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Computational Fluid Dynamics (CFD) has become critical to the design and analysis of
aerospace vehicles. Parallel grid adaptation that resolves multiple scales with anisotropy is
identified as one of the challenges in the CFD Vision 2030 Study to increase the capacity
and capability of CFD simulation. The Study also cautions that computer architectures are
undergoing a radical change and dramatic increases in algorithm concurrency will be required
to exploit full performance. This paper reviews four different methods to parallel anisotropic
grid generation. They cover both ends of the spectrum: (i) using existing state-of-the-art
software optimized for a single core and modifying it for parallel platforms and (ii) designing
and implementing scalable software with incomplete, but rapidly maturing functionality. A
brief overview for each grid adaptation system is presented in the context of a telescopic
approach for multilevel concurrency. These methods employ different approaches to enable
parallel execution, which provides a unique opportunity to illustrate the relative behavior of
each approach. Qualitative and quantitative metric evaluations are used to draw lessons for
future developments in this critical area for parallel CFD simulation.

I. Introduction
Parallel anisotropic grid generation and adaptation methods modify an existing mesh to conform to a specified

anisotropic metric field. This metric field is constructed to specify a new grid that reduces errors estimated on the
current grid and solution. Robust grid adaptation mechanics that produce and modify anisotropic elements with aspect
ratios on the order of tens of thousands are required for high Reynolds number viscous flows. Grid adaptation methods
have made dramatic improvements in the last decade. Alauzet and Loseille [1] showed the evolution of solution-adaptive
methods that include anisotropy to resolve simulations with shocks and boundary layers. Park et al. [2] documented the
current state of solution-based anisotropic grid adaptation and motivated further development for aerospace analysis and
design in the broader context of the CFD Vision 2030 Study by Slotnick et al. [3]. The Vision Study provides a number
of case studies to illustrate the current state of CFD capability and capacity and the potential impact of emerging High
Performance Computing (HPC) environments forecasted to be available by the year 2030.

Parallel adaptive and anisotropic grid generation is at early stages of research and development compared to parallel
isotropic mesh generation. In terms of concurrency, communication, and synchronization aspects, the codes for both
types of grid generation share many common characteristics. Existing massively-parallel isotropic grid generation and
adaptation procedures for current and emerging HPC platforms often (over-)decompose the original grid generation
problem into n smaller subproblems, which are solved (i.e., meshed) concurrently using n � p cores [4]. The
subproblems can be formulated to be either tightly-coupled, partially-coupled, weakly-coupled, or decoupled. The
coupling of the subproblems determines the intensity of the communication and the amount/type of synchronization
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required to maintain correctness and grid quality. For example, a tightly-coupled approach requires each subproblem to
constantly maintain consistency with adjacent subproblems. A decoupled approach decomposes the grid generation task
in a way that eliminates the need for synchronization.

Four different parallel anisotropic grid adaptation methods are presented with different communication and
synchronization requirements. The methods are evaluated with a number of qualitative and quantitative criteria
introduced by the Unstructured Grid Adaptation Working Group (UGAWG) in their first benchmark [5], which focused
on evaluating adaptive grid mechanics for analytic metric fields on planar and simple curved domains. The UGAWG
is an informal group that has been formed to mature unstructured grid adaptation technology. The first UGAWG
benchmark article contains a list of future directions, among them parallel execution, the focus of this paper.

II. Parallel Strategies
The following parallel grid generation and adaptivity attributes are embodied to varying degrees by the software

evaluated in this study. They range from attributes that are crucial to success in parallel execution to attributes that
ensure longevity to enhance the adaptability of software for emerging computer concurrency architectures.

1) Stability is the requirement that the quality of the grid generated in parallel must be comparable to that of a grid
generated sequentially. The quality is defined in terms of the density and shape of the elements evaluated in the
metric field, and the number of the elements (fewer is better for the same level of metric conformity).

2) Reproducibility is separated into two forms by Chrisochoides et al. [6]. Strong Reproducibility requires that
the grid generation code, when executed with the same input, produces identical results under the following
modes of execution: (i) continuous without restarts, and (ii) with restarts and reconstructions of the internal data
structures. Weak Reproducibility requires that the grid generation code, when executed with the same input,
produces results of the same quality under the following modes of execution: (i) continuous without restarts,
and (ii) with restarts and reconstructions of the internal data structures.

3) Robustness is the ability of the software to correctly and efficiently process any input data. Automation is
critical for massively parallel computations, because operator intervention is impractical.

4) Scalability is the ratio of the time taken by the best sequential implementation to the time taken by the parallel
implementation. Amdahl’s law [7] suggests that the speedup is always limited by the inverse of the sequential
fraction of the software. Therefore, all nontrivial stages of the computation must be parallelized to leverage the
current and emerging architectures designed to deliver a million- to billion-way concurrency.

5) Code Reuse is a result of a modular design of the parallel software that builds upon previously designed
sequential or parallel meshing code, such that it can be replaced and/or updated with a minimal effort. Code
Reuse is feasible only if the code satisfies the Reproducibility criterion.

There are two common approaches for parallel grid generation and adaptation development, where these development
approaches try to satisfy the above attributes. The first approach uses existing state-of-the-art serial software (i.e.,
fully functional) and modifies it for parallel execution, which will be referred as functionality-first approach. This
paper briefly introduces and presents data from two such codes: EPIC and Feflo.a. The second approach designs and
implements scalable software with an initially incomplete functionality and the intention of completing functionality as
it is needed, which will be referred as scalability-first approach. This paper briefly introduces and presents data from
two such codes: refine and CDT3D.

The grid adaptation tools used in this study leverage the parallelization methods of data decomposition, domain
decomposition, or a combination. Chrisochoides [8] describes the Telescopic Approach, which applies a combination of
decomposition techniques for current and emerging architectures with multiple memory/network hierarchies as shown
in Fig. 1. The implementation of the Telescopic Approach is part of a long term goal for parallel grid generation and
adaptation at the Center for Real-Time Computing (CRTC) to achieve and sustain a billion-way concurrency over the
next 12 years. To achieve this goal, concurrency is exploited at different scales (levels) corresponding to the latency and
the bandwidth of different network/memory hierarchies in order to orchestrate communication and synchronization as
well as (in the future) power consumption.

The implementation of the Telescopic Approach relies on multiple abstractions used in the parallel grid generation
community over the last 25 years [4]: element, cavity, data-region, and subdomain. These abstract data types vary in
granularity and complexity (i.e., type and size of the data structures) and type/intensity of communication/synchronization
required to implement their basic operations. The intensity/type of communication/synchronization determines their
mapping to different layers of memory/network hierarchy. For example, concurrency at the element or cavity level using
edge swapping is permitted only in the shared memory of the cores within a single-chip, bulk and locally synchronous
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Fig. 1 The Telescopic Approach.

exchange of data among data-regions is permitted only within the distributed shared memory of a few nodes and
asynchronous communication of data-buffers is permitted over distributed memory of several hundreds of nodes and/or
tens of racks. Given these constraints, from the chip to the node levels, the Telescopic Approach deploys: (i) Parallel
Optimistic (PO) methods similar to those presented in [9–11], Parallel Data Refinement (PDR) methods similar to
those presented in [6, 12], while on supernodes and/or racks could utilize Parallel Constrained (PC) methods similar to
those presented in [13], and/or loosely-coupled [14, 15] methods.

A survey of experience with isotropic mesh generation can be used to forecast the performance of future enhancements
to the anisotropic algorithms. PO anisotropic grid generation codes like CDT3D on current and emerging Distributed
Shared Memory (DSM) machines are expected to scale up to 150 to 200 cores, due to memory management issues
similar to ones observed with Parallel Optimistic Delaunay Meshing (PODM) [10]. The use of sophisticated memory
pools can help to sustain scaling, but do not significantly extend the practical concurrency. Locality-aware parallel
implementations can help with better data affinity, but have limited impact due to the dynamic memory management
aspects. For example, Locality Aware Parallel Delaunay (LAPD) [16] can improve performance for up to 200 to 250
cores, see Fig. 2 (right).

These two studies [10, 16] and the data in Fig. 2 (right) suggest that one has to explore nested parallelism at both
fine- and coarse-grain levels in order to improve performance for up to 900 to 1000 cores. Namely, data from isotropic
grid generation implementations indicate that the application of the PDR on PODM (PDR.PODM) on both DSM [17]
and distributed memory machines using hybrid (MPI+threads) programming models [18, 19] can improve the overall
performance.

However, Fig. 2 indicates that such improvements are expected to have limited impact (i.e., about 66% parallel
efficiency) on higher than 3600 to 6000 cores due to local synchronization and volume of data migration. Parallel
metric-based adaptive anisotropic codes expected to have the same behavior since they are very similar to isotropic ones
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Fig. 2 Data on the first two layers of theTelescopicApproach applied on isotropic imaged-based grid generation.

when it comes to concurrency, communication and synchronization. Load balancing is a big factor in adaptive codes,
but all data depicted in Fig. 2 are without load balancing.

The CRTC team plans to address the load balancing problem using a parallel runtime software system designed and
implemented for load balancing [15]. However, even with load balancing for a large number of cores (i.e.,� 10,000),
communication/synchronization overheads are addressed by utilizing remaining levels of Telescopic Approach (i.e., PC
and loosely-coupled methods that rely on a lower volume of asynchronous communication). Anisotropic grid adaptation
tools use one or more levels of this hierarchy as described in the following subsections, and the results section mirrors
experience gained developing the Telescopic Approach for isotropic grid generation.

A. CDT3D from ODU
CDT3D implements a tightly-coupled approach and exploits fine-grain parallelism at the cavity level using data

decomposition. Its current implementation targets shared memory multicore nodes using multithreaded execution at
the chip level. In addition, CDT3D is designed for Code Reuse to simplify the implementation requirements for the
communication and synchronization of both data and domain decomposition layers of the Telescopic Approach. It
is designed to achieve high speed at the core level and tolerate costs due to gather/scatter operations in order to meet
scalability requirements. The Stability, Robustness, and Reproducibility are constantly reinforced with the parallelization
of any new operation included in CDT3D.

At the chip level, CDT3D performs concurrently multiple (but same) grid operations (e.g., edge/face swapping) on
different data by using fast atomic lock instructions to guarantee correctness. The pipeline of CDT3D can be divided
into three main steps: initial grid construction, grid refinement, and (optionally) grid quality optimization, see Fig. 3. In
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Fig. 3 The CDT3D grid generation pipeline.

the first stage, the input surface grid is recovered using methods based on Delaunay tetrahedralizations. Grid refinement
introduces points iteratively into the grid using an advancing front point creation and direct insertion. After each point
creation iteration, the grid is optimized in parallel using a fine-grained topological scheme for local reconnection [11],
optimizing metric-based criteria. In the last stage, the grid quality is improved using a combination of grid smoothing,
parallel local reconnection, and heuristics to target the improvement of low quality elements.

B. EPIC from Boeing
EPIC uses a partially-coupled approach that exploits coarse-grain parallelism at the subdomain level. Given the initial

mesh, EPIC partitions the mesh into subdomains and performs a complete mesh operator pass consisting of refinement,
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coarsening, element reconnection, and smoothing operations on the interior of each subdomain while temporarily
freezing the mesh at partition boundaries. After each mesh operator pass, EPIC updates the decomposition by shifting
elements between subdomains. Subdomain rebalancing uses an optimization technique that attempts to maintain an
equal work-load balance between subdomains while ensuring that frozen mesh edges near partition boundaries are
moved to the interior of a subdomain with each rebalancing step. Multithreading can be used to parallelize the mesh
operators at the subdomain level, but has only been implemented for a subset of mesh operations. This incomplete
multithreading implementation has seen limited use to date.

The EPIC anisotropic grid adaptation process [20] provides a modular framework for anisotropic unstructured grid
adaptation that can be linked with external flow solvers. EPIC relies on repeated use of mesh operator passes to modify
a grid such that element edge lengths match a given anisotropic metric tensor field. The metric field on the adapted grid
is continuously interpolated from the initial metric field. Several methods are available to preprocess the metric to limit
minimum and maximum local metric sizes, control metric stretching rates and/or anisotropy, and ensure smoothness of
the resulting distribution. In addition, the metric distribution can be limited relative to the initial grid and/or to the local
geometry surface curvature. The surface grid is maintained on an IGES geometry definition with geometric projections
and a local regridding. EPIC is routinely used on production applications at the Boeing Company and has been applied
on several workshop cases where the parallel implementation makes it practical for large scale problems [21, 22].

C. refine from NASA
refine relies on the implementation of a partially-coupled approach that exploits coarse-grain parallelism at the

subdomain level using domain decomposition and a homogeneous programming model. The parallel execution strategy
is described in Park and Darmofal [23]. The interior portion of each subdomain is modified in parallel while the border
regions between subdomains are fixed. Elements that span boundaries and need to be modified to improve metric
conformity are marked for future refinement. A combined load-balancing and migration is performed to equalize
the number of nodes on each partition while penalizing elements marked for modification that span subdomains
after migration. The repartitioning step provides edge weights to either ParMETIS [24] or Zoltan [25] graph-based
partitioning libraries. The current load-balancing and migration approach has improved parallel scaling properties over
the transcript approach described in [23].

refine is available at https://github.com/NASA/refine under the Apache 2.0 open source license. refine is
designed to output a unit grid [26] for a given metric field. A combination of edge split and collapse operations
proposed by Michal and Krakos [20] is used to modify long and short edges toward unity length in the metric. Node
relocation is performed to improve adjacent element shape. A new ideal node location of the node is created for each
adjacent element. A convex combination of these ideal node locations is chosen to yield a new node location update that
improves the element shape measure in the anisotropic metric [27]. Geometry is accessed through the EGADS [28] and
EGADSlite [29] application program interface.

D. Feflo.a from INRIA
Feflo.a employs a partially coupled, coarse-grained approach that exploits parallelism at the subdomain level. The

initial grid is decomposed in multiple levels (i.e., domain decomposition). The initial volume is split and adapted
in parallel while treating the interface between subdomains as a constrained surface. Once the initial subdomains
are complete, a new set of subdomains are constructed entirely of the constrained interface elements of the previous
subdomains. This process recurses until all the constrained elements are adapted [30].

Feflo.a is an adaptation code developed at INRIA that can process manifold or nonmanifold surface and/or volume
grids composed of simplicial elements. It creates a unit grid [31, 32] in two steps. The first step improves the edge
length distribution with respect to the input metric field. Only classical edge-based operators (insertion and collapse)
are used during this step. The second step is the optimization of grid element shape measures with node smoothing
and tetrahedra edge and face swaps. For the surface grid adaptation, a dedicated surface metric is used to control the
deviation of the metric and surface curvature. This surface metric is then combined with the input metric. New points
created on the surface are evaluated on a (fine) background surface grid and optionally on a geometry model via the
EGADS API.

The classical edge-based operators are implemented by a unique cavity-based operator [30, 33]. This cavity-based
operator simplifies code maintenance, increases the success rate of grid modifications, has a constant execution time for
many different local operations, and robustly inserts boundary layer grids [34]. When the cavity operator is combined
with advancing-point techniques, it outputs metric-aligned and metric-orthogonal grids [35].
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III. Experimental Evaluation
A series of experiments are performed to evaluate the parallel strategies defined in the previous section. In each

experiment, a given mesh is adapted to conform to an anisotropic metric field M . Loseille and Alauzet [26] provide a
thorough introduction of the definition and properties of the metric tensor field. The complexity C of a continuous
metric fieldM is defined as the integral,

C(M) =
∫
Ω

√
det(M(x)) dx. (1)

Complexity is computed on the discrete grid by samplingM at each vertex i as the discrete metric field M ,

C(M) ≡
N∑
i=1

√
det(Mi)Vi, (2)

where Vi is the volume of the Voronoi dual surrounding each node. The relationship between C and the number of
vertices and elements in the adapted grid is shown theoretically by [26] and experimentally by [36, 37]. The complexity
has a linear dependency with respect to the number of vertices and tetrahedra, where the vertices are approximately 2C
and tetrahedra are approximately 12C.

The complexity of a metric can be scaled to create a uniformly refined (or coarsened) mesh with the same relative
distribution of element density and shape. The metric tensor MCT that corresponds to the target complexity CT is
evaluated by [26]:

MCT =

(
CT

C(M)

) 2
3

M, (3)

where M is the metric tensor before the scaling and C(M) is the complexity of the discrete metric before scaling.
The objective of the evaluation is to support parallel anisotropic grid adaptation method development. Two evaluation

methods are used: (i) quantitative with respect to parallel performance of the codes and (ii) qualitative with respect to
metric conformity of the adapted mesh. The goal of metric conformity is to create a unit grid [26], where the edges
are unit-length and the elements are unit-volume with respect to the given metric. Computing an edge length in a
continuous metric field requires an integral. If assumptions are made about the interpolation of the metric between
vertex a and vertex b of the mesh, an analytical expression for the edge length in the metric Le is available as [38],

Le =

{
La−Lb

log(La/Lb )
|La − Lb | > 0.001

La+Lb

2 otherwise

La = (v
T
e Mave)

1
2 , Lb = (v

T
e Mbve)

1
2

. (4)

The Mean Ratio shape measure is also approximated in the discrete metric,

Qk =
36

31/3

(
|k |

√
det(Mmean)

) 2
3∑

e∈L v
T
e Mmeanve

, (5)

where v is a vertex of element k and Mmean the interpolated metric tensor evaluated at the centroid of element k. The
parallel performance is evaluated in terms of traditional metrics like strong speedup and speed for generating elements
(Se) and grid points (Sp) defined as follows:

Se =
Ne

TPrep + TE2E

Sp =
Np

TPrep + TE2E

where
TPrep file access time, boundary recovery time, partitioning time, metric interpolation time, etc.
TE2E time spent on grid adaptation
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Ne number of elements in the final grid minus elements in the initial grid
Np number of vertices in the final grid minus vertices in the initial grid

A cube with an analytically-defined metric field and a delta wing with a solution-based metric field in laminar flow are
examined. These two simple geometries focus on the details of parallel execution without the difficulty of evaluating
curved geometries. Materials for these two cases are available at https://github.com/UGAWG. The rest of this
section will be organized with respect to those two geometries.

The execution times and hardware specifications are omitted for the EPIC results to protect proprietary data. This
might seem contrary to open discussions in forums like this, but the authors feel that this real-life constraint does not
affect the lessons learned. In fact, the value of including the normalized scaling and metric conformity evaluations of an
industrial code exceeds the minor limitation of an incomplete comparison.

A. Cube
The first geometry is a cube with an analytically defined metric field M referred to as polar-2 in the first UGAWG

benchmark [5], where a cube-cylinder geometry was specified. Here a unit cube is used, see Fig. 4. The metric is
defined as,

M =


cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1



h−2
r 0 0
0 h−2

t 0
0 0 h−2

z




cos(t) sin(t) 0
− sin(t) cos(t) 0

0 0 1

 , (6)

where r =
√

x2 + y2, t = atan2(y, x), hz = 0.1, h0 = 0.001 and hr = h0 + 2(0.1 − h0) |r − 0.5|. The subscript t is in
the θ direction and subscript r is the radial direction. The spacing in the tangential direction is defined by

d = 10 (0.6 − r) and ht =

{
0.1 if d < 0

d/40 + 0.1(1 − d) if d ≤ 0
(7)

This metric field represents a curved shear layer. This polar distribution has low gradation and is possible to satisfy with
high-quality elements by resolving curvature in the tangential direction near the layer.

Fig. 4 Cube with polar-2 analytic metric, complexity of 8,000.

The initial grid conforms to the polar-2 metric with a complexity of 8,000. The polar-2 metric field is scaled to
500,000 complexity for this test. Adapted grids with approximately 1,000,000 vertices and 6,000,000 tetrahedra are
expected, which is a relatively small example based on the size of a typical fluid simulation. This small size makes
the strong scaling tests a challenge for a large number of cores. The scaling results obtained using refine, CDT3D and
EPIC to adapt the initial 8,000 complexity grid to conform to the 500,000 complexity as a function of number of cores
is shown in Fig. 5. All three methods exhibit linear scaling in a low number of cores. At higher core numbers, the
speedup becomes constant for both distributed memory methods. The main reason for this is the small size of the mesh,
which does not offer enough concurrency. In other words, the computation time per core becomes very small and the
communication overhead dominates the running time.
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Fig. 5 Left: Speedup for the cube case adapted from 8,000 complexity to 500,000 complexity. Right: Zoom-in
view of the data for up to 16 cores.

Metric conformity, characterized by element shape measure and edge length histograms of the generated grids, is
shown for refine, EPIC, CDT3D and Feflo.a in Fig. 6 and 7. The mean ratio is bounded between one and zero, where a
mean ratio near one indicates better metric conformity than a mean ratio near zero. In linear scale, all methods appear
to exhibit good overall quality. The log scale makes the presence of low quality elements in the grid generated with
CDT3D more visible. One of the reasons for these elements is that currently CDT3D does not adapt on the boundary of
the grid, resulting thus in low quality elements near and on the boundary. refine produces elements with the highest
minimum mean ratio of 0.1, while the lowest mean ratio is around 0.01 for EPIC and Feflo.a. The ideal edge length
distribution is clustered tightly around unity. Figure 7 (left) reveals that refine and EPIC generated edges with less
variance, while Feflo.a and CDT3D produce both the shortest edges and the largest edges.
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Fig. 6 Comparison of the mean ratio of the generated meshes for the Cube 500k case with refine, EPIC and
CDT3D using 16 cores, in linear and logarithmic scales.

B. Delta Wing
The second geometry, Fig. 8(a), is a delta wing constructed of planar facets. A multiscale metric [39] is constructed

based on the Mach field of this subsonic laminar flow. The initial grid is adapted to a specified complexity of 50,000 and
details of the verification of the delta wing grid adaptation process is provided by Park et al. [40]. The multiscale metric
is scaled to have a complexity of 500,000 for the input to the adaptation evaluation. Adapted grids with approximately
1,000,000 vertices and 6,000,000 tetrahedra are expected, which is a relatively small example based on the maximum
number of 23M vertices in [40].

The initial grid conforms to the metric with a complexity of 50,000. The execution time required by refine, CDT3D,
and EPIC to adapt the initial 50,000 complexity grid to conform to a 500,000 complexity metric field as a function of
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Fig. 7 Comparison of the edge lengths of the generated meshes for the Cube 500,000 case with refine, EPIC
and CDT3D using 16 cores, in linear and logarithmic scales.

(a) Delta wing with multiscale metric in laminar flow,
50,000 complexity.

(b) CDT3D adapting the delta wing: the current missing functionality of
boundary adaptation creates low quality elements (black tetrahedra)

Fig. 8 Delta wing geometry.

the number of cores is shown in Fig. 9. At high core numbers, both distributed memory codes exhibit improved scaling
over the performance of the cube case due to the larger size of the initial grid for the delta wing. The speedup becomes
almost constant above 400 cores for refine. For EPIC, the maximum speedup is about 75 on 256 cores. When the
complexity of the target mesh is linearly scaled to 10,00,000, EPIC offers more than 100 times the speedup on 500 cores,
as shown in Fig. 10. At lower core counts, EPIC exhibits the best scaling while CDT3D falls between EPIC and refine.

Returning to the 500,000 complexity target metric, metric conformity (characterized by element shape measure and
edge length histograms of the generated grids) is shown in Figs. 11 and 12, respectively. On a linear scale, all methods
appear to exhibit good overall quality. The log scale makes the differences more prevalent. refine’s grid quality exhibits
the best lower bound among these metric conformity measures. CDT3D exhibits a slightly inferior quality in the mean
ratio because of the current lack of boundary adaptation. Figure 8(b) depicts the locations of all elements with mean
ratio quality less that 0.1 near the wing, it is easily seen that they are attached on the boundary. These low quality
features are expected to be eliminated once boundary adaptation is implemented. The edge-length distribution is similar
for all methods with CDT3D producing the longest edge and Feflo.a the shortest.

The concepts of Stability and Reproducibility were introduced in Section II. Adherence to these attributes is
measured by evaluating the metric conformity of the same case with different numbers of cores. Histograms of edge
length in the metric are evaluated for three codes for execution with 1, 8, and 16 cores in Fig. 13. refine, CDT3D,
and EPIC show an almost perfect overlap of the histograms, but they do not produce the same mesh (i.e., they offer a
weak form of the Reproducibility attribute). Producing metric conformity that is independent of the number of cores
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Fig. 9 Left: Speedup data for the delta wing adapted from 50,000 complexity to 500,000 complexity. Right:
Zoom-in view of the data for up to 16 cores.
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Fig. 10 Left: Speedup data for the delta wing adapted from 50,000 complexity to 10,000,000 complexity. Right:
Zoom-in view of the data for up to 16 cores.
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Fig. 11 Comparison of the mean ratio of the generated grids for the delta wing 500,000 complexity case with
refine, EPIC, CDT3D using 16 cores and Feflo.a using 1 core, in linear and logarithmic scales.

satisfies the requirement of Stability. The mean ratio histograms result in the same conclusion that metric conformity is
independent of the number of cores for these tools and the mean ratio plot is omitted for brevity.

The speeds Se and Sp , depicted in Table 1 for a variety of hardware types, provide an insight on the behavior of parallel
anisotropic adaptive grid methods for HPC CFD capability needs. This table helps to anchor the relative strong scaling
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Fig. 12 Comparison of the edge lengths of the generated grids for the delta wing 500,000 complexity case with
refine, EPIC, CDT3D using 16 cores and Feflo.a using 1 core, in linear and logarithmic scales.
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Fig. 13 Stability data for the delta wing 50,000 to 500,000 complexity case using EPIC, refine and CDT3D.

performance of the tools as previously shown in Fig. 9. Table 2 indicates the versions of the Intel®Xeon®processors,
which have launch dates ranging from 2011 to 2017. This wide range of processor capabilities introduced in this time
period makes direct comparison of the speeds between different codes problematic. Even for the same code, the speed
may be as much as 3 times slower (see CDT3D in Table 1) depending on the hardware used for the evaluation.

The current timing information provides limited insight on the potential behavior of the parallel methods for
extreme-scale current and emerging architectures. For example, both scalability-first CDT3D and functionality-first
EPIC include parallel and sequential parts. Amdahl’s law predicts that the serial fraction of the code reduces the
potential for parallel speedup as the number of cores grows.

Table 1 Performance results for adapting the delta wing grid from an initial complexity of 50,000 to a 500,000
complexity using CDT3D, refine and Feflo.a on different hardware.

Software Cores TPrep TE2E Ne Np Se (elms/sec) Sp (points/sec) Machine
Feflo.a 1 1.9 52.0 5,305,631 835,632 87,651.86 13,568.22 xeon2697
CDT3D 24 2.43 40.88 5,558,489 933,876 114,922.49 19,154.26 crtc.lab
CDT3D 24 2.62 50.24 5,563,424 934,712 94,253.27 15,709.55 turing.odu
CDT3D 24 2.07 118.84 5,566,176 935,010 41,228.85 6,870.44 bridges.psc
refine 16 1.18 1084.76 5,273,053 929,649 4,861.03 857.01 xeon2680
refine 24 1.45 866.34 4,413,879 772,160 5,094.90 891.29 xeonX5675
refine 16 1.39 902.84 4,434,490 776,647 4,911.70 860.23 xeon6148

Weak scaling of CDT3D (Table 3) and Feflo.a (Table 4) is shown to complement the strong scaling studies. The
initial grid is the 50,000 complexity delta wing. The output mesh from an adaptation to a target complexity is used
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Table 2 Hardware specifications of the different machine names in Table 1.

Machine Memory L3 cache Model Name Turbo Sockets Cores per Socket Total Cores
(GB) (MB)

crtc.lab 757 30 Intel®Xeon®E5-2697 v2 @ 2.70GHz 3.50GHz 2 12 24
turing.odu 757 16 Intel®Xeon®E5-4610 v2 @ 2.30GHz 2.70GHz 4 8 32
bridges.psc 3000 40 Intel®Xeon®E7-8860 v3 @ 2.20GHz 3.20GHz 4 16 64
xeon2680 264 35 Intel®Xeon®E5-2680 v4 @ 2.40GHz 3.30GHz 2 14 28
xeonX5675 24 24 Intel®Xeon®X5675 @ 3.06GHz 3.46GHz 2 6 12
xeon6148 96 55 Intel®Xeon®Gold 6148 @ 2.40GHz 3.70GHz 2 20 40
xeon2697 - 30 Intel®Xeon®E5-2697 v2 @ 2.70GHz 3.50GHz - 12 12

as the input to the next adaptation step after scaling the metric to the new target complexity. The target complexity
is scaled linearly with the number of cores at a ratio of 500,000 complexity per core. This assumes that the work
required to adapt the grid scales linearly with the complexity. Methods with sublinear or superlinear work scaling
should be evaluated with a problem size that accounts for the work scaling. Element creation speed is evaluated by
(elms f inal − elmsinitial)/(tprep + te2e) and similarly for the points. The CDT3D grid is kept in memory throughout the
simulation and is passed from each case to the next as is expected in the context of a parallel CFD solver. The CDT3D
TPrep is a small fraction of TE2E , independent of the number of cores. There is a slight increase in CDT3D TE2E at 24
cores, which may be due to memory contention. The Feflo.a TPrep is a significant and growing fraction of TE2E . If
TPrep is removed from TE2E , good weak scaling is observed, which indicates that TPrep is a good target of optimization
or reformulation. Even with a growing TPrep , Feflo.a shows an increasing Se and Sp for increasing cores.

Table 3 Weak scaling performance of CDT3D on crtc.lab.

cores complexity # tetrahedra # vertices tprep te2e elms/sec pts/sec
1 50k→ 500k 5,516,567 926,766 2.26 719.59 6,858.59 1,146.56
3 500k→ 1.5m 15,908,630 2,669,073 0.18 666.35 15,595.50 2,615.41
6 1.5m→ 3m 34,169,056 5,712,669 0.48 586.14 31,153.69 5,196.87
12 3m→ 6m 69,272,450 11,571,320 0.51 648.17 54,157.70 9,045.87
24 6m→ 12m 138,892,161 23,186,740 0.97 859.06 81,041.73 13,536.37

Table 4 Weak scaling performance of Feflo.a.

cores complexity # tetrahedra # vertices tprep te2e elms/sec pts/sec
1 50k→ 500k 5,305,631 835,632 1.9 52.0 87,651.86 13,568.22
3 500k→ 1.5m 17,084,296 2,653,433 6.2 82.5 132,777.20 20,491.50
6 1.5m→ 3m 35,701,908 5,533,547 23.3 111.2 138,420.91 21,413.49
12 3m→ 6m 71,634,403 11,072,009 68.3 155.0 160,915.79 24,802.79
24 6m→ 12m 144,592,969 22,332,731 175.0 223.4 183,128.93 28,264.86

IV. Conclusions and Future Work
This paper presents four parallel anisotropic grid generation and adaptation methods from both ends of the

spectrum for parallel mesh generation: functionality-first (i.e., EPIC and Feflo.a) and scalability-first (i.e., refine and
CDT3D). In a follow-up study, we expect to increase the pool of the methods in this study by including: Pragmatic
(https://meshadaptation.github.io), a 2D and 3D anisotropic adaptation code that targets distributed memory
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machines developed at Imperial College London and Omega_h (https://github.com/ibaned/omega_h) an open-
source grid adaptation library that exploits coarse-grain concurrency on subdomains with both CPU and GPU processors.
Omega_h is unique in its support for Strong Reproducibility [41, 42].

In the rest of this section, we summarize the lessons learned with respect to five parallel mesh generation criteria
defined in Section II. The experimental data from EPIC, refine, Feflo.a and CDT3D suggest:

• Stability For the target geometries, all four codes exhibit stability as depicted in Fig. 13. These codes are tested in
a large set of geometries independently and experience the same behavior in terms of their stability.

• Reproducibility There is high cost for delivering strong reproducibility, but weak reproducibility can be attained
at a lower cost. Weak reproducibility is sufficient for most flow solvers and adaptive mesh processes.

• Robustness No special effort is made to test robustness. However, independent of this study, there is evidence
[21, 22, 43] that these codes are robust, which is not a trivial task especially for the methods that rely on discrete
domain decomposition. Unexpected artifacts on the surfaces of discrete domain decomposition can disrupt
boundary recovery.

• Scalability The scalability results on shared-memory nodes with a lower number of cores are encouraging. Strong
speedup data from EPIC and refine suggest high-end user-productivity. Weak scaling speedup data in Fig. 2 from
two layers (Parallel Optimistic and Parallel Data refinement [17]) of the Telescopic Approach applied on isotropic
grid generation suggest similar end-user productivity and promising scalability (i.e., 100 billion elements on 16K
cores in about 1000 seconds [19]). However, the data from tables 1, 3, and 4 suggest that for scalability-first
methods like CDT3D, there are opportunities for runtime reduction. Namely, tables 3 and 4 suggest that, it takes 24
cores for CDT3D to deliver the same performance as a single-core, functionality-first, and highly-optimized code
like Feflo.a. Functionality-first parallel anisotropic methods like Feflo.a can pay a high price for preprocessing
subdomain data (see Table 4) that impact the scalability of the method (see Fig. 10). On the other hand, the
scalability-first methods tend to have lower subdomain preprocessing time, see refine in Table 1 and CDT3D in
Table 3. As it is evident from refine in Fig. 9, lower preprocessing cost helps with the scalability of the method.
Scalability is impacted by the speed per single core and preprocessing cost. This paper presents two different
viable approaches to achieve the same objective, where the difference is in the implementation priorities.

• Code Reuse By design, all four codes leverage code reuse at different levels. For example, EPIC and Feflo.a
rely on existing sequential fine-tuned highly-optimized fully-functional code. The current version of refine is
structured to reuse low-level data structures based on experience and code from an earlier version with lower
scalability potential. CDT3D is designed from the ground-up to meet all the requirements for each of the layers of
the Telescopic Approach and is expected to accomplish this with more than 95% code reuse, which is a lower
bound from CRTC’s experience with TetGen [6] and PODM [17].

Designing and implementing scalable software from ground-up leads to short-term incomplete, but rapidly maturing
functionality. Evidence from this group’s experience suggest that scalability-first methods like CDT3D with proper
design decisions can accelerate efforts to extend functionality [44] and improve element quality. Work remains for
both approaches, but sharing experiences from very targeted efforts like this paper will aid all parties. For example,
scalability-first methods like CDT3D can improve conformity of the metric by targeting and prioritizing areas of interest
suggested by functionality-first software like EPIC, which has been optimized to meet industrial needs. Functionality-first
methods like EPIC could benefit by using a tightly-coupled and Telescopic Approach adopted by CDT3D to improve
scalability on current and emerging hardware.

The pluralism in the different methods and their implementation (even when they belong to the classification
presented in [4]) is a mutual beneficial to this community. The main contribution of the lessons learned in this paper is
to identify very specific improvements for both functionality-first and scalability-first methods in a labor-efficient way.
Given that mesh generation and specifically parallel mesh generation is a labor intensive task, our hope is that this study
(and future studies) will provide insight to meet the challenges stated in the CFD Vision 2030 Study.

The effort started by the UGAWG has already returned value to the participants and wider grid adaptation community.
The general consensus of the UGAWG is that parallel anisotropic grid adaptation codes could improve their scalability
by exploring concurrency at several nested levels of abstractions like the Telescopic Approach depicted in Fig. 1 for
isotropic methods.
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