational time by a factor of ~6.
We developed three different models to address this problem: an extremely
randomized trees model, a multi-layer perceptron as well as a convolutional
neural network (CNN). The models achieved an overall classification accuracy
of 96.5%. To further reduce the search space for classification, we developed a
supervised recurrent neural network (RNN) using gated recurrent unit (GRU)
layers capable of predicting particle trajectories based on previous trajectory
information. Because the model is trained on only valid trajectories (i.e.
broken lines), it will help eliminate many invalid trajectories that do not align
with its predictions. These machine learning models will be employed in the
experimental pipeline for the CLAS12 detector in order to filter incoming data,
save 6-8x more time and energy compared to current methods used, and help
increase experimental accuracy.

The machine learning models we developed have high accuracy and high
throughput. By employing them in the experimental pipeline for the CLAS12
detector at Jefferson Lab to filter incoming data and discard invalid particle
tracks, we can save 6-8x more time and energy compared to current methods
used, and ultimately increase the accuracy of experiments.

Figure 2 CLAS12 detector drift chamber showing the sensors activated (red)
by traveling charged particles. The drift chambers of the CLAS12 detector
consist of 6 layers, each of which contain 6 wires (total 36 wires). Each wire
contains 112 sensors, for a total of 4032 (36*112) sensors. The activations that
form an approximate broken line from beginning to end are classified as valid.

The CLAS12 detector at Jefferson Lab is used to study the structure of matter
by scattering an electron beam off a proton target. Particles produced as a
result of the interaction are detected by the signal a particle leaves in wire drift
chambers. In order to reconstruct the trajectories, all possible combinations of
segments need to be considered before accepting the one that most closely fits
the shape of a “broken line.” Because this combinatoric computation is very
computationally intensive, a faster and reliable method was needed to identify
valid particle trajectories.

Because speed is crucial in the experimental pipeline, we developed machine
learning models that can classify incoming particle trajectory data with very
high throughput through multi-core inferencing as well as GPU-accelerated
inferencing. Our filtering solution consists of two components: prediction of
particle trajectories based on previous trajectory information and classification
of trajectories as being valid or not.

The two problems we had to solve are particle trajectory classification and
particle trajectory prediction. Particle trajectory classification involves
determining if a valid particle track is present in experimental data while
particle trajectory prediction involves predicting particle trajectories based on
previous partial trajectory data.

Particle Trajectory Classification. In order to solve this problem we
developed three separate supervised machine learning models: an extremely
randomized trees model (ERT), a multi-layer perceptron (MLP), and a
convolutional neural network (CNN). The ERT and MLP models were
developed using the scikit-learn library and run on the CPU while being able
to utilize multiple processing cores. The CNN model was developed using
Keras/TensorFlow and runs on the GPU. Training and evaluation of these
models utilized tens of thousands of labeled particle trajectory samples from
CLAS12 detector experiments. Samples included multiple particle tracks, of
which one was valid. All these models were developed to have high
performance, as they need to be capable of real-time inference and high-
throughput. The MLP model classifies particle trajectories as valid or not in 4
μs, the ERT model in 5 μs, and the more complex CNN model in 1.2 ms.

In order to determine our models’ accuracy, we devised and utilized several
metrics in addition to using the standard accuracy metric in scikit-learn and
Keras. These new accuracy metrics are:

1. A1: The ratio of samples where the valid particle track was correctly
detected.

2. Ac: The percentage of A1 for which there were invalid tracks
misidentified as valid ones (false positives).

3. Ah: The percentage of A1 for which the valid particle track had the
highest probability of being valid out of all tracks in a sample.

4. Af: The ratio of samples where the valid track was not detected (false
negatives). This metric was very critical for us to minimize, as we
don’t want to miss valid particle tracks.

Conclusion
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Figure 1 The CLAS12 detector in Jefferson Lab, Experimental Hall B.

Particle Trajectory Prediction. Because predicting a particle trajectory based
on incomplete previous trajectory information involves completing a sequence,
we utilized a supervised recurrent neural network (RNN) using gated recurrent
unit (GRU) layers. The RNN is trained on the same dataset as the models for
trajectory classification, except that only data for valid particle tracks is
utilized. This allows the RNN to predict valid particle tracks based on partial
previous sensor activation patterns. Because the RNN is trained on only valid
particle tracks, it will give incorrect predictions for invalid particle tracks. By
measuring the spatial distance of the actual particle track and the one predicted
by the RNN, we can infer whether the actual particle track is valid or not. A
large distance likely means that the particle track is invalid, whereas a small
distance likely means that the particle track is valid as it aligns with the
model’s predictions. This allows us to eliminate many samples where there are
no valid tracks present.

Since particle trajectory prediction happens before classification, we reduce
the number of samples containing invalid tracks that are to be classified,
reducing the likelihood of incorrect classification and thus increasing overall
accuracy and eliminating more invalid tracks.

Results
Our machine learning models have high performance and high overall
accuracy. For particle trajectory classification, we achieved an overall
accuracy of 96.5%. For particle trajectory prediction we achieved an overall
loss of ~1.18 (loss in this case is defined as the mean distance in sensors of
predictions from the actual data). Figure 3 shows two valid particle tracks and
the predictions made by the RNN. Figure 4 shows an invalid particle track and
the prediction of the RNN. Notice how the prediction of the RNN for the
invalid particle track is wrong and spatially distant from the actual track. A
larger distance likely means that the track is invalid. Table 1 shows metrics for
the trajectory classification models, while Table 2 shows metrics for the RNN.

Model
Type

A1
Metric

Ac
Metric

Ah
Metric

Af
Metric

Training 
Accuracy

Time to 
Train 

Time to 
Predict
/ sample

MLP 96.5% 20.2% 92.1% 3.4% 94.7% 252 sec 4 μs

ERT 93.3% 19.9% 91.9% 6.6% 99.9% 1.7 sec 5 μs

CNN 96.4% 30.1% 89.4% 3.5% 93.4% 457 sec 1.2 ms

Table 1 Metrics for our three models for particle trajectory classification. The
metrics are described in the “Method” section. MLP and ERT executed on a
multi-core CPU while the CNN executed on one Tesla V100-SXM2-16GB.

Figure 3 Shows two separate valid actual particle tracks (yellow) and the
predictions of the RNN for part of them (blue). If the RNN correctly predicted
the track, then the yellow and blue overlap (as seen in the first image). The
small spatial distance between the predicted portion of the tracks and the
actual portion of the tracks means that the actual tracks are likely valid.

Figure 4 Shows one invalid actual particle track (yellow) and the prediction of
the RNN for part of it (blue). The large spatial distance between the predicted
portion of the track and the actual portion of the track means that the actual
track is likely invalid.

Model
Type

Loss
(MAE)

Time to Train Time to Predict
/ sample

RNN/GRU ~1.18 374 sec 688 μs

Table 2 Metrics for our RNN for particle trajectory prediction. The unit of the
loss is one sensor. So, a loss of 1.18 means a mean distance of 1.18 sensors
between the actual and predicted particle tracks. The RNN executed on one
Tesla V100-SXM2-16GB.


