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Abstract 

 The status of a long-term project 

entailing the parallelization of an industrial-

strength sequential mesh generator, called 

Advancing Front Local Reconnection 

(AFLR), is presented in this paper. AFLR 

has been under development for the last 25 

years at the NSF/ERC center at Mississippi 

State University. AFLR is currently used at 

NASA (including NASA/LaRC) and other 

government agencies as well as in the 

aerospace industry such as Boeing. The 

parallel procedure that is presented is called 

Parallel Data Refinement (PDR) and 

consists of the following steps: (i) use an 

octree data-decomposition scheme to break 

the original geometry into subdomains 

(octree leaves), (ii) refine each subdomain 

with the proper adjustments of its neighbors 

using the given refinement code, and (iii) 

combine all subdomain data into a single, 

conforming mesh. AFLR is shown to 

maintain weak reproducibility (i.e., able to 

produce results of the same quality when 

executed recurrently using the same input) 

as required in parallel mesh generation. The 

data-decomposed AFLR implementation is 

shown to be stable (i.e., guarantees 

sufficient mesh quality that is comparable to 

that of the original AFLR software). By the 

completion of this project, PDR.AFLR will 

be robust (i.e., generate meshes for the same 

type of geometries that AFLR can) and will 

be the first fully functional unstructured 

mesh generation/refinement application that 

will be capable of maintaining good parallel 

efficiency at 106 concurrency levels in order 

to improve end-user productivity. 

1. Introduction 

 Mesh generation software is used in 

many industries where high fidelity 

simulations are executed, such as in health-

care, defense, and aerospace. For the last 30 

years, these sequential software codes were 

typically developed and optimized without 

any thought towards scalability. One such 

code is called Advancing Front Local 

Reconnection (AFLR), one of the top, 

industrial strength, mesh generators that is 

currently used by NASA, the DoD, DoE, 

and a number of aerospace industry top 

research groups [1]. AFLR has not been 

fully parallelized to properly utilize large-

scale supercomputing hardware due to the 

geometric and numerical challenges 

imposed by the nature of mesh generation 

complexity. Given the high performance 

computing (HPC) platforms that the 

aforementioned organizations use, one long-

term goal is to achieve large-scale adaptive 

Computational Fluid Dynamics (CFD) 

simulations. The large-scale parallelization 

of AFLR will help realize this goal. The 

Center for Real-time Computing (CRTC) at 

mailto:nikos%7d@cs.odu.edu


  

Garner, Kennedy, Tsolakis, and Chrisochoides  2 
 

Old Dominion University (ODU) has 

proposed the telescopic approach (see figure 

1) [2] [3], a framework that will leverage the 

concurrency that exists at multiple levels in 

parallel grid generation. At the chip and 

node levels, the telescopic approach deploys 

a Parallel Optimistic (PO) layer and Parallel 

Data Refinement (PDR) layer, respectively. 

AFLR will be integrated with the PDR layer, 

which in turn will be implemented on top of 

the PO layer in future efforts. 

PDR maintains a fixed level of 

concurrency while parallelizing the 

refinement process. Its methodology is 

theoretically proven, for isotropic meshes, to 

maintain stability and robustness for parallel 

isotropic Delaunay-based mesh generation 

and has been experimentally verified [4] [5] 

[6]. It is also designed to allow for the 

utilization of any sequential mesh generator 

while guaranteeing the following four 

requirements for parallel mesh generation: 

stability, robustness, scalability, and code re-

use. Stability ensures that a mesh generated 

in parallel maintains a level of quality 

comparable to that of a sequentially 

generated mesh. This quality is determined 

by the number and shape of the elements. 

Robustness guarantees that the parallel 

software is able to correctly and efficiently 

process any input data. Operator 

intervention into a massively parallel 

computation is not only highly expensive, 

but most likely infeasible due to the large 

number of concurrently processed sub-

problems. Scalability compares the runtime 

of the best sequential implementation to the 

runtime of the parallel implementation, 

which should achieve a speedup. Non-trivial 

stages of the computation must be 

parallelized if one is to leverage current 

architectures that contain millions of cores. 

Code re-use essentially means that the 

parallel algorithm should be designed in 

such a way that it can be replaced and/or 

updated with minimal effort, regardless of 

the sequential meshing code it uses. This is a 

practical approach due to the fact that 

sequential codes are constantly evolving to 

accommodate the functionality requirements 

from the wide ranges of applications and 

input geometries. Rewriting new parallel 

algorithms for every sequential meshing 

code can be highly expensive in time 

investment. The code re-use approach is 

only feasible if the sequential mesh 

generator satisfies the reproducibility 

criterion. Reproducibility requires that the 

sequential mesh generator, when executed 

with the same input recurrently, produces 

either identical results or those of the same 

quality. Elements within a mesh may 

undergo refinement more than once when in 

parallel, so it is imperative that the 

sequential mesh generator satisfy this 

requirement. Previous work involving the 

Figure 1. Telescopic Approach to Parallel Mesh Generation. It 

covers the complete spectrum of hardware that spans from the 

Chip (bottom left) to a complete machine like Blue Waters (top 

right). The PO level is on the left and targets the chip level. The 

PDR approach is second from the left and targets hardware at 

the node level. 
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integration of the mesh generator TetGen 

with PDR shows that if the mesh generator 

fails to meet the reproducibility criterion in 

distributed memory, then the complexity of 

such state-of-the-art codes inhibits their 

modifications to a degree that their 

integration with parallel frameworks like 

PDR becomes impractical [7]. The original, 

sequential AFLR code was determined to be 

a suitable mesh generator to integrate with 

PDR, as it was tested and shown to maintain 

weak reproducibility, as seen in figures 2 

and 3. Examples of refinement for two 

geometries are shown. The dihedral angle 

quality of the output mesh from the initial 

refinement is given. This is compared to the 

quality of the output meshes generated from 

refining the 

output volume 

and from refining 

the surface taken 

from the initial 

output. 

Parallel 

Data Refinement 

decomposes a meshing problem by using an 

octree consisting of numerous leaves, or 

subdomains, that each hold a part of the 

mesh (2-D example shown in figure 4). The 

general idea of PDR is to concurrently refine 

the octree leaves while maintaining mesh 

conformity. The main concern when  
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Figure 2. (a) shows the missile geometry. (b) compares the dihedral angle distributions of the output mesh from the first refinement, to 

the meshes output from refining the initial output volume and from refining the surface taken from the initial output volume. 

Figure 4. PDR octree (in 2-D). 
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parallelizing a refinement algorithm are the 

data dependencies between leaves caused by 

concurrent point insertions and the 

creation/deletion of elements in different 

octree leaves by multiple threads 

concurrently. PDR addresses this issue by 

introducing a buffer zone around each octree 

leaf. If a part of the mesh associated with a 

leaf is scheduled for refinement by a thread, 

no other thread can refine the parts of the 

mesh associated with the buffer zone of this 

leaf. This eliminates any data dependency 

risks and allows PDR to avoid fine-grain 

synchronization overheads associated with 

concurrent point insertions. A thread refines 

a leaf by running a sequential refinement 

code on the subdomain within that leaf. 

The implementation of PDR 

presented in this paper uses the Advancing 

Front Local Reconnection method to refine 

individual leaves. AFLR accepts an input 

geometry with an established boundary 

triangulation. A Delaunay triangulation 

criterion is used to construct an initial 

boundary conforming tetrahedral mesh. 

Each initial boundary point is assigned a 

value, by a point distribution function, 

representative of the local point spacing on 

the boundary surface. This function is used 

to control the final field point spacing. All 

elements are initially made active, meaning 

that they need to be refined. If the edge 

points of an element satisfy the point 

distribution function, the element is made 

inactive and does not need to be refined. The 

advancing front method is used on an active 

element. A face of the element that is 

adjacent to another active element is 

selected. A new point is created by 

advancing in a direction, normal to the 

selected face, a distance that would produce 

an equilateral element based on an 

appropriate length scale (using the average 

point distribution). If a new point is too 

close to an existing point or another new 

point, it is rejected and removed. Accepted 

points are inserted into the existing grid by 

subdividing their containing elements. For 

 
 

 

(a)  
(b) 

0

2

4

6

8

10

12

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f 

El
em

en
ts

Degrees

Plug Refinement Results 
Comparison

First
Refinement

Second
Refinement
(From Surface
Mesh)

Second
Refinement
(From Volume
Mesh)

Figure 3. (a) shows the plug geometry. (b) compares the dihedral angle distributions of the output mesh from the first refinement, to the 

meshes output from refining the initial output volume and from refining the surface taken from the initial output volume. 



  

Garner, Kennedy, Tsolakis, and Chrisochoides  5 
 

example, if an edge point is inserted, then all 

elements sharing that edge are split. If a face 

point is inserted, then both of the elements 

sharing that face are split into three 

elements. All elements modified by point 

insertion, or any that undergo reconnection, 

are classified as active. A local reconnection 

scheme is used to optimize the connections 

between points (or edges). Edges are 

repeatedly reconnected, or swapped, until 

their containing elements satisfy a desired 

quality criterion. All active elements 

undergo a final optimization phase, which 

consists of three quality improvement passes 

(sliver removal and further reconnection). 

2. Integration of AFLR with PDR 

Although PDR is designed to make the 

parallelization of sequential mesh generators 

more facile, several modifications had to be 

made to the original AFLR software code in 

order to ease its integration into the PDR 

framework (henceforth referred to as the 

data-decomposed AFLR). A large sum of 

time was invested in making these 

modifications due to the nature and 

complexity of the code. An intricate 

understanding of the data structures and 

methodologies used for the initial volume 

grid generation, point insertion, element 

edge swapping, and optimization is required 

in order to integrate these processes into a 

parallel framework. Additions were also 

made to the PDR code. The following steps 

outline the general process of the data-

decomposed AFLR: 

1. Accept an input geometry. 

2. Generate an initial volume mesh. 

3. Construct an octree. 

4. Assign subdomains to octree leaves 

and insert leaves into refinement 

queue. 

5. Remove a leaf from the queue. 

Create a temporary boundary for the 

leaf based on original element 

connectivity with neighboring 

subdomains. 

6. Call AFLR to refine the leaf.  
7. Merge all neighboring leaves, 

located within the buffer zone, with 

the newly refined leaf. 

8. Call AFLR to perform local 

reconnection on the merged data. 

9. Assign updated data to the necessary 

leaves. 

10. Repeat steps 5-9 until there are no 

remaining leaves in the refinement 

queue. 

11. Merge all data and call AFLR to 

perform final optimization. 

12. Output the final mesh. 

Tetrahedra are assigned to octree leaves 

based on where their barycenters fall. If a 

tetrahedron has an external boundary face, 

the face is assigned to the same leaf to 

which the tetrahedron is assigned. In step 5, 

a smooth, simply-connected boundary (as 

required by AFLR) must be extracted for the 

leaf under refinement [8]. The set of 

tetrahedra within this leaf is examined in 

isolation (as if this subdomain is the entire 

domain). Any face that is not shared 

between tetrahedra is considered to be a 

boundary face. It is possible to extract a 

boundary that contains an edge which is 

shared by more than two triangles.  This is 

not acceptable for AFLR. This scenario 

occurs when there is a tetrahedron that has a 

barycenter just over the leaf boundary, 

causing it to be assigned to a neighboring 

leaf. Figures 5 and 6 show such a scenario. 

Figure 5 shows a green line, which is the  
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edge that is shared by more 

than two triangles. Figure 6 

shows the sliver that shares 

this edge, but was assigned to 

a neighboring leaf. When 

such an edge is found in the 

extracted boundary, the 

corresponding tetrahedron is 

located within the 

neighboring leaf, removed 

from that leaf, and added to 

the primary leaf. The 

boundary is extracted and 

examined again. This process 

repeats until a smooth 

boundary, acceptable for 

AFLR, is extracted.  

Figure 7 shows a 2-D 

example of PDR’s data 

decomposition and the 

assignment of data generated 

from the upper portion of a 

rocket geometry. 

Mathematical formulas are 

given for the different levels 

of neighboring leaves 

around the primary leaf 

under refinement (in red). 

The level 1 neighbors of a 

leaf are considered to be the buffer zone of 

Figure 5. Top-down view of extracted leaf boundary that contains 

an edge which is shared by more than two faces. 

Figure 6. Top-down view of neighboring leaf that contains the 

sliver with the edge shared by the faces of the leaf in figure 2. 

Figure 7. Shown is a 2-D example of the upper portion of a data-decomposed rocket mesh 

where the red-boxed leaf is the primary leaf under refinement. The level 1 neighbors are those 

inside the yellow box (excluding the red leaf) and the level 2 neighbors are those inside the 

orange box (excluding all leaves inside the yellow box). The formulas give mathematical 

representations that denote the tetrahedra within leaves and the sets of neighboring leaves 

(with matching colors showing what is contained within each surface). 
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that leaf (no leaf in the buffer zone may 

undergo refinement while the primary leaf 

undergoes refinement).  

Another implementation challenge, 

caused by data decomposition, is allowing 

subdomain boundary elements to undergo 

refinement. If a boundary face, shared by 

two leaves, undergoes refinement, then the 

corresponding elements within both leaves 

must be updated (which adds dependencies 

and increases overall runtime due to the 

required communication between the 

corresponding threads). Otherwise, the 

connectivity between the subdomains will 

be incorrect and the final mesh will be non-

conforming. Subdomain boundary 

refinement is preferred so that boundary 

elements do not retain poor quality by the 

end of refinement. To solve this issue, 

AFLR was modified to not only accept a 

single set of data (points, triangles, and 

tetrahedra) for one leaf,  but to also accept a 

second set of data – the set of all of its level 

1 neighboring leaves. The faces of the 

primary leaf’s internal interface surface are 

kept frozen in step 6, meaning that point 

insertion is not allowed on the leaf 

boundary. AFLR refines the individual leaf 

(advancing front point placement/insertion 

and local reconnection) but does not make 

any optimizations/quality improvement as 

the serial AFLR would. Instead, the newly 

refined leaf is merged with its level 1 

neighbors into a super-subdomain and local 

reconnection is performed over the super-

subdomain (thereby allowing the 

optimization of the primary leaf’s boundary 

elements). The internal interface surface of 

the level 1 neighbor leaves remains frozen, 

so as to eliminate the need of updating level 

2 neighbors during refinement (and 

maintaining PDR’s original method of 

concurrency). It is possible to have duplicate 

points when combining these sets of data 

because a neighboring leaf may contain a 

tetrahedron that has a point located in the 

primary leaf, or vice-versa. Each set of data 

will contain that same point, so the duplicate 

point is removed and any tetrahedron or 

triangle that references this point is updated 

to use the same index (all tetrahedra and 

faces use integer-based indices to denote 

which points they contain). The removal of 

duplicate points is necessary as they are not 

permitted by AFLR. 

Once local reconnection over the super-

subdomain has completed, this refined data 

is returned to PDR and is assigned to octree 

leaves. No points are deleted during 

refinement, so only new points are added to 

leaves. All previous tetrahedra data within 

the leaf and its level 1 neighbors are deleted. 

The new tetrahedra are assigned to leaves. 

Having underwent swapping, a tetrahedron 

will have a different volume and will 

therefore have a different barycenter. It is 

possible for the barycenter to move just 

enough to be assigned to a level 2 neighbor. 

If a level 2 neighbor must be updated during 

refinement, then this limits parallelism and 

conflicts with PDR’s method of 

concurrency. A thread should only refine a 

leaf and its level 1 neighbors without 

allowing any changes to propagate beyond 

the level 1 region. If this situation occurs, 

the tetrahedron is assigned to a level 1 

neighboring leaf that is a neighbor of the 

level 2 leaf. Consider the following. 
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Let the octree leaf under refinement be 

L1. The level 2 neighbor n ∈ N2(L1) is where 

the new barycenter of the tetrahedron falls. 

Examine the level 1 neighbors, N1(L1), and 

find a leaf that is also included in 

N1(N2(L1)). When a matching leaf is found, 

assign the tetrahedron to that leaf instead. 

Although the tetrahedron is assigned to an 

inaccurate location, it will still reference the 

correct points (using the appropriate 

indices). If this causes a boundary extraction 

problem (as described above) during the 

refinement of another leaf, then the 

tetrahedron will be moved accordingly. The 

goal is to avoid making any alterations to a 

level 2 neighbor. If that tetrahedron is 

moved to another leaf, then it will be moved 

during a phase of refinement for that leaf, in 

which case the altering of that leaf’s data is 

acceptable because it will be a part of 

another refinement process occurring after 

the current leaf has completed refinement. 

This removes the need to add new data to a 

level 2 neighbor during refinement. 

 Finally, a function was added to 

AFLR which simply accepts a set of data 

and performs quality 

improvement/optimization on it (sliver 

removal and local reconnection). After all 

leaves have undergone refinement, their data 

are combined into a single set and passed 

into this optimization function. 

3. Qualitative Results 

Preliminary results from the initial 

implementation of the sequential, data- 

 
(a) 

 
(b) 

 
(c) 

0

2

4

6

8

10

12

14

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f 

El
em

en
ts

Degrees

Nacelle Engine (No Disks) Refinement Results 

Data-decomposed
AFLR Output Mesh

Serial AFLR Output
Mesh

Figure 8. The Fan and Turbine Disk surfaces were removed from the nacelle engine geometry. (a) and (b) show different viewpoints of 

the geometry. (c) compares the dihedral angle distributions of the output meshes between the serial AFLR code and PDR.AFLR. 
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Figure 9. The Plume and NearField embedded surfaces were removed from the missile geometry. (a) and (b) show different viewpoints of 

the geometry. (c) compares the dihedral angle distributions of the output meshes between the serial AFLR code and PDR.AFLR. 

Figure 10. (a) shows the rocket geometry. (b) shows the dihedral angle distributions of the output meshes compared between the serial 

AFLR code and PDR.AFLR. 
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decomposed AFLR show that PDR’s data 

decomposition does not hinder the quality of 

the output as it can be seen from the dihedral 

angle quality statistics of meshes in 

comparison to their quality when generated 

by the original AFLR code, in figures 8, 9, 

and 10. While the output meshes of the 

modified AFLR contain slightly more 

elements of lower quality (percentage of 

elements towards both ends of the charts), it 

maintains its stability with a close number of 

high quality elements to that of the original 

AFLR software output. This implementation 

is limited to the refinement of manifold, 

genus zero geometries that do not contain 

transparent/embedded surfaces. These 

limitations will be addressed in the final, 

complete implementation of PDR.AFLR. 

For simplicity, any transparent/embedded 

surfaces were removed from certain 

geometries while testing the stability of the 

data-decomposed AFLR (specified in the 

figures). 

4. Future Work 

There is still much to be 

accomplished for the completion of 

PDR.AFLR. The current implementation of 

the data-decomposed AFLR accepts only 

manifold genus zero computational 

geometries. Robustness will be addressed by 

identifying leaves that contain disconnected 

volumes of a mesh (caused by hole(s) in the 

geometry) and these individual pieces will 

be refined independently of each other. A 

new methodology will also be developed to 

allow the data-decomposed AFLR to 

process geometries with 

transparent/embedded surfaces. Code Re-use 

will be addressed by further modifying the 

design of PDR and developing a universal 

API, one that is capable of handling 

different data types/structures of different 

mesh generators. 

Scalability will be achieved by fully 

integrating PDR.AFLR onto a runtime 

system called PREMA 2.0 [9]. During run 

time, the PDR.AFLR method will expose 

data decomposition information (number of 

subdomains waiting to be refined) to the 

underlying run-time system. In turn, this 

system will facilitate work-load balancing 

and guide the program’s execution towards 

the most efficient utilization of hardware 

resources. PREMA 2.0 is a parallel runtime 

system that supports asynchronous 

communication, global address space and 

load balancing for adaptive and irregular 

applications. Capable of executing 

applications in both shared and distributed 

memory, PREMA 2.0 alleviates the burden 

of monitoring data and computations in 

parallel and as such is an ideal system to 

support the execution of PDR.AFLR. 

5. Conclusion 

The Parallel Data Refinement method 

maintains a fixed level of concurrency while 

parallelizing the refinement process and 

guarantees stability, robustness, code re-use, 

and scalability. The data-decomposed AFLR 

essentially decomposes an input geometry 

into subdomains, refines each subdomain 

using the Advancing Front Local 

Reconnection mesh refinement code, and 

then combines all of the refined subdomain 

data into a single, conforming mesh. Several 

modifications were made to both PDR and 

AFLR in order to accommodate each other 

and reliably generate meshes with quality 

comparable to those generated by the 

original AFLR software. AFLR meets the 

reproducibility requirement and the data-

decomposed AFLR maintains its stability. 

The data-decomposed AFLR will undergo 

further development and become fully 

integrated into PDR in order to meet the 

remaining parallel mesh generation 

requirements – robustness, code re-use, and 

scalability. By the completion of this 



  

Garner, Kennedy, Tsolakis, and Chrisochoides  11 
 

project, PDR.AFLR will be the first fully 

functional unstructured mesh 

generation/refinement application that will 

be capable of maintaining good parallel 

efficiency at 106 concurrency levels in order 

to improve end-user productivity. 
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