
Three-Dimensional Prism-Dominant

Mesh Generation for Viscous Flows

Around Surface Slope Discontinuities

Juliette Pardue∗ and Andrey Chernikov†

Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA

The NASA CFD Vision 2030 Study has identified mesh generation to be a significant
bottleneck in the CFD pipeline. Human intervention is often required due to a lack of
robustness and automation while generating the mesh. An automated approach to generat-
ing unstructured three-dimensional, prism-dominant meshes for viscous flows is presented.
Meshes comprised of prisms are advantageous because they yield a more accurate solution
and have fewer elements than their purely-tetrahedral mesh counterpart. An extrusion-
based approach using multiple normals is used where anisotropic prisms are formed from
the surface mesh facets and blend prisms are used to fill the cavities between multiple
normals. Multiple normals are needed at a node to satisfy the visibility requirement for
all incident surface facets. These multiple normals arise at regions of the surface mesh
where there are convex discontinuities in the slope of the surface across edges. Nodes
where blend region meshes must be formed are classified using an exhaustive enumeration
scheme based on the number of convex edges and concave edges that are incident upon
the node. Templates are presented to robustly mesh all the enumerated types of blend
regions that occur at ridges, cusps, and corner nodes, including non-Lipschitz nodes. In-
tersections are detected in the boundary layer using an efficient spatial partitioning tree
and are treated using Laplacian smoothing of the normal vectors or by reducing the total
height of the boundary layer in the identified regions. The remainder of the volume is then
tetrahedralized with an isotropic Delaunay mesh generator.

I. Introduction

Mesh generation is a step in the iterative pipeline for analyzing aerospace vehicles as shown in Figure 1.
After an analysis of the partial differential equations (PDE) solution on the mesh, the mesh is refined to
yield a more favorable error estimation, which is typically a faster operation than generating an entirely
new mesh. For computational fluid dynamics (CFD), anisotropic mesh adaptation1,2 is needed to refine
the elements in regions where there is a higher degree of gradation in the flow velocities in one direction.
Assuming proper care for the refinement steps, this new mesh will be more accurate in the desired regions
with respect to the PDE solution.

Since the end goal is to generate a mesh which accurately and efficiently fits the PDE, the time to achieve
this goal is dependent on the number of iterations through the pipeline of mesh generation to PDE solver
to analysis. Clearly, this iterative process needs an initial mesh to begin the process. If the initial mesh
closely represents the PDE, then fewer iterations through the pipeline are required to achieve a suitable
solution. However, if the initial mesh is highly inaccurate with respect to the PDE, then the first iterations
through the pipeline will present numerous areas which require refinement. It will take the unsuitable mesh
more iterations to reach a similar quality as the suitable initial mesh. The initial mesh sets the pace for
the remainder of the iterations through the pipeline as well as the amount of refinement work. For CFD,
we need an initial mesh that has highly stretched elements along the direction of the flow to provide the
most CPU savings for the PDE solver. An appropriate anisotropic mesh will also require a fewer number
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Figure 1. CFD analysis pipeline.

of iterations through the pipeline, thus yielding the fastest overall execution time. Without a well-resolved
initial boundary layer, the error estimator may not be able to determine any regions of the mesh to be refined
because there is not enough resolution to determine flow characteristics.

The NASA CFD Vision 2030 Study3 has identified that mesh generation and adaptivity are significant
bottlenecks in the CFD pipeline. Hardware advances have allowed for higher resolution simulations, and
while flow solver software has matured at a faster rate, mesh generation has become increasingly difficult
due to the demand for larger meshes over more complex geometries. The NASA CFD Vision 2030 Study
states that mesh generation routinely requires human intervention due to a lack of robustness in treating
complex geometries. One of the key findings is a lack of automation, and inherently including robustness,
in the mesh generation process: “A single engineer/scientist must be able to conceive, create, analyze, and
interpret a large ensemble of related simulations in a time-critical period, without individually managing each
simulation, to a pre-specified level of accuracy.” Clearly a mesh generator is needed that can be parameterized,
executed, and run (without any human interaction during runtime) via a script in order to submit a batch
collection of related jobs. Chawner et al.4 discusses in more detail the geometry and meshing concerns
in the NASA CFD Vision 2030 Study along with a history of three decades of meshing evolution which
identifies the common unaddressed capabilities over the years. Human intervention has always been a
problem with mesh generation and automation has been a request since 1984. In addition to robustness
still being requested in the mid-1990s, more efficient mesh generators were also desired because the time
to generate a series of related grids was prohibitively long. Chawner et al. also identify the desire for
meshes over more complex geometries along with physics-coupled meshing, such as generating an anisotropic
boundary layer for Reynolds-Averaged Navier-Stokes flows. Various mesh generation codes use various
quality metrics to determine unacceptable elements and various solver codes are more sensitive to certain
quality criteria. To summarize, mesh generators need to be able to produce large “high-quality” grids quickly
around complex geometries without any human intervention, where “high-quality” is dependent upon the
flow solver’s discretization.

The summary of the panel discussion at AIAA’s 2015 SciTech Conference by Chawner et al.5 further
discusses the aforementioned needs for mesh generators, including mesh generation’s utilization of High Per-
formance Computing (HPC) advances. The shortcomings in robustness and the inability for mesh generators
to create a valid mesh around complex configurations has become a roadblock for parallel mesh generation.
For example, if a mesh generator fails to produce a valid mesh 10% of the time, then attempting to run the
mesh generator in parallel with 10 processes will typically lead to a failure. Due to a lack of advancement
in fault-tolerance for HPC, if even just one meshing process fails, then all processes abort and a mesh is not
produced. Karman, Wyman, and Steinbrenner discuss the challenges of engineering a mesh generator from
a commercial perspective,6 and also cite robustness and automation as one of the main difficulties. Under-
utilization of HPC resources is due to the scalability and robustness of certain mesh generation approaches,
such as the advancing-front method which requires a lot of synchronization to ensure that multiple processes
do not create meshes that overlap. In addition to the poor parallel scalability, the advancing-front method is
based on heuristics and is not guaranteed to terminate, so this approach is not a good candidate to parallelize.
It is clear that the priority for mesh generators has become automation, which requires robustness.

A. Related Work

There have been many developments in the mesh generation field for creating anisotropic meshes. The state-
of-the-art approach to creating the initial mesh of highly stretched elements is the advancing-front procedure
where elements are extruded from the surface mesh in the normal direction for each surface facet. Many
implementations of these methods grow the mesh from the geometry model one layer at a time, where each
new element in each layer is checked for intersections with the remainder of the front. The remainder of the
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volume, away from the model, can be meshed with an isotropic mesh generator.7,8 Some approaches use a
single normal for each model node, so the boundary layer is treated as an inflation of the surface mesh.9–12

Aubry et al. present a comparison between the different normal vectors13 that can be chosen for the single
normal for each node. Connell and Braaten9 create surface meshes on viscous and non-viscous walls using
an advancing front procedure, then prisms are extruded from the viscous walls. After the extruded prisms
are created, then the exposed quadrilateral faces are collapsed in a stairstep pattern so that only triangular
faces are exposed for the isotropic volume mesh generator. Hassan et al.10 also uses an advancing front
procedure to create the initial surface mesh. Anisotropic tetrahedrons are extruded in the normal direction
from the surface mesh. At each layer the normals are recalculated and smoothed. After the boundary layer
generation terminates, an isotropic advancing front procedure is used to tetrahedralize the remainder of the
volume. Pirzadeh14 uses the advancing layers method with a single normal per node to generate anisotropic
tetrahedra along surface vectors of a predetermined triangular surface mesh. One layer is created at a time,
and a layer terminates once it gets too close to another front or until a certain grid quality, dictated by the
background mesh, is satisfied. After the viscous boundary layer is generated, then the traditional isotropic
advancing front procedure is used to fill the remainder of the domain.

Martineau et al.11 uses an anisotropic, quadrilateral-dominant surface mesh as the initial surface that the
prisms will be extruded from. A method of gradation control is also presented which terminates an advancing
layer if the previous element is roughly isotropic, or if the new element is too close to other features of the
mesh. The marching vector directions are smoothed along with the growth rate in concave regions. Once
the boundary layer has been generated, a series of pyramids and tetrahedrons are used to cover each exposed
quadrilateral face from the isotropic tetrahedral volume mesh generator. Marcum, Alauzet, and Loseille12

can produce mixed-element meshes of tetrahedrons, triangular prisms, and hexahedrons. The boundary layer
uses varying growth rates and acceleration rates for different regions of the mesh based on the characteristics
of the input surface mesh. Anisotropic metric blending is used when two fronts start approaching each other.
Their paper looked at the effect of computing the normal in different ways. The normals that they computed
and evaluated were: the average normal of incident faces, the most visible normal which minimizes maximum
angle between each face normal and the optimal normal, and the least squares normal which minimizes the
deviation between each face normal and the optimal normal. They also tested two additional cases which
both use a few iterations of Laplacian smoothing: the most visible normal + Laplacian smoothing and the
least squares normal + Laplacian smoothing. These two cases were the normals that produced the highest
quality meshes with the fewest number of layers that terminated early for many practical cases.

Figure 2. Grid lines for a trailing edge slice.

The single normal approach, even using Laplacian smooth-
ing, creates poorly shaped volume elements around nodes of
the surface mesh that have large deviations between its inci-
dent surface facets’ normal vectors, such as the trailing edge
region. If a facet’s nodes’ chosen marching vectors have an
almost zero dot product with the surface facet’s original nor-
mal vector then the extruded prism will be flattening out and
approaching zero volume. This is known as the visibility re-
quirement because the normal of each node for a triangle must
be visible to the computed normal of the triangle. Figure 2
shows the grid lines around the sharp trailing edge of a cone,
commonly seen on payloads, that has been generated using a
single normal per node and smoothing those normal direction.
The grid lines show that some of the volume elements extruded
from the surface elements incident upon the trailing edge node have a near zero volume since their grid lines
are perpendicular to the surface element’s normal.

Many authors began introducing multiple normals to treat these regions that have large discontinuities
in the slope of the surface.15–19 Normals are chosen that satisfy a certain visibility requirement such as the
dot product between the node’s chosen normal and an incident surface facet’s calculated normal being above
a threshold. When all of a node’s incident surface facets satisfy the visibility requirement, then only one
normal is needed for the node; otherwise, multiple normals are needed. However, when multiple normals are
introduced, the cavity between these multiple normals has highly anisotropic faces exposed. The isotropic
volume mesh generator cannot handle these highly stretched faces, so blend meshes need to be created to
fill the cavity and cover the anisotropic faces.
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Figure 3. Compatibility of shared
quadrilateral face (green) for prisms
extruded from neighboring quadri-
lateral and triangle (purple).

Garimella’s dissertation15 presents an anisotropic tetrahedral mesh
generator using multiple normals that can treat non-manifold geom-
etry. As seen in previous work using the single normal approach,
Garimella also uses Laplacian smoothing for the marching vectors.
Garimella defines templates for treating the blend regions incident
along edges, where both nodes have two normals, and cusp edges,
where one node has two normals and the other node has one normal.
However, Garimella does not discuss the blend regions incident upon
corner nodes and proposes “that the vertex blends be created using
general mesh generation techniques tailored for the purpose of filling
these gaps.”15 Jansen, Shephard, and Beall16 present an extrusion-
based approach for generating anisotropic prism-dominant meshes us-
ing multiple normals. Edge blend regions are treated with hexahe-
drons, and neighboring edge blend regions must have the same num-
ber of hexahedrons so that the shared quadrilateral faces are compatible. Vertex blends are not discussed
in detail. Instead of using Laplacian smoothing, a method of gradation control is used to determine if
layers need to be added or removed. Ito, Shih, and Soni use an advancing front method to generate the
anisotropic prisms, and blend hexahedrons at sharp convex edges.17 Concave regions are treated using
Laplacian smoothing of the marching directions. Their approach can handle a surface mesh with mixed
triangles and quadrilaterals because prisms are used. The triangular prism and hexahedron extruded from
a neighboring triangle and quadrilateral face, respectively, will be compatible because they share the same
interior quadrilateral face incident upon the common edge of the surface triangle and surface quadrilateral,
see Figure 3. A method of gradation control is used to terminate regions of the front once the resulting
elements are isotropic, or if the front approaches other features of the mesh. Once the outer layer of the
boundary layer is isotropic, an isotropic advancing front method is used to fill the remainder of the volume.

Aubry and Lohner18 present a method which enumerates many different types of surface slope discon-
tinuities that arise from an input surface mesh where multiple normals are allowed. These classifications
are divided into three groups (ridges, cusps, and corners) based on the convexity or concavity of a node’s
adjacent edges. The different ridges and corners are treated on a case-by-case basis based on the number of
concave and convex edges that come into the node. Surfaces can be defined as viscous or non-viscous, and
anisotropic tetrahedrons are extruded from the triangular surface mesh. Laplacian smoothing is used to treat
concave regions of the mesh. Non-Lipschitz vertices are not discussed in this work. A non-Lipschitz vertex
is a node that cannot be treated using a single normal because there is no single normal that is visible from
every incident surface facet. Aubry et al.19 builds upon the previous work by using generalized spherical
Voronoi diagrams to determine the topology of the boundary layer around ridges and corners. Compared
to Aubry and Lohner’s earlier work,18 this approach provided a more reliable technique to treat complex
corners, where multiple convex and multiple concave ridges are incident upon a single node.

In this paper, an approach to generating a boundary layer mesh that is prism-dominant is presented.
Prism-dominant meshes have been shown to have better accuracy than their purely-tetrahedral counterparts.
Park and Anderson compared the convergence and accuracy of solutions computed from a finite-volume
scheme on hexahedral meshes, a finite-element scheme on tetrahedral meshes, and a finite-volume scheme on
tetrahedral meshes.20 Varying mesh sizes were used and the largest tetrahedral mesh for the finite-volume
scheme was not able to accurately resolve the same flow features as the smallest hexahedral mesh for the
finite-volume scheme. The velocity profiles were also compared and the finite-volume scheme over hexahedral
meshes and the finite-element scheme over tetrahedral meshes both agree with the reference solution. How-
ever, there is a large disparity in the velocity profile for the finite-volume scheme over tetrahedral meshes
compared to the reference solution. This approach also addresses the main concerns of the NASA CFD
Vision 2030 Study and responses which requested a mesh generator that is robust, automated, and efficient.
This approach:

• generates a high-fidelity, anisotropic boundary layer mesh from a user-defined growth function
• uses multiple nodal normals at convex surface slope discontinuities
• generates blend region meshes between multiple normals for ridges, cusps, and corners
• resolves intersections in the anisotropic boundary layer
• generates an isotropic, graded Delaunay inviscid region mesh
• is a push-button mesh generator, no human interaction is required after startup

4 of 17

American Institute of Aeronautics and Astronautics



II. Methodology

The first step for extruding a viscous boundary layer from the surface mesh is to analyze the surface
mesh’s edges. The angle at each edge is calculated as the angle between the two incident surface triangles’
normals. Based on the winding of the triangles, it is determined if this edge causes a concavity or convexity.
All concavities above five degrees (to account for small deviations on the surface) are marked as concave
ridges. For convex edges, if this angle is above a user-defined threshold, then the edge is marked as a
convex ridge. Multiple normals are needed at these convex ridges. The ridges at each node are analyzed to
determine if the node is a ridge point, cusp point, or corner point based on if a node is incident on one ridge,
two ridges, or three or more ridges, respectively. Triangular prisms are extruded from the surface triangles.
Prism-dominant blend meshes are formed along ridges, cusps, and corners. Intersections are resolved using
Laplacian smoothing or by reducing the local height of the boundary layer. Finally, exposed quadrilateral
faces on the exterior of the boundary layer are treated before being passed off to the isotropic tetrahedral
mesh generator. Figure 4 shows the pseudocode for the flow of the algorithm. The different classifications for
nodes (Line 9) are shown in Table 1. In this section, these different node configurations are shown on models
and broken down based on the number of incident ridges and the convexity or concavity of the incident
ridges. Their specific mesh generation process is described and the resulting boundary layer is shown.

1 FOR EACH surface mesh edge

2 Compare signed angle between the two adjacent triangles’ normals and classify edge

3 IF angle is convex and above a user-defined threshold THEN convex ridge

4 ELSE IF angle is concave and at least 5 degrees THEN concave ridge

5 ELSE normal edge

6 END IF

7 END FOR EACH

8 FOR EACH surface mesh node

9 Classify the node by the number of incident convex ridges and concave ridges

10 IF #convex == 0 THEN compute a single normal

11 ELSE IF #convex == 1 THEN use two normals, one per triangle of the convex ridge

12 ELSE use #convex normals, one for each set of triangles between successive convex ridges

13 END IF

14 Use node classification to determine initial blend regions

15 END FOR EACH

16 Handle intersections

17 Create and index points along each normal with respect to growth function

18 Create and index extruded triangular prisms for each surface mesh triangle

19 Create and index the blend volume elements for each blend region cavity

20 Split exposed outer layer quadrilateral faces and form isotropic inviscid region

Figure 4. Psuedocode showing the overall flow of the algorithm, with an emphasis on node classification

A. Surface Triangle Extrusion

Triangular prisms are extruded from the surface triangles. For models with C1 continuity, no blend regions
will be exposed and the average of unique normals is used for each nodal normal. A visibility check is
performed to ensure that the normal is visible to the computed normal of all incident surface triangles. If
the dot product of these two normals is not positive, then the prism will be invalid. For models with C0

continuity like the box model in Figure 5(a), anisotropic quadrilateral faces will be exposed in the blend
regions. The exposed quadrilateral faces appear in regions where a node has multiple normals, such as
along the 12 edges of a box, shown in Figure 5(b). The inviscid region is generated using an off-the-shelf,
isotropic Delaunay tetrahedralizer. The tetrahedral mesh generator requires that all exposed boundary faces
be triangular so that boundary layer prisms do not need to be subdivided. These exposed triangular faces
should be roughly isotropic so that poor-quality elements are not created. The cavities formed by these
blend regions needs to be meshed so that there are no highly-stretched faces or quadrilateral faces exposed
to the isotropic mesher.
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Table 1. The exhaustive classifications for nodes, based on the number of
incident convex and concave ridges.

Classification # Convex Ridges # Concave Ridges

Normal Node 0 0

Convex Cusp Node 1 0

Concave Cusp Node 0 1

Convex-Convex Ridge Node 2 0

Convex-Concave Ridge Node 1 1

Concave-Concave Ridge Node 0 2

Pure Concave Corner Node 0 3+

Mostly Concave Corner Node 1 2+

Dual Convex Corner Node 2 1+

Pure Convex Corner Node 3+ 0

Complex Corner Node 3+ 1+

(a) Surface mesh. (b) Extruded triangular prisms. (c) Boundary layer with convex ridge
blend prisms.

Figure 5. The exposed anisotropic quadrilateral faces in the blend region around a box geometry surface mesh
after the triangular prisms have been extruded. The final image shows the blend hexahedra added along the
ridge cavities.

B. Ridges

A ridge point is defined as a point that is incident upon exactly two ridges. In this section, the three
different types of ridge points are defined and discussed. These three types depend on the convexity of
the two incident ridges: convex-convex, convex-concave, and concave-concave. Nodes incident upon convex
ridges need multiple normals to satisfy the visibility requirements at the convexity. A single normal would
cause poorly shaped elements to be formed around the convex ridge. Multiple normals will need to be added
so that the outer layer blend prisms have approximately the same volume as the neighboring outer layer
triangular prisms that are extruded from the surface triangles incident upon the convex ridge. The exposed
blend cavities with the exposed quadrilateral faces in Figure 5(b) are all in regions with convex-convex ridge
points. Figure 5(c) shows the blend hexahedra added to provide a smooth transition between the triangular
prisms extruded from the surface triangles. All neighboring convex ridges must have the same number of
hexahedrons so that the quadrilateral faces are conformal. There are 12 groups of neighboring convex ridges
(corresponding to the 12 edges of a box), separated by the corner node cavities (not shown for visual clarity).
A single triangular prism is used instead of a hexahedron for the first layer element that forms from the
convex ridge. The six vertices of the triangular prisms are the two surface nodes incident upon the convex
ridge and the first interior vertex of the four normals (two per node).
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(a) Box-wedge model around concave-
convex ridge point X, concave ridge XA,
convex ridge XB, and normal edge XC.

(b) Zoomed in view of the surface mesh
showing the concave-convex ridge point
and incident ridges.

(c) Extruded triangular prisms from the
concave-convex ridge point.

Figure 6. The surface and mesh around a box-wedge model. The surface mesh has a single concave-convex
ridge point connected to a series of convex-convex ridges. The boundary layer is shown and the single stack
of triangular prisms incident upon the concave-convex ridge point.

An uncommon case is the concave-convex ridge point, shown in Figure 6(a), which has one convex ridge,
XB, and one concave ridge, XA. Figure 6(b) shows the zoomed in surface mesh around the concave-convex
ridge point with the ridges shown. The node adjacent to the concave-convex ridge point across the convex
ridge has two normals, but the concave-convex ridge point only has one normal. So blend elements need
to be formed along this convex ridge where one node has two normals and the other node has one normal.
This is known as a convex cusp, which will be detailed in the next section. Figure 6(c) shows the boundary
layer around the box-wedge surface. The stack of convex cusp blend elements is below the red enclosing
triangle. A series of blend hexahedra are adjacent to the convex cusp while the region around the concave
ridge uses a single normal per node which are smoothed using Laplacian smoothing. Figure 7(a) shows a
series of concave-concave ridges along the interior of the cavity. Since the region is concave, we know that
all of the surface triangles incident along the ridge will be visible with a single normal. The average normal
of the unique normals is calculated for the ridge nodes. Figure 7(b) shows the resulting boundary layer for
the cavity after Laplacian smoothing.

(a) Surface mesh showing the concave-
concave ridge points.

(b) Extruded and smoothed triangular
prisms in the cavity.

Figure 7. The surface mesh around a cube model missing an octant with the concave-concave ridge points
identified. The boundary layer is shown only for the triangular prisms in the cavity.

C. Cusps

A cusp point is defined as a point that is incident upon exactly one ridge. The cusp point can either
be concave or convex with respect to the incident ridge. For a concave cusp, the concave cusp node is
in a region where all of its incident surface triangles have approximately the same normal direction. If
the node adjacent to the concave cusp point is only incident upon concave ridges, then the region around
the concave ridges including the concave cusp point will only need one normal per node and will have
that normal direction smoothed with Laplacian smoothing. For convex cusps, as shown in Figure 6(b),
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Figure 8. A five ver-
tex wedge is decom-
posed after a steiner
point is inserted in the
interior near the mid-
point of the red edge.

the convex cusp node will only have one normal, but the node adjacent to the convex
cusp node will have at least two normals. There may be more normals since the
convex-convex ridge adjacent to the convex cusp may have been split as seen by
the multiple hexahedra extruding from the convex-convex ridges in Figure 5(c). The
elements formed from a convex cusp are all triangular prisms, except the first element.
The first element is a five-vertex wedge, Figure 8. The top face is triangular which
conforms to the second layer triangular prism, and the triangular face incident upon
the convex-convex ridge point conforms to the adjacent convex ridge’s first layer
triangular prism. The quadrilateral faces of the five-vertex wedge are joined at
two edges and conform to the quadrilateral faces of the first layer triangular prisms
extruded from the neighboring surface triangles. Most flow solvers do not support an
arbitrary five-vertex wedge, so the element needs to be divided without splitting the
two quadrilateral and two triangular faces. There is no possible way to subdivide the
five-vertex wedge into basic elements, so a steiner point is added in the interior and
connected to the two triangular faces and two quadrilateral faces to form two tetrahedra and two pyramids,
respectively. However, since the two quadrilateral faces share three vertices, the resulting pyramids may
have a near zero volume, so the steiner point needs to be placed near the shared edge of the two triangular
faces. Each endpoint of the shared edge is incident upon exactly one of the quadrilateral faces. The steiner
point will be inserted along a vector from the midpoint of the shared edge. The vector will be the average
of the two triangular faces’ interior pointing normals. The steiner point should be very close to the shared
edge, but not the centroid of the five-vertex wedge. This ensures that the two pyramids do not have a zero
volume.

D. Corners

Corner discontinuities are defined at a node which has at least three incident ridges. There are many different
combinations that can arise for corner configurations depending on the number of incident convex ridges
and concave ridges. In this section, the different corner cases are broken down into groups and the different
configurations are shown and meshed. When a corner node has multiple normals, a cavity will exist at the
corner node. The shape of the cavity is dependent upon the incident concave and convex ridges as well as
the connectivity of the blend prisms formed along the ridges.

1. Pure Concave & Pure Convex Corner Nodes

The simplest case to handle is the pure concave corner, where there are three or more incident concave
ridges. Figure 7(a) has a single pure concave corner node where the three red dotted lines meet at the
interior of the cavity. The average normal of the incident surface triangles’ normals are used as the single
normal for this node. The node’s normal will be included in the group of normals in the concavity that will
be smoothed using Laplacian smoothing. The opposite case is the pure convex corner, where there are three
or more incident convex ridges. Figure 5(c) shows the cavity formed by three incident convex ridges. There
are many exposed quadrilateral faces due to the multiple hexahedra from the added normals. The vertices

(a) A uniform sphere which
will overlay the cavity.

(b) The clipped points and
triangles inside the cavity.

(c) The stitched gap. (d) Resulting surface after
Laplacian smoothing.

Figure 9. Steps to generate the outer layer topology for the blend region at pure convex corner nodes.
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on the outer layer of the cavity are fixed and lie on the surface of a sphere since all of the normals that form
the cavity originate from the same corner point and the total height of the boundary layer is constant at this
step. Figure 9 shows the steps for generating the blend mesh around the pure convex corner. First a regular
spherical mesh is generated with the radius as the height of the boundary layer and the origin as the corner
node. Next, all of the vertices and triangles inside the cavity are chosen. This exposes a gap between the
spherical surface mesh and the outer vertices of the pure convex corner cavity which needs to be triangulated.
The final step is a couple iterations of Laplacian smoothing so that neighboring triangles have roughly the
same area. After the outer layer topology has been determined, then normal vectors are cast down from the
outer layer points down to the corner node. Stacks of triangular prisms are formed at each layer, except the
first, below each of the outer triangles. This ensures that the exposed quadrilateral faces of the neighboring
hexahedra are conformal with the quadrilateral faces of the triangular prisms. The first layer elements
are tetrahedra so that the triangular faces are compatible with convex ridges’ first layer triangular prisms.

Figure 10. A pure convex corner incident
upon four convex ridges.

This approach is preferred over an advancing front method,
which is based on heuristics and has no proof of termination
because the front may not be able to be closed. This approach
can always create an outer layer surface mesh covering the cav-
ity. This is because there will always exist a valid triangulation
for the cavity. We start with a valid triangulation on the uni-
form sphere. Some subset of points will lie inside the cavity,
but not all. This creates the gap region which always has a
valid triangulation. On the rare occasion the subset of points
inside the cavity is empty, then a single point will be used at
the centroid of the cavity. All edges along the cavity will form
triangles connecting to the centroid. This approach is general
and is independent of the number of incident convex ridges and
independent of the number of normals incident to the corner
node. Figure 10 shows the pure convex corner incident upon
four convex ridges. Each ridge has a different number of nor-
mals which yields a different number of blend hexahedra.

2. Mostly Concave Corner Node

A mostly concave corner node is a corner node that is incident upon exactly one convex ridge while the
rest are concave. Since there is only one convex ridge incident upon this corner node, the node needs to
be treated as a convex cusp node and will have two normals. Figure 11(a) shows the model of a two box
model with the corner node and ridges identified. Figure 11(b) shows the surface mesh zoomed in around the
corner node. For the two normals at this corner node, the contributing surface triangles need to be divided
into two groups, as described by line 11 of the pseudocode in Figure 4. Clearly the initial surface triangle
for each group will be either of the two surface triangles incident upon the convex ridge. If the incident
surface triangles to the corner node are wound based on the corner node’s adjacent edges, then the two
groups need to be contiguous to avoid intersecting or twisted elements. The first dividing edge of the cycle

(a) Two box model showing corner
point X, convex ridge XC, and con-
cave ridges XA and XB.

(b) Surface mesh around a two box model.
The corner point is marked.

(c) The resulting stack of blend elements.
The top face of the blend elements is shown.

Figure 11. A corner case where only one of the incident ridges are convex. There are two concave ridges
shown at the corner point. A convex cusp procedure is used to create a stack of blend triangular prisms.
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is the convex ridge, so the other dividing edge can be any other adjacent edge to the corner node, except a
concave ridge. It is advantageous to set the dividing edge as the edge that has the largest convex angle (but
not large enough to be marked as a convex ridge) between the edge’s incident surface triangles because it
helps to prevent flat, poor-quality elements for the first layer pyramids and tetrahedra. Figure 11(c) shows
the boundary layer around this corner configuration. The stack of blend triangular prisms is beneath the
marked triangle. The region surrounding the concavity has been smoothed with Laplacian smoothing.

3. Dual Convex Corner Node

The next case is for corner points that are incident upon exactly two convex ridges. There is at least one
concave ridge incident upon the corner point, but there may be more. Figure 12(a) shows the model for a
box with a hole from the top face through to the bottom face. At the interior corners of this hollowed out
region of the box, there are two incident convex ridges and one incident concave ridge. Figure 12(b) shows
a zoomed in view of the surface mesh for one of the corner points. There are multiple normals along the
convex ridges, but a single normal along the concave ridge. The corner point has two normals: one for the
surface triangles inside the concavity, and the other normal for the surface triangles on the top face where
the hole is. The average of the unique normals for each set of surface triangles is used for the direction of the
two normals. Since all of the concave ridges at the corner node have exactly one normal, the corner node is
treated as a convex-convex-ridge node. The two incident convex ridges are declared as neighbors and share
the two normals at the corner point. Nothing needs to be done with the concave ridge. Laplacian smoothing
is used along the neighboring blend regions near the corner node to smooth the directions of the blend region
normals so the neighboring elements have similar volumes and so that no non-planar faces are created. The
normals that are emitted from other surface triangles are not smoothed, only the normals incident upon
blend regions.

A special case exists for dual convex corner nodes that are incident upon two convex ridges and two
concave ridges. If the incident surface triangles are ordered in a cycle based upon neighboring edges, there is
a pattern with traversing across these edges between the triangles: concave ridge, convex ridge, concave ridge,
convex ridge, and repeat. This is known as a non-Lipschitz node (or saddle point) and the blend volume
elements formed in this region will be degenerate due to the variation in direction between normals of the
incident ridges. For this reason, a single normal is not sufficient in this region. Figure 13(a) shows the non-
Lipschitz node for a model where two cubes are joined. Laplacian smoothing is used along the neighboring
blend regions which contain a non-Lipschitz node in order to smooth the directions of the blend region
normals so there is a smooth transition between the alignment, orthogonality, and volume of the neighboring
elements near the non-Lipschitz node. The normals that are emitted from other surface triangles are not
smoothed, only the normals incident upon blend regions. Figure 13(b) shows the blend elements created

(a) Model of a hollowed out box
showing corner point X, concave ridge
XC, and convex ridges XA and XB.

(b) Zoomed in view of the surface mesh of
a hollowed out box. The corner point is
shown with two green convex ridges and
one purple concave ridge.

(c) The clipped points and triangles that
lie inside the cavity. The normals inside
the concavity has also been smoothed due
to intersections.

Figure 12. A corner case where two of the incident ridges are convex and the remainder are concave. The
corner point is treated as a convex-convex-ridge point.
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(a) Surface mesh of a two joined cubes with the
non-Lipschitz node.

(b) The resulting blend elements after Laplacian
smoothing was used along the blend normals.

Figure 13. Treatment of a non-Lipschitz node by Laplacian smoothing.

after the smoothing process. A check is performed for the two blend ridges incident upon the non-Lipschitz
node to determine if the first layer triangular prism is ill-formed. If it is, then the normal directions are too
twisted to form a valid triangular prism along the ridge, so the local height of the boundary layer is reduced
for these ridges until the first layer triangular prism is valid.

4. Complex Corner Node

The final case is the most complex and requires some extra checks. Nodes that are incident upon three or
more convex ridges and at least one concave ridge are classified as complex corner nodes. Figure 14(a) shows
a model around a complex corner with three convex ridges and two concave ridges incident upon the corner
node. Concave ridge XE is shown with the transparent model. Figure 14(b) shows a zoomed in view of the
surface mesh around the complex corner with the ridges identified. Concave ridge XE is not able to be seen,
but it is between the two lower convex ridges, XA and XB. The difficulty with the complex corner is that
the blend cavity is almost shaped liked the pure convex corner cavity. However, the concave ridges cause
the original cavity to be ill-formed as in Figure 14(c). If the complex corner was treated as a pure convex
corner, then the blend triangular prisms formed in the blend cavity would be nearly flat and have a zero
volume. Complex corners are treated by changing the topology of the cavity to fix the degenerate cavity.
The topology of the cavity is changed by gluing the exposed interior faces of pairs of blend prisms together.
When two convex ridges are joined, the cavity becomes the same topologically as the convex cusp cavity.
This means that the complex corner node needs to be classified as multiples of convex-convex ridge nodes
and convex cusp nodes. Figure 14(d) shows the resulting boundary layer after two of the convex ridges,
XA and XB, are joined together. The newly formed convex cusp cavity is filled using the same approach
as convex cusp nodes. The stack of triangular prisms formed from the convex cusp is below the marked
triangle.

(a) A box-wedge model show-
ing complex corner X; convex
ridges XA, XB, and XC; and
concave ridges XD and XE.

(b) Surface mesh showing a
complex corner with concave
(purple) and convex (green)
ridges shown.

(c) The original degenerate
cavity that would yield flat
prisms.

(d) The resulting blend ele-
ments after two convex ridges
were joined and a convex cusp
is added.

Figure 14. Treatment of a complex corner by classifying the node as a convex-convex ridge point and also a
convex cusp point. Ridges along XA are joined with ridges along XB to open up the degenerate cavity.
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Figure 15. 1-Dimensional analog for the alternating digital tree, showing the mapping of the 1-dimensional
extent box to 2-dimensional space

E. Intersections

Once the nodal normals have been determined, a set of intersection tests is used to determine if any nor-
mals cause an intersection with any of the boundary layer prisms. It is too computationally expensive to
perform a brute-force, exhaustive search by comparing every normal segment to every prism to check for
intersections, approximately an O(n2) operation where n is the number of prisms. An alternating digital
tree (ADT)21 is used to perform the intersection checks. The ADT works by mapping a d-dimensional space
to a (d + d)-dimensional half-space. The 1-dimensional analog is shown in Fig. 15. In three-dimensions,
the ADT is used with a searching algorithm that determines if a six-dimensional point lies within a par-
ticular six-dimensional space subregion. The ADT is populated with the boundary layer prisms. The
three-dimensional extent box is computed for each prism and inserted into the ADT as a six-dimensional
point. Now each normal is converted to a line segment where the base is on the surface and the end-
point is on the exterior surface of the boundary layer. By projecting the line segments’ extent boxes to
six-dimensional points, a particular line segment’s extent box (as a six-dimensional point) can be tested to
see if it intersects with any of the n prisms’ extent boxes (also as six-dimensional points) in O(log n) time
where n is the number of prisms. The identified extent box intersections do not guarantee that a normal
segment will intersect another element’s boundary layer, but it significantly and efficiently reduces the search
space. Intersection checks using computational geometry are then performed for each identified normal and
prism pair. If there are a set of intersections in a contiguous region, then Laplacian smoothing is used
in these regions to smooth the normal directions to resolve the intersections. Additional non-intersecting
normals in the neighborhood of the contiguous region are added to the set of normals to smooth in order
to provide a steady and gradual deviation for the normal directions as they move away from the concavity.
Figure 7(b) shows the resulting mesh after the contiguous intersections for a concave corner region have been
resolved using Laplacian smoothing. The Laplacian smoothing operation is desirable for these important
feature regions because it does not affect the overall element density of the region and preserves the semi-
structured pattern instead of clipping the rays and introducing unstructured elements close to the model.

Figure 16. Surface mesh of two different-sized spheres.

The smoothing operation also helps to minimize the
discretization error of the flow solution by preserv-
ing the orthogonality, alignment, and stretching of
the prisms. Laplacian smoothing of the normal di-
rection vectors will not work for non-contiguous in-
tersections. Figure 16 shows the surface mesh for
two spheres. The two fronts between the spheres
will grow towards each other and may cause an in-
tersection. For the identified intersections, the local
height of the boundary layer in the region is reduced.
This preserves the number of elements in this region
of the boundary layer. The points along a normal
vector where the local height of the boundary layer
was reduced are then packed closer together, provid-
ing more resolution in these critical regions where
intersections occur. For the test line segments, the non-surface point is set to be a little further than the
point on the outer border of the boundary layer, to detect and account for the situation where two walls
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Figure 17. The resolved non-contiguous intersections after reducing the local height of the boundary layer for
two fronts that are extruding towards each other.

may be extruding towards each other and come very close to meeting but do not cross over. Terminating
too close to another front would cause sliver triangles to be created for the inviscid region inside the small
gap. Figure 17 shows the resulting boundary layer after the local height of the boundary layer has been
reduced to prevent the two fronts from overlapping. The isotropic inviscid region is also shown between the
two boundary layer fronts where the local height of the boundary layer was reduced a little extra to ensure
that we do not have a narrow gap between the two fronts, which would cause the isotropic volume mesher
to create sliver tetrahedra in this region.

F. Isotropic Inviscid Region

Once a valid boundary layer volume mesh has been created near the model, the remainder of the volume
away from the model is tetrahedralized using an off-the-shelf three-dimensional Delaunay mesh generator,
TetGen.8 Since TetGen uses only tetrahedra to discretize the domain, we need to ensure that there are only
triangular faces exposed in the boundary layer. If quadrilateral faces are exposed, then TetGen will need to
split these quadrilateral faces into triangular faces. We do not want TetGen to split any face, quadrilateral
or triangular, on the exterior of the boundary layer, because this will create a non-conformal mesh, so we use
a provided flag that disallows TetGen from inserting vertices on input facets. This forces us to do two things.
The first is that all exterior quadrilateral faces and incident volume element need to be split before we pass
the exterior surface to TetGen. The second is that we must generate the farfield domain and discretize the
farfield faces.

Since we are restricting the boundary layer to have the same number of anisotropic layers extruded from
each node, the only time there will be exposed quadrilateral faces is when there are convex-convex ridge
points on the surface. This means that a hexahedra will be exposed in a blend region on the outer layer of
the boundary layer. There are two local operations to treat these exposed hexahedra. The first option is
to form a pyramid from the exposed quadrilateral face which would shield the quadrilateral face with four
triangular faces. However, it is more computationally expensive to extrude a pyramid from the quadrilateral
face, because we need to perform intersection checks to ensure the newly formed triangular faces do not
intersect with any other volume elements. Additionally, flat pyramids may need to be created in regions
where there are concavities or narrow gaps to avoid causing an intersection. The other approach is to insert
a steiner point at the centroid of the hexahedra and connect the six quadrilateral faces to the steiner point
to form six pyramids. Finally, the pyramid which has the quadrilateral base on the exterior of the boundary
layer is split into two tetrahedra, which splits the quadrilateral face into two triangular faces. Since the
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outer layer hexahedra are roughly isotropic, a steiner point can be added without introducing flat volume
elements. This approach is advantageous because we do not need to perform any intersection checks since
we are only decomposing the hexahedra, instead of extruding a new pyramid from the hexahedra. After the
boundary layer is enclosed with only triangular faces, the desired isotropic edge length metric needs to be
set for all vertices on the exterior of the boundary layer. The isotropic edge length metric is computed from
each vertex’s incident edges. This ensures a smooth gradation in element volume between the outer layer
boundary layer elements and the neighboring inviscid region tetrahedra.

The farfield domain is generated using two user-specified parameters: the distance to the farfield from the
model in chord lengths and the desired edge length metric at the farfield vertices. The farfield is generated
using a right-triangular uniform tiling procedure where all triangular faces have the same area and the
isotropic metric for all of the farfield vertices is set to the user-defined edge length. All of the triangular
faces, vertices, and isotropic edge length metrics of the farfield and the exterior surface of the boundary layer
are passed off to TetGen. There is a smooth gradation of the element volumes going from the exterior surface
of the boundary layer to the farfield because TetGen uses linear interpolation to determine the isotropic edge
length metric for all newly created vertices. After the remainder of the volume has been tetrahedralized,
TetGen returns the mesh of vertices and tetrahedra. These vertices and tetrahedra will need to be reindexed
so that the unique ids are consecutive once they are added to the boundary layer elements and vertices.

III. Convergence Study

Figure 18. Hemisphere cylinder surface mesh at the hemisphere.

The meshes generated with this approach have been validated against reference solutions from the NASA
Langley Research Center’s Turbulence Modeling Resource Website. The hemisphere cylinder described by
Nishikawa22 is used for validation. The hemisphere cylinder parameters are for a reference diameter of 1
and a length of 10, where the chord length is based on cylinder diameter. A custom surface mesh generator
was used which packed more points towards the leading edge of the hemisphere, Fig. 18. The simulation
was run at mach speed 0.6, Reynolds number of 0.35 million, and angle of attack at 10 degrees. The farfield
is located 50 chord lengths away from the hemisphere cylinder. The freestream flow conditions specify the
reference temperature to be 540 Rankine. The governing equations are the Navier-Stokes equations using the
Spalart-Allmaras turbulence model with negative turbulence variable provisions. The boundary conditions
for the hemisphere cylinder surface are viscous and the no-slip condition is explicitly set. The bounding box
of the domain has its boundary condition set to be the farfield by using Riemann invariants. The reference
value for the coefficient of lift given by Diskin23 for the largest mesh with over 70 million vertices for a
prism-dominant mesh is 0.034116.

The algorithm presented in this paper is used to generate a family of meshes around hemisphere cylinders.

A scaling factor of 3
√

2
−1

is used to vary the density of the boundary discretization, the thickness of the first
layer, the growth rate of the boundary layer’s geometric growth function, and the number of layers in the
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(a) Coarse mesh (b) Medium mesh (c) Fine mesh

Figure 19. Family of hemisphere cylinder meshes for a slice at the trailing edge.

Surface
Vertices

Total
Vertices

Total Volume
Elements

CL

15236 789889 1781579 0.035650

23300 1556819 3621231 0.034358

37665 3150819 7472505 0.034217

Table 2. Geometry and simulation data for the convergence study

boundary layer. The first model and mesh are generated using a scaling factor of one. Each subsequent

model and mesh use a scaling factor of 3
√

2
−i

for the ith model (starting at zero). Using the scaling factor, the
total height of the boundary layer remains invariant between the different meshes, but the number of vertices
in the boundary layer doubles from each previous mesh. Fig. 19 show the family of three meshes used for this
convergence study and Table 2 shows the mesh statistics and the results of each simulation. All simulations
were fully converged to machine zero. For the largest mesh, the coefficient of lift has approximately a 0.3%
error with the reference value, 0.034116.

Table 3 shows the breakdown of volume elements. The majority of the elements in the boundary layer
are prisms. If the input surface mesh contains mostly quadrilateral facets, then the majority of the boundary
layer mesh will be comprised of hexahedra. Pyramids and tetrahedra are used to split the outer layer of
hexahedra into triangular faces so that TetGen can be used to generate the isotropic inviscid region. The
largest mesh generated took less than a minute for over three million vertices.

Meshing
Time

Triangular
Prisms Hexahedra Pyramids

Boundary Layer
Tetrahedra

Inviscid Region
Tetrahedra

15.42 s 1371892 35776 4160 1664 368087

22.86 s 2657298 72930 6630 2652 881721

41.77 s 5350146 138000 10000 4000 1970359

Table 3. Breakdown of volume elements for the convergence study
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IV. Future Work

This work is the first step towards extending our parallel two-dimensional approach24 to handle three-
dimensional domains. For the two-dimensional work, the extrusion-based approach with multiple normals
was also used, and a strong scaling speedup of 180 over the fastest sequential algorithm was observed
when using 256 processes, roughly a 70% efficiency. This approach decomposed the boundary layer into
multiple subdomains that can be triangulated independently. The inviscid region was also decoupled in such
a way that two processes can concurrently refine neighboring subdomains without having to communicate.
Intersections are detected efficiently using the aforementioned ADT. The two-dimensional work was improved
upon and the manuscript25 is currently under review for the Association for Computing Machinery’s (ACM)
Transactions on Mathematical Software (TOMS) journal. For the ACM TOMS manuscript, we improved
the performance through benchmarking and optimization. A 79% parallel weak scaling efficiency on 1024
distributed memory nodes, and a strong scaling speedup of 368 over the fastest sequential algorithm using
512 processes, a 72% parallel efficiency, is shown through numerical experiments.

Currently, the code is sequential, but is being designed with decisions that exploit data parallelism and
with a level of abstraction that allows the code to be flexible and easy to extend to be parallel. This requires
diligent book keeping. Each model node has an associated set of growth curve ids. Each growth curve
keeps track of it’s first interior vertex id and the number of points that it will insert along this growth
curve. Growth curves have sequential ids. So growth curve with id 0 has it’s first interior vertex’s id as
the number of input surface nodes, the nodes on the surface of the model. Growth curve id 1 has a first
interior vertex id as #surface nodes + GrowthCurve0(#interior nodes). An all-gather operation can be
performed where each process computes the sum of all of it’s growth curves’ layer counts. Then each process
can determine its first local insert vertex id from all of the other process’ with a lower rank. This allows
each process to determine the vertex ids for all of the triangular prisms in its subset of the domain without
further communication.

V. Conclusion

An approach to generating an anisotropic semi-structured boundary layer around complex configurations
has been demonstrated. The approach uses an extrusion-based method with multiple nodal normals where
there are sharp convexities on the model’s surface. The input for our application is a triangular surface mesh,
but a surface mesh with mixed triangles and quadrilaterals can be handled the similarly. A triangular prism
and hexahedron extruded from a neighboring triangle and quadrilateral face, respectively, will be compatible
because they share the same interior quadrilateral face incident upon the common edge of the surface triangle
and surface quadrilateral. Triangular prisms are extruded from surface triangles, and prismatic elements are
extruded from mesh edges and mesh nodes in between the sharp convex regions where there are multiple
normals. An exhaustive classification of node types is presented. A node’s type is dependent on the number
of incident ridges, edges where there is a sharp change in the slope across the model’s surface. A node
may be a regular node with no incident ridges, a cusp node with one incident ridge, a ridge node with two
incidentincident ridges, and a corner node with three or more incident ridges. These classifications are broken
down further depending on the convexity and concavity of the incident ridges. Non-Lipschitz nodes, a special
case for corner nodes, are also treated. Intersections in the boundary layer are detected efficiently using a
spatial tree. Local, contiguous intersections are treated using Laplacian smoothing on the normal vectors
while non-local intersections are treated by reducing the local height of the boundary layer in the overlapping
region. Before the inviscid region can be generated with the isotropic tetrahedral mesh generator, all exposed
quadrilateral faces are split by locally decomposing only outer layer hexahedra without the decomposition
propagating to neighboring elements. The farfield bounding box is generated using uniform right triangles
and is parameterized in terms of chord lengths between model and farfield and the desired minimum edge
length for the farfield bounding box.

The input geometry, boundary layer growth function parameters, and farfield bounding box parameters
are the only inputs to this automated process. The application is written in C++14 and is only dependent on
TetGen for the inviscid region, making the application as a whole, a lightweight and portable mesh generator
for aerospace applications with viscous flows. Using a high-fidelity mesh to begin the iterative CFD pipeline
will yield a final, acceptable mesh in fewer iterations than an ill-suited initial mesh. Constructing this initial
mesh efficiently without human intervention eliminates an expensive bottleneck in the development process.
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