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ABSTRACT

In this work, a mesh adaptation tool is loosely coupled with a metric based error estimator and a CFD
solver into a computational pipeline. The pipeline is validated using a laminar flow over a delta wing. Drag
and lift coefficients are computed and compared to similar simulations from the literature. The proposed
anisotropic adaptation method delivers the same accuracy with an order of magnitude fewer resources than
the more commonly used isotropic mesh adaptation.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) is concerned with evaluating characteristics and quantities related
to the flow of a fluid around a body. The computational aspect of the method is composed mainly of three
parts. First, is the Geometry Definition and Geometry Discretization, Solution of the underline equations and
finally visualization. While not new, the requirements of this pipeline have undergone significant changes
following the increasing demands of industry and academia for better solution resolution, see (Alauzet and
Loseille 2016). As a consequence, any new tool needs to be thoroughly tested and verified against previous
methods and datasets. In this work, a pipeline consisting of a mesh adaptation software a suite of error
estimator and interpolation tools, as well as a CFD solver, are brought together, and the configuration is
tested against a well-documented case of a 3D laminar flow over a delta wing.

In this study, mesh adaptation is built upon previous work (Tsolakis, Drakopoulos, and Chrisochoides
2018). More specifically, metric-based adaptation is employed. The crux of this approach is to create an
anisotropic mesh by mapping distance and quality evaluation to the metric space. This mapping M is
given by a 3× 3 positive definite matrix called metric tensor and it can be shown that it induces an inner
product ⟨u,v⟩M := uTMv. Based on the inner product the familiar formulas for distance, angle and volume
evaluation can be rewritten so that they take into account the information encapsulated in M. Equipped
with these size evaluation tools, the mesh adaptation algorithm will attempt to create elements that optimize
the spacing and the quality in the metric space. A high-level description of the general adaptation procedure
is given in Figure 1.

Section 4 demonstrates the effectiveness of this approach where quantitative characteristics like the lift and
drag coefficients of the flow are evaluated with lower error using an order of magnitude fewer vertices and
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consequently an order of magnitude less computational resources than the more commonly used isotropic
mesh adaptation.

Figure 1: Mesh Adaptation pipeline : At each iteration, the solver provides feedback to the mesh generation
module, about the areas of the mesh that need refinement and or coarsening.

2 METHODS

In this work, the mesh is adapted using CDT3D (Drakopoulos 2017) a multi-threaded mesh generation
software based on advancing front point creation, direct point insertion and a speculative scheme for local
reconnection (Drakopoulos, Tsolakis, and Chrisochoides 2017). SU2 (Economon, Palacios, Copeland,
Lukaczyk, and Alonso 2016) is used as a CFD solver, it was chosen due to its ease-of-use and open avail-
ability. Finally, the refine suite of mesh mechanics (Park 2018) is used for evaluating the multiscale
metric and interpolating the solution at each iteration to the new, adapted mesh.

2.1 Mesh Adaptation

The mesh adaptation software used in this work is CDT3D (Drakopoulos 2017, Drakopoulos, Tsolakis, and
Chrisochoides 2017). CDT3D is designed to be the speculative component of the telescopic approach to
mesh generation presented in (Chrisochoides 2016). As part of meeting the expectations of the CFD 2030
study (Slotnick, Khodadoust, Alonso, Darmofal, Gropp, Lurie, and Mavriplis 2014) which frames the future
needs of the simulation and meshing community, metric adaptation was added (Tsolakis, Drakopoulos, and
Chrisochoides 2018) and evaluated (Tsolakis, Chrisochoides, Park, Loseille, and Michal 2019) next to
well-know and tested mesh adaptation methods.

The pipeline of CDT3D adaptation for this work is shown in Figure 2 can be divided into four main steps:
(a) boundary adaptation which is performed using the mesh library MMGS (Dobrzynski and Frey 2009),
(b) initial mesh construction which is starting from a surface mesh builds a tetrahedral mesh that conforms
to the boundary, (c) mesh refinement introduces the new points improving the quality of the mesh along the
way, and finally mesh quality optimization.

Figure 2: CDT3D mesh generation pipeline

2.2 CFD Solver

SU2 (Economon, Palacios, Copeland, Lukaczyk, and Alonso 2016) is a general framework for solving sets
of governing equations for multi-physics problems. It is a vertex-based solver and uses dual control volumes
for determining the required quantities. It can use either a finite volume method or finite element method
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with an edge-based data structure. Both centered and upwind spatial integration schemes are provided.
Moreover, it includes features like agglomeration multigrid and preconditioners for low-speed applications
which are both utilized in this study. SU2 utilizes MPI to exploit parallelism in distributed memory environ-
ments.

2.3 Mutliscale Metric

The mutliscale metric (Loseille, Dervieux, Frey, and Alauzet 2007) is used in order to control the Lp-norm of
the interpolation error of a given scalar field. The multiscale metric is evaluated based on the reconstruction
the Hessian H of the given scalar field.

It has been shown experimentally (Loseille and Alauzet 2011b) and theoretically (Loseille and Alauzet
2011a) that a mesh conforming to MLp provides optimal control of the scalar field interpolation error in the
p-norm.

In this study, the implementation of refine’s multi-scale metric is used (Park 2018). In particular, the
L2-projection gradient reconstruction scheme is used for Hessian reconstruction and the order of the metric
norm is set to p = 2.

3 EXPERIMENTAL SET-UP

In order to meet the ever-evolving and growing demands of the CFD community, a simulation pipeline
should be able to integrate a plethora of different tools. The T-infinity project (O’Connell, Druyor, Thomp-
son, Jacobson, Anderson, Nielsen, Carlson, Park, Jones, Biedron, Lee-Rausch, and Kleb 2018), demon-
strates a series of different use-cases were a high-level Python interface can be used to build complicated
pipelines. In this work, due to the small scale (in terms of computational effort) and complexity of the ap-
plication, a more straightforward pipeline was built communicating data solely through files. However, the
API that the T-infinity project is proposing will be the goal for future applications.

Figure 3: Execution pipeline for the simulation in this study

The absence of common file formats for meshes and solutions required the creation some converters. The
final pipeline can be seen Figure 3. dat2solb and solb2dat are used to convert the solution format
between SU2 and the refine tools. ref_metric_test creates the metric tensor out of the current
solution. ref_intrep_test interpolates the old solution to the new mesh. This step allows the solver
to restart the calculation from a state closer to the final solution than starting from the freestream values
which is the default. The values of the previous solution are interpolated using linear interpolation. Finally,
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ref_translate converts the mesh from the .meshb format to the .su2 so that the solver can process
it. Although, at first this pipeline may seem highly tailored to the specific format, the flow of data follows
the abstract pipeline of mesh adaptation of Figure 1.

The simulation chosen for this study is a laminar flow over a delta wing. The flow conditions have been set
so that they match the case used in the first three High-Order Workshops (Wang, Fidkowski, Abgrall, Bassi,
Caraeni, Cary, Deconinck, Hartmann, Hillewaert, Huynh, Kroll, May, Persson, Leer, and Visbal 2013). In
particular, the freestream conditions are 0.3 Mach, 4000 Reynolds number based on a root chord length
of 1 and 12.5◦ angle of attack. The wing surface is modeled as an isothermal no-slip boundary with the
freestream temperature. The Prandtl number is 0.72. The viscosity is assumed constant.

As initial mesh, a model from the Unstructured Grid Adaptation Working Group (UGAWG) 1 was used.
This mesh can be seen in Figure 4. The computations were performed on a 24 core workstation ( 2 x Intel c⃝

Xeon c⃝ E5-2697 v2 @ 2.70GHz) with 757GB RAM.

Figure 4: Initial mesh, # vertices 143 # tetrahedra 434, available at https://github.com/UGAWG/
solution-adapt-cases

4 RESULTS

In this section, both quantitative and qualitative results are presented.

Figure 9 in appendix A depicts the evolution of the solution after each adaptation iteration. The generated
Mach contour lines capture the features of the vortex and match the ones presented in (Leicht and Hartmann
2010).

Another important issue when simulating flow where vortices are present is that the vortex created by the
flow should be resolved in the wake region of the wing. Since this is the expected behavior for these
simulation parameters both in physical and computational tests. Figure 5 depicts the evolution of the solution
at a distance of 4 cord lengths from the trailing edge.

The structure of the vortex core can also be seen in Figure 6 where streamlines are used to visualize the flow
through the vortex.

One of the most significant advantages using metric-based anisotropic mesh adaptation is that the same level
of accuracy can be achieved with a smaller mesh reducing thus the running time of all the components in
the computational pipeline. To illustrate this result for this study, two more configurations were tested both
using the same mesh adaptation tool. First, as a baseline, a uniform mesh refinement was used. In the
uniform refinement case the size of all the elements was fixed and for every iteration it was approximately
reduced to half. Second, an isotropic size was derived from the metric tensor by disregarding the directional

1https://ugawg.github.io/

https://github.com/UGAWG/solution-adapt-cases
https://github.com/UGAWG/solution-adapt-cases
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(a) Iter. #1 (b) Iter. #2 (c) Iter. #3 (d) Iter. #4 (e) Iter. #5 (f) Iter. #6

Figure 5: Slice of the vortex core in the wake region 4 cord lengths from the trailing edge at each iteration.

Figure 6: Streamlines of the final solution, # vertices 122,384 # tetrahedra 714,018

information (i.e. its eigenvectors) and using the smallest directional size ( i.e. the largest eigenvalue) to
control the local sizing.

The three mesh refinement approaches were compared against each other using the lift and drag coefficients
as calculated by SU2 ( see Figure 7). As a reference, the values Cre f

l = 0.347 and Cre f
d = 0.1658 have been

used (Leicht and Hartmann 2010).

Figure 7: Absolute error of lift and drag coefficients, for three different types of mesh refinement.
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Mesh Refinement Method

Uniform (3 iterations) Adaptive Isotropic (6 Iterations) Adaptive Anisotropic (6 Iterations)

Solver Time 817.28 min 151.95 min 93.05 min

Mesh Adaptation Time 23.75 min 14.31 min 12.05 min

Table 1: Simulation time comparison for the three mesh refinement approaches

Figure 8 depicts the upper surface of the wing of the final iteration for each mesh refinement approach. The
anisotropic approach packs more efficiently the points along the pressure contour lines. The uniform mesh
is also included for reference.

Figure 8: From the left : Pressure contours on the surface of the wing. Final mesh for the uniform, isotropic
and anisotropic case. Respective number of vertices : 6.140.030, 1.609.346 , 122.384

The anisotropic mesh adaptation outperforms the other two approaches, in particular it can achieve lower
error with an order of magnitude fewer vertices. Table 1 indicates that these gains are also reflected in the
total time of the simulation.

5 CONCLUSION

In this work, three different software components were brought together and a simulation pipeline was built.
The simulation results are promising and agree with already published work. The use of anisotropic mesh
adaptation enables lower error with an order of magnitude fewer elements, that can also be extrapolated
to an order of magnitude lower use of resources, power and time optimizing thus user-productivity. In the
future, the same case will be executed at higher complexity to explore both the solution convergence as well
as to study the scalability of all three components.
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A APPENDIX

(a) # vertices 11,313 # tetrahedra 58,333 (b) # vertices 30,509 # tetrahedra 171,425

(c) # vertices 59,726 # tetrahedra 344,379 (d) # vertices 61,455 # tetrahedra 355,650

(e) # vertices 120,612 # tetrahedra 702,791 (f) # vertices 122,384 # tetrahedra 714,018

Figure 9: Adapted surface mesh and contour lines of the Mach number for each iteration.
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