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Abstract 

 

The Physics-based Non-Rigid Registration (PBNRR) 

framework allows for accurate real-time medical image 

registration and geometry representation of the brain in 

modeling deformation during glioma resection. Existing 

adaptive PBNRR (APBNRR) shows promise in being able to be 

utilized in time-constrained image-guided neurosurgery 

operations, but the issue of determining patient-specific input 

parameters to allow for optimal registration remains an open 

problem. We present a deep feedforward neural network that 

can predict sets of possible optimal or suboptimal input 

parameters that lead to a low Hausdorff distance of the 

registered image from the preoperative image. The neural 

network is trained on output produced by over 2.6 million 

retrospective APBNRR executions consisting of an almost 

exhaustive parameter study using cloud computing on 13 

patient cases spanning from partial to excessive tumor 

resection. By utilizing the neural network, we can greatly 

reduce the parameter space that needs to be evaluated with 

APBNRR in order to achieve optimal results, and initial 

experiments have been very promising. 
 

1. Introduction 

 

 The Physics Based Non-Rigid Registration (PBNRR) 

formulation of brain shift and deformation problem during 

brain tumor resection can be decomposed into three sub-

problems: (i) compute an accurate approximation of brain 

geometry in the context of tissue removal, (ii) maintain 

topology of the deformed brain in iMRI and (iii) last but not 

least, preserve the brain anatomy i.e., geometry and topology 

of individual brain tissues and their relationship to each other. 

In this paper we focus on the first sub-problem i.e., accurate 

representation of the brain geometry which is necessary for the 

solution of both subsequent problems.  Accurate representation 

of brain geometry is critical for the accurate numerical 

computations (i.e., integration) in the least-square sense used 

in PBNRR. Both matching and regularization terms rely on 

accurate brain geometry representation. In addition, accurate 

brain geometry presentation is critical for outlier rejection. 

Other than tissue resection, there are other challenges like 

tissue retraction but are outside the scope of this study.  

 

 In this paper, we also introduce a deep learning component 

for the adaptive (APBNRR) medical image registration 

framework [1] which can predict registration parameters that 

can lead to more accurate registration in the time-constrained 

environment of a neurosurgery session. The results have been 

promising, with deep learning APBNRR being ~8.45 times 

more accurate than rigid registration and ~6.71 times more 

accurate than B-Spline registration. 

 

2. Related Work 

 

 As with many other areas, machine learning has been 

applied to medical image registration. In this section we will 

take a closer look at two major applications, VoxelMorph [3] 

and the method proposed by J. Krebs et al [14]. A brief 

comparison of the problems addressed, the proposed solutions, 

and usage of machine learning in these two applications, as 

well as in APBNRR, is in Table 1. 

  

 VoxelMorph [3] addresses the problem of fast deformable 

medical image registration with a focus on brain MRI, but it 

can be used for other tissues as well.  VoxelMorph uses a 

solution formulated by an unsupervised learning convolutional 

neural network for computing a registration field and a spatial 

transformation function for warping the preoperative image. 

The application can also use instance specific optimization by 

fine-tuning the network parameters for each MR image. As 

noted in the paper [3], it runs in 0.45 seconds on a top-tier GPU 

and 57 seconds on a CPU, with an average DICE score of 

75.3%.  

  

 The method proposed by J. Krebs et al [14] tries to solve the 

problem of probabilistic deformation modeling for 

diffeomorphic registration for cardiac MRI. The proposed 

solution utilizes an unsupervised learning conditional 

variational autoencoder (CVAE) network with an 

exponentiation layer for creating diffeomorphic 

transformations. The average execution time is 0.32 seconds 

on a top-tier GPU with an average DICE score of 79.9% and a 

mean Hausdorff distance of 7.9 mm. 
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3. Learning-Based Medical Image Registration 

 Machine learning (ML) has been applied to many areas to 

help solve problems, and one of them is in medical image 

computing [2]. Specifically, for medical image registration, 

many new methods currently utilize convolutional neural 

networks, which operate directly on the preoperative and 

intraoperative MRI images to produce a registered image. A 

notable example is MIT’s VoxelMorph model [3], which was 

presented last year in CVPR. VoxelMorph utilizes a CNN 

which computes a registration field and warps the preoperative 

image with the registration field using a spatial transformation 

function [3].  In VoxelMorph, ML is used directly for image 

registration, as the image registration functionality is 

implemented using a CNN, and the goal of the project is to 

enable fast medical image registration.  

 

 In our experimental method of utilizing deep learning in 

medical image registration, we take a different path, by 

utilizing a supervised deep feedforward neural network trained 

to predict optimal input parameter sets for APBNRR, in order 

to be used in the application to produce registered images with 

a low Hausdorff distance value. We chose not to build an 

entirely new image registration framework based on a CNN, as 

this has been done before, but rather enhance the APBNRR 

medical image registration framework, because, as discussed 

later, APBNRR is robust, and can produce registered images 

with a Hausdorff distance under the boundary of 2 mm. Most 

importantly, APBNRR also performs tumor resection, which is 

not currently done by any surveyed CNN-based method, 

including VoxelMorph [3].  

  

 The application of deep learning on APBNRR aims to make 

it more suitable for use in the constrained time-period of an 

image-guided neurosurgery session because normally 

APBNRR is expensive both time-wise and resource-wise and 

requires a sweep over thousands of parameters to produce 

optimal results. Our proposed neural network model aims to 

greatly reduce this parameter space, by predicting the most 

optimal registration parameters specific to each patient case. 

Our goal is to enable APBNRR to be used for medical image 

registration and tumor resection in environments such as the 

Advanced Multimodality Image Guided Operating suite 

(AMIGO) of Brigham and Women’s Hospital [14]. 

 

Application Problem Solution Machine Learning Usage 

VoxelMorph [3] Fast deformable medical 

image registration (focus 

on brain MRI, but can be 

used for other tissues as 

well) 

Unsupervised learning 

convolutional neural network 

with spatial transformation 

function and instance-specific 

optimization 

Computation of registration 

field 

Deep Learning APBNRR Deformable medical image 

registration with tumor 

resection (for brain MRI 

with focus on accurate 

geometry representation of 

brain in modeling 

deformation) 

Adaptive physics-based non-

rigid registration with supervised 

learning deep feedforward neural 

network and patient-specific 

features 

Prediction of optimal input 

parameters for APBNRR 

J. Krebs et al Method [14] Probabilistic deformation 

modeling for diffeomorphic 

registration (for cardiac 

MRI) 

Unsupervised learning 

conditional variational 

autoencoder (CVAE) network 

with exponentiation layer 

Learning of a probabilistic 

deformation encoding. 

Table 1. Shows a comparison of the problems, solutions, and usage of machine learning of three major applications in medical image 

registration, including APBNRR.  
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4. Method 

4.1. Adaptive Physics-Based Non-Rigid Registration 

(APBNRR) 

 APBNRR takes as input a preoperative (moving) MRI and 

an intraoperative (fixed) MRI, a preoperative segmented MRI, 

and a range of twenty-seven registration and mesh generation 

parameters (indicated in table 1). APBNRR [1] augments 

PBNRR [2] to accommodate soft-tissue deformation caused by 

tumor resection. This iterative method adaptively modifies a 

heterogeneous finite element model to optimize non-rigid 

registration in the presence of tissue resection. Using the 

segmented tumor and the registration error at each iteration, 

APBNRR gradually excludes the resection volume from the 

model. During each iteration, registration is performed, the 

registration error is estimated, the mesh is deformed to a 

predicted resection volume, and the brain model (minus the 

predicted resection volume) is re-tessellated. Re-tessellation is 

required to ensure high-quality mesh elements, which is 

important for the convergence of the linear solver. Fig. 1 

illustrates five iterations of APBNRR on a brain with a 

significant resection volume. 

 

 
Figure 1: Non-rigid registration using 5 iterations of APBNRR 

reflects the changes in brain morphology caused by tumor 

resection. Each column depicts a brain mesh model (top row) 

and an axial slice of the preoperative image after the non-rigid 

registration (bottom row), at iteration i. 

 

 APBNRR incorporates various algorithms to perform a fast 

and accurate registration: (1) parallel feature selection, (2) 

parallel block matching, (3) parallel mesh generation, and (4) 

finite element solver: 

 

 Parallel feature selection. APBNRR identifies image 

features algorithmically by analyzing voxel intensity variation 

across the intracranial cavity. For each feature candidate, it 

computes the variance within a block of size  𝐵𝑠. It then selects 

𝐹𝑠 features with the highest variance. Experimental evaluation 

has shown that when 𝐵𝑠 = 3 𝑜𝑟 5  and  3% ≤ 𝐹𝑠 ≤ 10% , a 

sufficient number of image blocks (> 3 × 105)  can be 

selected. The method also uses a connectivity pattern to avoid 

selecting blocks that are too close to each other, thereby 

influencing the distribution of selected blocks in the image. 

Three simplex-patterns are available: “vertex” (i.e., zero-order 

simplex implies 26 connectivity), “edge” (i.e., first-order 

simplex implies 18 connectivity), and “face” (i.e., second-

order simplex implies 6 connectivity). The higher the order of 

the simplex-pattern the higher the density of the selected 

blocks. Fig. 2 depicts feature selection results using the three 

patterns. Since the “face” pattern results in a higher density of 

blocks near the boundaries/interfaces of anatomical structures, 

features which are expected to be most persistent between pre-

operative and intraoperative image acquisitions, it is most 

suitable for IGNS-based Glioma resection. The parallel 

implementation partitions the preoperative image into k sub-

regions, where k is the number of threads. Each thread computes 

a variance value and an image index for each feature inside the 

sub-region. Then, the computed pairs are sorted in parallel 

based on their variance and merged into a global vector. The 

size of the global vector is equal to the total number of 

computed blocks. Finally, 0.5 + NFeatures × Fs blocks are 

selected from the global vector. 

 

 
Figure 2: Selected blocks from an MRI volume using various 

connectivity patterns. Blocks are depicted on ten consecutive 

sagittal slices. From top to bottom row: sagittal slice (left) and 

volumetric MRI rendering (right); selected blocks with a 

“vertex” pattern; selected blocks with an “edge” pattern; 

selected blocks with a “face” pattern. Number of selected 

blocks for all patterns: 322060. 

 

 Parallel block matching. Given a block in the preoperative 

image and a block matching window 𝑊  of size 𝑊𝑠  in the 

intraoperative image, this module searches for a block in 𝑊 

that maximizes the similarity between the block in the 

preoperative image and the block in 𝑊 . Displacements 

between corresponding blocks in the preoperative and 

intraoperative images are used to drive the finite element 

solver. 𝑊𝑠 may be different in the axial, coronal, and sagittal 

directions due to anisotropic image data. The parallelization of 

the block matching algorithm is based on image partitioning 

and exhibits excellent performance [9]. However, in tumor 

resection, the problem of blocks with a missing 

correspondence may compromise the accuracy of the non-rigid 

registration. A large window size cannot solve the problem 

because: (i) it is opposed to the assumption that a complex non-

rigid transformation can be approximated by point-wise 

translations of small image regions, (ii) it may lead to 
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unrealistic matches that deteriorate the quality of the 

transformation, and (iii) it imposes performance overheads due 

to an exhaustive search on a large number of blocks. APBNRR  

introduces a heuristic two-step block matching algorithm to 

eliminate the blocks with a missing correspondence. First, a 

traditional block matching [9] maximizes the similarity 

between blocks in the preoperative image and blocks in W. 

Next, a parallel closest block matching pairs the blocks with a 

missing correspondence with their closest point on the surface 

S of the brain in the intraoperative image. 

 

 Parallel mesh generation. The image segmentation is used 

to generate a patient-specific finite element mesh for 

APBNRR. The quality of the tetrahedral mesh influences the 

numerical accuracy of the solution and the correctness of the 

estimated transformation. The higher the quality of the 

elements (i.e., the larger the minimum dihedral angle), the 

better the convergence of the linear solver. A parallel Delaunay 

meshing method is employed to tessellate the segmented brain 

with high-quality tetrahedral elements and to model the brain 

Parameter Description Parameter (cont.) Description (cont.) 

1. Half Block Size X Half block size (in voxels) 

for the X dimension. 

15. Mesh Method Meshing method (BCC, 

Delaunay, LD, Hex) 

2. Half Block Size Y Half block size (in voxels) 

for the Y dimension. 

16. Trade-off Trade-off between 

mechanical energy and 

matching energy in energy 

minimization equation. The 

larger the trade-off, the more 

weight is given to the 

matching energy term. 

3. Half Block Size Z Half block size (in voxels) 

for the Z dimension. 

17. Shape Function Type FEM shape function type 

(Linear, Linear with ESF, 

Quadratic, Quadratic with 

ES) 

4. Half Window Size X Half block matching window 

size (in voxels) for the X 

dimension. 

18. Linear Solver Type Linear solver type (LSQR, 

ITPACK, LU, BICGSTAB) 

5. Half Window Size Y Half block matching window 

size (in voxels) for the Y 

dimension. 

19. Young’s Modulus 

(parenchyma) 

Young’s modulus for brain 

parenchyma. 

6. Half Window Size Z Half block matching window 

size (in voxels) for the Z 

dimension. 

20. Poisson Ratio 

(parenchyma) 

Poisson ratio for brain 

parenchyma. 

7. Selection Fraction Percentage of selected blocks 

from total number of blocks. 

21. Young’s Modulus 

(tumor) 

Young’s modulus for tumor. 

8. Approximation Steps Number of approximation 

iterations. 

22. Poisson Ratio (tumor) Poisson ratio for tumor. 

9. Interpolation Steps Number of interpolation 

iterations. 

23. CBC3D Spacing Lattice spacing (in mm) for 

CBC3D. 

10. Adaptive Iterations Maximum number of 

adaptive iterations 

24. CBC3D Fidelity Mesh fidelity for CBC3D. 

11. Zero Blocks Fraction Minimum number of blocks 

with zero correspondence. 

25. CBC3D Iterations Smoothing iterations for 

CBC3D. 

12. Rejection Fraction Percentage of rejected outlier 

blocks. 

26. CBC3D Multiple 

Fidelities 

Multiple fidelities for 

CBC3D. 

13. Similarity Metric Similarity metric for block 

matching (NCC or NMI). 

27. Delaunay Delta Tetrahedron size for 

Delaunay meshing. 

14. Non-connectivity The pattern for feature 

selection. 

  

Table 2. Shows the tunable parameters utilized by APBNRR. Parameters 1-12 are utilized in the deep learning model, while the rest are fixed. 

I/O parameters are not included in this table. 
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surface with geometric and topological guarantees [10]. Both 

single-tissue (i.e., brain parenchyma) and multi-tissue (i.e., 

brain parenchyma and tumor) meshes are generated. Fig. 3 

depicts one of the multi-tissue meshes. Parameter 𝛿 determines 

the size of the mesh, where a smaller 𝛿 > 0 generates a larger 

mesh. 

 

 
Figure 3: A multi-tissue (brain parenchyma, tumor) finite 

element mesh used for APBNRR (number of tetrahedral 

elements: 160179; minimum dihedral angle: 4.41˚). Top row: 

the mesh superimposed on a volume rendering of the MRI data. 

Cyan and red represent the brain parenchyma and tumor 

meshes, respectively. Bottom row: mesh fidelity illustrated on 

an axial, sagittal, and coronal slices. Each slice depicts a 2D 

cross-section of the mesh surface (cyan and red lines) and the 

segmented volume (green and yellow regions). The closer the 

mesh surface is to the segmented boundaries, the higher the 

mesh fidelity. 

 

 Finite element solver. This module assembles a 𝑁 × 𝑁 

global stiffness matrix 𝐾𝑔 = 𝐾𝑚 + 𝐾𝑏  for the biomechanical 

brain model, where 𝑁 = 3 × 𝑛  is the number of degrees of 

freedom in the model, 𝑛 is the number of mesh vertices, and 

𝐾𝑚 , 𝐾𝑏  are the stiffness matrices of the mesh and the selected 

blocks, respectively. The stiffness matrix depends on the 

geometry/quality of the mesh, the interpolation polynomial-

order (e.g., linear), and the mechanical properties (𝐸𝑏 , 𝑣𝑏) of 

the underlying materials. Matrix 𝐾𝑚  is assembled from the 

individual stiffness matrices of mesh elements [11]. Matrix 𝐾𝑏 

represents the stiffness of the blocks. After associating each 

block with an element, a 3 × 3 stiffness tensor is computed by 

interpolating the element stiffness at the block position [12]. 

Matrix 𝐾𝑏  is assembled from the individual 3 × 3  block 

tensors. The FEM solver constrains the mesh model by 

applying displacements determined during block matching, 

represented by external force vector  𝐹, to the associated mesh 

elements. The displacements U of unconstrained mesh vertices 

are then estimated by solving an 𝑁 × 𝑁  linear system of 

equations  𝐹 = 𝐾𝑔 × 𝑈 . The FEM solver employs a 

BICGSTAB (bi-conjugate gradient stabilized) iterative solver 

[13] to compute 𝑈. Mesh deformations are estimated using an 

approximation of an interpolation-based formulation which 

rejects feature outliers (i.e., blocks with the largest error 

between 𝑈  and the block matching displacements). In each 

outlier rejection step, (𝑁𝑏 × 𝐹𝑟)/𝑁𝑟𝑒𝑗  outliers are removed, 

where 𝑁𝑏 is the number of selected blocks, 𝐹𝑟 is the fraction of 

the rejected blocks, and 𝑁𝑟𝑒𝑗  is the number of outlier rejection 

iterations (Table ?). Previous experiments have shown that 

𝐹𝑟 = 25% is sufficient to reject all significant outliers without 

rejecting relevant matches. Deformation at each image voxel 

can be estimated by interpolating the final solution 𝑈 across 

mesh elements. 

 

 Non-rigid registration of medical resonance images that 

compensates for brain shift and tumor resection is a difficult 

problem, and APBNRR offers a solution [1]. MRIs are 

registered iteratively, and the finite element model changes in 

every iteration to reflect the current morphology of the brain 

(fig.1). However, APBNRR cannot currently be effectively 

utilized in a clinical setting, due to the large parameter space 

that needs to be evaluated for every individual patient so that 

optimal registration can take place. Before APBNRR can be 

used in IGNS, the parameter space needs to be greatly reduced. 

This can take place with the proposed deep learning model, 

which is trained on millions of past APBNRR executions and 

predicts a set of optimal parameters specifically tuned for each 

patient. 

4.2. Deep Learning Model Architecture 

 Our proposed model consists of a supervised deep 

feedforward neural network, which is trained on data produced 

from past APBNRR executions. The model takes as input 

fourteen parameters: twelve APBNRR parameters that have an 

infinite range of possible values and two extra, patient-specific 

parameters. It produces as output a predicted Hausdorff 

distance of the registered preoperative image. The twelve 

APBNRR parameters are:  the half block size 𝐁𝐬, and the half 

window size 𝐖𝐬 in the axial, coronal, and sagittal direction, the 

fraction 𝐅𝐬  to select the image blocks, the number of 

approximation (outlier rejection) steps 𝐍𝐫𝐞𝐣 , the number of 

interpolation steps 𝐍𝐢𝐧𝐭 , the maximum number of adaptive 

iterations 𝐍𝐢𝐭𝐞𝐫,.𝐦𝐚𝐱, the minimum number of blocks with a zero 

correspondence 𝐍𝐛𝟎,𝐦𝐢𝐧, and the percentage of rejected outlier 

blocks 𝐅𝐫. The two patient-specific parameters are the location 

of the tumor in the brain (lobe-wise) and the degree of brain 

deformation, which can be directly inferred from the rigid 

registration error. These two parameters are used to improve 

model performance by providing additional cues  

for the neural network to learn, as well as to fine-tune the 

model for a specific patient during an IGNS session.  

 

 The neural network was implemented using Keras [6] on a 

TensorFlow [7] backend. It consists of 4 hidden fully 

connected layers, each comprised of 128 neurons. We used 

ReLU [4] as the activation function and stochastic gradient 

descent with Nesterov momentum [5] for optimization. We 

chose to use SGD because it has been shown to lead to better 
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generalization in comparison to adaptive gradient optimizers 

such as Adam, due to its tendency to converge to better global 

minima [8]. No dropout layers or methods of preventing 

overfitting were used, as the training data is complex and 

highly variated. Furthermore, the feature selection in parallel 

mode is non-deterministic, meaning that the same input 

parameters can yield different outputs in every execution,  

further reducing the ability of the model to “memorize” the 

training data and overfit to the training set. The neural network 

was built in an iterative fashion, wherein each iteration a new 

patient case was added (consisting of data from about ~100,000 

APBNRR executions) and the network’s hyperparameters and 

architecture were tuned to reduce the loss marked in the 

previous iteration.  

4.3. Deep Learning APBNRR 

 The deep learning portion of APBNRR takes place before 

the actual execution of APBNRR. APBNRR utilizes as its 

input the parameter sets predicted by the deep learning model 

to result in the lowest Hausdorff distances. A visualization of 

how the deep learning model works is shown in fig. 4. The 

neural network is given as input each parameter set in a pool 

consisting of patient-specific parameter sets, which was 

produced by augmenting a base, general parameter set pool. 

We have created tools that do this automatically. The neural 

network iterates through each parameter set and outputs the 

Hausdorff distance of the registered image that would be 

produced by APBNRR if this parameter set was utilized. Out 

of all those predictions, the lowest ones are compiled in a file, 

and can then be used as input to APBNRR. This process takes 

about 15 seconds. 

 

4.3.1  Patient-Specific Parameter Pool. The deep learning 

model takes as input parameter sets from a pool that is specific 

to each patient. This is an augmented version of a base, general 

parameter pool, which has been enhanced to include two 

patient-specific features, the location of the tumor in the brain, 

and the size of the deformation as can be derived from the rigid 

registration error. In our experiments, the patient-specific 

features have yielded significantly better results. 

 

4.4. Challenges 

 There were a couple of important challenges we encountered 

while constructing the deep learning model. The first one is 

that APBNRR is non-deterministic due to the parallel feature 

selection algorithm. This means that given two identical 

parameter sets, APBNRR will yield two different registered 

images, with different Hausdorff distances. This non-

determinism leads to a degree of “randomness” in results, 

which hinders the ability of the neural network to correctly 

predict the Hausdorff distances. Unfortunately, there is no 

practical way of solving this issue, other than amassing more 

training data to “average out” this randomness, which leads us 

to the second challenge: collecting training data takes a long 

time. To gather training data, we must run APBNRR for every  

parameter set in an exhaustive pool for every additional patient 

case we want to include in our training set. Evaluating a single 

case exhaustively (~1 million executions) takes about 1-2 

months, depending on the severity and size of the brain tumor. 

 

5. Experimental Evaluation 

5.1. Data Set 

 Our data set for the model consists of medical resonance 

images from thirteen patient cases provided by the Huashan 

Worldwide Medical Center and Brigham and Women’s 

Hospital of Harvard University, as well as output data from 

over 2.6 million executions of APBNRR, collected over the 

Figure 4. Deep learning portion of APBNRR registration. 
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course of five months. Out of the thirteen cases, eleven were 

used for training (~2.4 million parameter sets) and two for 

evaluation (~200,000 parameter sets). APBNRR was executed 

with arrays of 120 parameter sets on a supercomputing cluster, 

utilizing in total 450 CPU cores and over 4 TB of RAM. The  

total compute time that was required for the executions was 

approximately 3600 hours 

 

5.2. Deep Learning Model Results 

 Using the deep learning model, we achieved a training root 

mean squared error (RMSE) of 1.41 and an evaluation RMSE 

of 1.21 for predicted Hausdorff distances. For further 

evaluation, utilizing the trained model, we executed APBNRR 

for the 13 cases again, using the top 120 parameter sets 

predicted by the model for each case to yield the lowest 

Hausdorff distances. The best results of those executions are 

displayed in Table 2, along with the results from several other 

registration methods as a comparison. The best results from the 

APBNRR parameter sweeps that were used for generating our 

dataset are also displayed as a reference of what could have 

been the lowest Hausdorff distance value.  

 

 On average, APBNRR with deep learning is ~8.45 times 

better than rigid registration, ~6.71 times better than B-Spline 

registration, and ~7.9 times better than PBNRR, which is an 

older version of APBNRR. It should also be noted that 

APBNRR works very well with deep tumors which result in 

great brain deformation in comparison to the other registration 

methods, leading to results that are on average ~16.8 times 

better. Overall, APBNRR with deep learning leads to superior 

results than any of the registration methods noted above. 

Choosing the correct parameters for medical image registration 

is a difficult task, as there are many (usually infinite) possible 

values and combinations of parameters that can lead to better 

or worse results. The deep learning portion of the APBNRR 

framework makes this easier by greatly limiting the set of 

possible optimal parameters for each individual patient, 

moving APBNRR one step closer to being able to be utilized 

in a real-time setting, where registration accuracy and speed 

are critical. 

 

6. Performance Evaluation 

 

 In this section, we will evaluate deep learning APBNRR on 

how it would perform in a real-world setting. Specifically, we 

will look at how APBNRR would perform in the brain tumor 

resection workflow in AMIGO [15], which represents an ideal 

setting for the usage of APBNRR. 

 

Case Type Tumor Location Rigid 

Registration  

B-Spline 

Registration 

PBNRR APBNRR 

(Default 

Parameters) 

APBNRR  

(Deep 

Learning) 

APBNRR 

(Parameter 

Sweep) 

1 PTR Left frontal lobe 17.00 17.00 16.49 5.69 2.78 2.78 

2 PTR Left frontal lobe 10.59 5.28 10.76 2.30 2.64 1.77 

3 PTR Left parietal lobe 16.15 13.78 15.12 4.60 2.40 1.70 

4 PTR  

(deep) 

Left parietal-

occipital lobes 

29.93 21.34 27.76 2.83 1.84 1.46 

5 CTR Frontal-temporal 

lobes 

25.51 25.18 22.50 4.97 2.64 2.64 

6 CTR Right frontal lobe 5.59 5.59 3.43 3.09 2.78 2.64 

7 CTR Right temporal 

lobe 

17.90 16.94 15.56 4.11 2.94 2.00 

8 CTR Left posterior-

temporal lobe 

18.85 17.49 17.38 3.57 3.29 3.24 

9 CTR Left frontal lobe 17.14 7.48 15.41 4.25 2.40 1.84 

10 ETR 

(deep) 

Left frontal lobe 35.72 27.77 33.57 3.71 2.06 1.77 

11 CTR Left frontal lobe 25.72 25.72 23.90 3.42 2.64 2.30 

12 PTR Right frontal lobe 26.89 15.86 26.89 4.00 2.85 2.21 

13 CTR Left frontal lobe 19.24 14.61 19.89 2.40 2.00 1.48 

Table 3. Shows the thirteen patient cases that consist our data set and the results (measured as the Hausdorff distance in mm) 

achieved with various methods of registration, including with APBNRR using deep learning and APBNRR using a parameter 

sweep. Cases with numbers 1-11 were used for training, and 12, 13 were used for evaluation. 
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 Referring to the AMIGO workflow, APBNRR execution 

takes place after the intraoperative MR phase, and is meant to 

assist in tumor and residual tumor assessment due to the ability 

of APBNRR to perform tumor resection. The registered 

intraoperative image with the tumor resected, allows the 

neurosurgeon to better evaluate how well the tumor has been 

resected. The time window for APBNRR to execute as part of 

this workflow is a few minutes. As such, on top of accuracy, 

speed is also critical.  

 

 A key element for evaluating the performance of APBNRR 

is determining optimal input parameters. Optimal input 

parameters are usually in the first 800 – 39,000 parameter sets 

in our base parameter pool. Determining optimal input 

parameters by doing a parameter sweep utilizing arrays of 120 

jobs would take an estimated 33 minutes – 27 hours based on 

time data collected from previous executions with an average 

APBNRR execution of 5 minutes. This high variability is not 

acceptable in a neurosurgery session. Deep learning offers very 

significant speedups in this area, by allowing the user to limit 

the parameter pool to a custom value. For example, by utilizing 

deep learning, we could reduce the number of parameter sets 

that would need to be evaluated to 120 (the size of the job array 

mentioned before), potentially allowing APBNRR to finish 

executing in 5 minutes while simultaneously yielding good 

results, which is much more acceptable. 

 

 Deep learning solves the problem of limiting the parameter 

pool that needs to be evaluated, but there are still some issues 

with APBNRR that need to be resolved. One of the most 

important is the dependence of APBNRR performance on the 

size of the tumor. The larger the tumor, the more time it takes 

for APBNRR to execute. Furthermore, the more adaptive 

iterations APBNRR goes through, the longer the execution. 

We have seen an execution time ranging from ~5 to ~30 

minutes, with parameter sets having more adaptive iterations 

slower execution than those with lower ones, but better 

registration accuracy on average. 

 

 Finally, it should be noted that the overall performance of 

deep learning APBNRR is dependent on the amount of 

computational resources available. In particular, the more 

computational resources available, the larger the parameter 

pool of the best parameter sets predicted by the neural network 

can be. As a result, there is a greater chance of achieving better 

accuracy and performance. 

 

7. Summary 

 

 The accurate geometrical representation of the brain for 

modelling deformation during glioma resection is a difficult 

problem that can be solved with APBNRR. Deep learning can 

improve the performance of APBNRR towards solving this 

problem, by predicting a pool of input parameters that can lead 

to the most optimal representations, and ultimately, to more 

accurate, and faster image registration that is one step closer to 

being able to be used in real-world scenarios. 

 

8. Future Work 

 

 Deep learning APBNRR takes us a step closer to enabling 

APBNRR to be used in real-world scenarios. However, there 

are still some issues to be resolved before that can happen. 

First, more training data needs to be collected to allow the deep 

learning model to offer more accurate predictions. Second, 

work needs to be done to enable the deep learning model to 

generate a parameter pool that is not only limited in size but 

can also be evaluated rapidly. Finally, the performance of 

APBNRR needs to be further improved, especially the 

performance of APBNRR regarding deep tumors which 

involve very large brain deformation. 
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