
*{kgarner, tkennedy, ctsolakis, nikos}@cs.odu.edu

Garner, Kennedy, Tsolakis, and Chrisochoides 1

STABILITY OF ADVANCING FRONT LOCAL RECONNECTION FOR PARALLEL DATA

REFINEMENT

Kevin Garner, Thomas Kennedy, Christos Tsolakis, and Nikos Chrisochoides*

Department of Computer Science

Old Dominion University

Norfolk, VA 23529, USA

Abstract

 The status of a long-term project

entailing the parallelization of an industrial-

strength sequential mesh generator, called

Advancing Front Local Reconnection

(AFLR), is presented in this paper. AFLR

has been under development for the last 25

years at the NSF/ERC center at Mississippi

State University. AFLR is currently used at

NASA (including NASA/LaRC) and other

government agencies as well as in the

aerospace industry such as Boeing. The

parallel procedure that is presented is called

Parallel Data Refinement (PDR) and

consists of the following steps: (i) use an

octree data-decomposition scheme to break

the original geometry into subdomains

(octree leaves), (ii) refine each subdomain

with the proper adjustments of its neighbors

using the given refinement code, and (iii)

combine all subdomain data into a single,

conforming mesh. AFLR is shown to

maintain weak reproducibility (i.e., able to

produce results of the same quality when

executed recurrently using the same input)

as required in parallel mesh generation. The

data-decomposed AFLR implementation is

shown to be stable (i.e., guarantees

sufficient mesh quality that is comparable to

that of the original AFLR software). By the

completion of this project, PDR.AFLR will

be robust (i.e., generate meshes for the same

type of geometries that AFLR can) and will

be the first fully functional unstructured

mesh generation/refinement application that

will be capable of maintaining good parallel

efficiency at 106 concurrency levels in order

to improve end-user productivity.

1. Introduction

 Mesh generation software is used in

many industries where high fidelity

simulations are executed, such as in health-

care, defense, and aerospace. For the last 30

years, these sequential software codes were

typically developed and optimized without

any thought towards scalability. One such

code is called Advancing Front Local

Reconnection (AFLR), one of the top,

industrial strength, mesh generators that is

currently used by NASA, the DoD, DoE,

and a number of aerospace industry top

research groups [1]. AFLR has not been

fully parallelized to properly utilize large-

scale supercomputing hardware due to the

geometric and numerical challenges

imposed by the nature of mesh generation

complexity. Given the high performance

computing (HPC) platforms that the

aforementioned organizations use, one long-

term goal is to achieve large-scale adaptive

Computational Fluid Dynamics (CFD)

simulations. The large-scale parallelization

of AFLR will help realize this goal. The

Center for Real-time Computing (CRTC) at

mailto:nikos%7d@cs.odu.edu

Garner, Kennedy, Tsolakis, and Chrisochoides 2

Old Dominion University (ODU) has

proposed the telescopic approach (see figure

1) [2] [3], a framework that will leverage the

concurrency that exists at multiple levels in

parallel grid generation. At the chip and

node levels, the telescopic approach deploys

a Parallel Optimistic (PO) layer and Parallel

Data Refinement (PDR) layer, respectively.

AFLR will be integrated with the PDR layer,

which in turn will be implemented on top of

the PO layer in future efforts.

PDR maintains a fixed level of

concurrency while parallelizing the

refinement process. Its methodology is

theoretically proven, for isotropic meshes, to

maintain stability and robustness for parallel

isotropic Delaunay-based mesh generation

and has been experimentally verified [4] [5]

[6]. It is also designed to allow for the

utilization of any sequential mesh generator

while guaranteeing the following four

requirements for parallel mesh generation:

stability, robustness, scalability, and code re-

use. Stability ensures that a mesh generated

in parallel maintains a level of quality

comparable to that of a sequentially

generated mesh. This quality is determined

by the number and shape of the elements.

Robustness guarantees that the parallel

software is able to correctly and efficiently

process any input data. Operator

intervention into a massively parallel

computation is not only highly expensive,

but most likely infeasible due to the large

number of concurrently processed sub-

problems. Scalability compares the runtime

of the best sequential implementation to the

runtime of the parallel implementation,

which should achieve a speedup. Non-trivial

stages of the computation must be

parallelized if one is to leverage current

architectures that contain millions of cores.

Code re-use essentially means that the

parallel algorithm should be designed in

such a way that it can be replaced and/or

updated with minimal effort, regardless of

the sequential meshing code it uses. This is a

practical approach due to the fact that

sequential codes are constantly evolving to

accommodate the functionality requirements

from the wide ranges of applications and

input geometries. Rewriting new parallel

algorithms for every sequential meshing

code can be highly expensive in time

investment. The code re-use approach is

only feasible if the sequential mesh

generator satisfies the reproducibility

criterion. Reproducibility requires that the

sequential mesh generator, when executed

with the same input recurrently, produces

either identical results or those of the same

quality. Elements within a mesh may

undergo refinement more than once when in

parallel, so it is imperative that the

sequential mesh generator satisfy this

requirement. Previous work involving the

Figure 1. Telescopic Approach to Parallel Mesh Generation. It

covers the complete spectrum of hardware that spans from the

Chip (bottom left) to a complete machine like Blue Waters (top

right). The PO level is on the left and targets the chip level. The

PDR approach is second from the left and targets hardware at

the node level.

Garner, Kennedy, Tsolakis, and Chrisochoides 3

integration of the mesh generator TetGen

with PDR shows that if the mesh generator

fails to meet the reproducibility criterion in

distributed memory, then the complexity of

such state-of-the-art codes inhibits their

modifications to a degree that their

integration with parallel frameworks like

PDR becomes impractical [7]. The original,

sequential AFLR code was determined to be

a suitable mesh generator to integrate with

PDR, as it was tested and shown to maintain

weak reproducibility, as seen in figures 2

and 3. Examples of refinement for two

geometries are shown. The dihedral angle

quality of the output mesh from the initial

refinement is given. This is compared to the

quality of the output meshes generated from

refining the

output volume

and from refining

the surface taken

from the initial

output.

Parallel

Data Refinement

decomposes a meshing problem by using an

octree consisting of numerous leaves, or

subdomains, that each hold a part of the

mesh (2-D example shown in figure 4). The

general idea of PDR is to concurrently refine

the octree leaves while maintaining mesh

conformity. The main concern when

(a)

(b)

0

2

4

6

8

10

12

14

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Missile Refinement Results Comparison

First
Refinement

Second
Refinement
(From Surface
Mesh)

Second
Refinement
(From Volume
Mesh)

Figure 2. (a) shows the missile geometry. (b) compares the dihedral angle distributions of the output mesh from the first refinement, to

the meshes output from refining the initial output volume and from refining the surface taken from the initial output volume.

Figure 4. PDR octree (in 2-D).

Garner, Kennedy, Tsolakis, and Chrisochoides 4

parallelizing a refinement algorithm are the

data dependencies between leaves caused by

concurrent point insertions and the

creation/deletion of elements in different

octree leaves by multiple threads

concurrently. PDR addresses this issue by

introducing a buffer zone around each octree

leaf. If a part of the mesh associated with a

leaf is scheduled for refinement by a thread,

no other thread can refine the parts of the

mesh associated with the buffer zone of this

leaf. This eliminates any data dependency

risks and allows PDR to avoid fine-grain

synchronization overheads associated with

concurrent point insertions. A thread refines

a leaf by running a sequential refinement

code on the subdomain within that leaf.

The implementation of PDR

presented in this paper uses the Advancing

Front Local Reconnection method to refine

individual leaves. AFLR accepts an input

geometry with an established boundary

triangulation. A Delaunay triangulation

criterion is used to construct an initial

boundary conforming tetrahedral mesh.

Each initial boundary point is assigned a

value, by a point distribution function,

representative of the local point spacing on

the boundary surface. This function is used

to control the final field point spacing. All

elements are initially made active, meaning

that they need to be refined. If the edge

points of an element satisfy the point

distribution function, the element is made

inactive and does not need to be refined. The

advancing front method is used on an active

element. A face of the element that is

adjacent to another active element is

selected. A new point is created by

advancing in a direction, normal to the

selected face, a distance that would produce

an equilateral element based on an

appropriate length scale (using the average

point distribution). If a new point is too

close to an existing point or another new

point, it is rejected and removed. Accepted

points are inserted into the existing grid by

subdividing their containing elements. For

(a)
(b)

0

2

4

6

8

10

12

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Plug Refinement Results
Comparison

First
Refinement

Second
Refinement
(From Surface
Mesh)

Second
Refinement
(From Volume
Mesh)

Figure 3. (a) shows the plug geometry. (b) compares the dihedral angle distributions of the output mesh from the first refinement, to the

meshes output from refining the initial output volume and from refining the surface taken from the initial output volume.

Garner, Kennedy, Tsolakis, and Chrisochoides 5

example, if an edge point is inserted, then all

elements sharing that edge are split. If a face

point is inserted, then both of the elements

sharing that face are split into three

elements. All elements modified by point

insertion, or any that undergo reconnection,

are classified as active. A local reconnection

scheme is used to optimize the connections

between points (or edges). Edges are

repeatedly reconnected, or swapped, until

their containing elements satisfy a desired

quality criterion. All active elements

undergo a final optimization phase, which

consists of three quality improvement passes

(sliver removal and further reconnection).

2. Integration of AFLR with PDR

Although PDR is designed to make the

parallelization of sequential mesh generators

more facile, several modifications had to be

made to the original AFLR software code in

order to ease its integration into the PDR

framework (henceforth referred to as the

data-decomposed AFLR). A large sum of

time was invested in making these

modifications due to the nature and

complexity of the code. An intricate

understanding of the data structures and

methodologies used for the initial volume

grid generation, point insertion, element

edge swapping, and optimization is required

in order to integrate these processes into a

parallel framework. Additions were also

made to the PDR code. The following steps

outline the general process of the data-

decomposed AFLR:

1. Accept an input geometry.

2. Generate an initial volume mesh.

3. Construct an octree.

4. Assign subdomains to octree leaves

and insert leaves into refinement

queue.

5. Remove a leaf from the queue.

Create a temporary boundary for the

leaf based on original element

connectivity with neighboring

subdomains.

6. Call AFLR to refine the leaf.
7. Merge all neighboring leaves,

located within the buffer zone, with

the newly refined leaf.

8. Call AFLR to perform local

reconnection on the merged data.

9. Assign updated data to the necessary

leaves.

10. Repeat steps 5-9 until there are no

remaining leaves in the refinement

queue.

11. Merge all data and call AFLR to

perform final optimization.

12. Output the final mesh.

Tetrahedra are assigned to octree leaves

based on where their barycenters fall. If a

tetrahedron has an external boundary face,

the face is assigned to the same leaf to

which the tetrahedron is assigned. In step 5,

a smooth, simply-connected boundary (as

required by AFLR) must be extracted for the

leaf under refinement [8]. The set of

tetrahedra within this leaf is examined in

isolation (as if this subdomain is the entire

domain). Any face that is not shared

between tetrahedra is considered to be a

boundary face. It is possible to extract a

boundary that contains an edge which is

shared by more than two triangles. This is

not acceptable for AFLR. This scenario

occurs when there is a tetrahedron that has a

barycenter just over the leaf boundary,

causing it to be assigned to a neighboring

leaf. Figures 5 and 6 show such a scenario.

Figure 5 shows a green line, which is the

Garner, Kennedy, Tsolakis, and Chrisochoides 6

edge that is shared by more

than two triangles. Figure 6

shows the sliver that shares

this edge, but was assigned to

a neighboring leaf. When

such an edge is found in the

extracted boundary, the

corresponding tetrahedron is

located within the

neighboring leaf, removed

from that leaf, and added to

the primary leaf. The

boundary is extracted and

examined again. This process

repeats until a smooth

boundary, acceptable for

AFLR, is extracted.

Figure 7 shows a 2-D

example of PDR’s data

decomposition and the

assignment of data generated

from the upper portion of a

rocket geometry.

Mathematical formulas are

given for the different levels

of neighboring leaves

around the primary leaf

under refinement (in red).

The level 1 neighbors of a

leaf are considered to be the buffer zone of

Figure 5. Top-down view of extracted leaf boundary that contains

an edge which is shared by more than two faces.

Figure 6. Top-down view of neighboring leaf that contains the

sliver with the edge shared by the faces of the leaf in figure 2.

Figure 7. Shown is a 2-D example of the upper portion of a data-decomposed rocket mesh

where the red-boxed leaf is the primary leaf under refinement. The level 1 neighbors are those

inside the yellow box (excluding the red leaf) and the level 2 neighbors are those inside the

orange box (excluding all leaves inside the yellow box). The formulas give mathematical

representations that denote the tetrahedra within leaves and the sets of neighboring leaves

(with matching colors showing what is contained within each surface).

Garner, Kennedy, Tsolakis, and Chrisochoides 7

that leaf (no leaf in the buffer zone may

undergo refinement while the primary leaf

undergoes refinement).

Another implementation challenge,

caused by data decomposition, is allowing

subdomain boundary elements to undergo

refinement. If a boundary face, shared by

two leaves, undergoes refinement, then the

corresponding elements within both leaves

must be updated (which adds dependencies

and increases overall runtime due to the

required communication between the

corresponding threads). Otherwise, the

connectivity between the subdomains will

be incorrect and the final mesh will be non-

conforming. Subdomain boundary

refinement is preferred so that boundary

elements do not retain poor quality by the

end of refinement. To solve this issue,

AFLR was modified to not only accept a

single set of data (points, triangles, and

tetrahedra) for one leaf, but to also accept a

second set of data – the set of all of its level

1 neighboring leaves. The faces of the

primary leaf’s internal interface surface are

kept frozen in step 6, meaning that point

insertion is not allowed on the leaf

boundary. AFLR refines the individual leaf

(advancing front point placement/insertion

and local reconnection) but does not make

any optimizations/quality improvement as

the serial AFLR would. Instead, the newly

refined leaf is merged with its level 1

neighbors into a super-subdomain and local

reconnection is performed over the super-

subdomain (thereby allowing the

optimization of the primary leaf’s boundary

elements). The internal interface surface of

the level 1 neighbor leaves remains frozen,

so as to eliminate the need of updating level

2 neighbors during refinement (and

maintaining PDR’s original method of

concurrency). It is possible to have duplicate

points when combining these sets of data

because a neighboring leaf may contain a

tetrahedron that has a point located in the

primary leaf, or vice-versa. Each set of data

will contain that same point, so the duplicate

point is removed and any tetrahedron or

triangle that references this point is updated

to use the same index (all tetrahedra and

faces use integer-based indices to denote

which points they contain). The removal of

duplicate points is necessary as they are not

permitted by AFLR.

Once local reconnection over the super-

subdomain has completed, this refined data

is returned to PDR and is assigned to octree

leaves. No points are deleted during

refinement, so only new points are added to

leaves. All previous tetrahedra data within

the leaf and its level 1 neighbors are deleted.

The new tetrahedra are assigned to leaves.

Having underwent swapping, a tetrahedron

will have a different volume and will

therefore have a different barycenter. It is

possible for the barycenter to move just

enough to be assigned to a level 2 neighbor.

If a level 2 neighbor must be updated during

refinement, then this limits parallelism and

conflicts with PDR’s method of

concurrency. A thread should only refine a

leaf and its level 1 neighbors without

allowing any changes to propagate beyond

the level 1 region. If this situation occurs,

the tetrahedron is assigned to a level 1

neighboring leaf that is a neighbor of the

level 2 leaf. Consider the following.

Garner, Kennedy, Tsolakis, and Chrisochoides 8

Let the octree leaf under refinement be

L1. The level 2 neighbor n ∈ N2(L1) is where

the new barycenter of the tetrahedron falls.

Examine the level 1 neighbors, N1(L1), and

find a leaf that is also included in

N1(N2(L1)). When a matching leaf is found,

assign the tetrahedron to that leaf instead.

Although the tetrahedron is assigned to an

inaccurate location, it will still reference the

correct points (using the appropriate

indices). If this causes a boundary extraction

problem (as described above) during the

refinement of another leaf, then the

tetrahedron will be moved accordingly. The

goal is to avoid making any alterations to a

level 2 neighbor. If that tetrahedron is

moved to another leaf, then it will be moved

during a phase of refinement for that leaf, in

which case the altering of that leaf’s data is

acceptable because it will be a part of

another refinement process occurring after

the current leaf has completed refinement.

This removes the need to add new data to a

level 2 neighbor during refinement.

 Finally, a function was added to

AFLR which simply accepts a set of data

and performs quality

improvement/optimization on it (sliver

removal and local reconnection). After all

leaves have undergone refinement, their data

are combined into a single set and passed

into this optimization function.

3. Qualitative Results

Preliminary results from the initial

implementation of the sequential, data-

(a)

(b)

(c)

0

2

4

6

8

10

12

14

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Nacelle Engine (No Disks) Refinement Results

Data-decomposed
AFLR Output Mesh

Serial AFLR Output
Mesh

Figure 8. The Fan and Turbine Disk surfaces were removed from the nacelle engine geometry. (a) and (b) show different viewpoints of

the geometry. (c) compares the dihedral angle distributions of the output meshes between the serial AFLR code and PDR.AFLR.

Garner, Kennedy, Tsolakis, and Chrisochoides 9

(a)

(b)

(c)

(a)

(b)

0

2

4

6

8

10

12

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Missile (No Plume or NearField) Refinement Results

Data-Decomposed
AFLR Output Mesh

Serial AFLR Output
Mesh

0

2

4

6

8

10

12

14

0
-5

1
0

-1
5

2
0

-2
5

3
0

-3
5

4
0

-4
5

5
0

-5
5

6
0

-6
5

7
0

-7
5

8
0

-8
5

9
0

-9
5

1
0

0
-1

0
5

1
1

0
-1

1
5

1
2

0
-1

2
5

1
3

0
-1

3
5

1
4

0
-1

4
5

1
5

0
-1

5
5

1
6

0
-1

6
5

1
7

0
-1

7
5

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Rocket Refinement Results

Data-decomposed
AFLR Output Mesh

Serial AFLR Output
Mesh

Figure 9. The Plume and NearField embedded surfaces were removed from the missile geometry. (a) and (b) show different viewpoints of

the geometry. (c) compares the dihedral angle distributions of the output meshes between the serial AFLR code and PDR.AFLR.

Figure 10. (a) shows the rocket geometry. (b) shows the dihedral angle distributions of the output meshes compared between the serial

AFLR code and PDR.AFLR.

Garner, Kennedy, Tsolakis, and Chrisochoides 10

decomposed AFLR show that PDR’s data

decomposition does not hinder the quality of

the output as it can be seen from the dihedral

angle quality statistics of meshes in

comparison to their quality when generated

by the original AFLR code, in figures 8, 9,

and 10. While the output meshes of the

modified AFLR contain slightly more

elements of lower quality (percentage of

elements towards both ends of the charts), it

maintains its stability with a close number of

high quality elements to that of the original

AFLR software output. This implementation

is limited to the refinement of manifold,

genus zero geometries that do not contain

transparent/embedded surfaces. These

limitations will be addressed in the final,

complete implementation of PDR.AFLR.

For simplicity, any transparent/embedded

surfaces were removed from certain

geometries while testing the stability of the

data-decomposed AFLR (specified in the

figures).

4. Future Work

There is still much to be

accomplished for the completion of

PDR.AFLR. The current implementation of

the data-decomposed AFLR accepts only

manifold genus zero computational

geometries. Robustness will be addressed by

identifying leaves that contain disconnected

volumes of a mesh (caused by hole(s) in the

geometry) and these individual pieces will

be refined independently of each other. A

new methodology will also be developed to

allow the data-decomposed AFLR to

process geometries with

transparent/embedded surfaces. Code Re-use

will be addressed by further modifying the

design of PDR and developing a universal

API, one that is capable of handling

different data types/structures of different

mesh generators.

Scalability will be achieved by fully

integrating PDR.AFLR onto a runtime

system called PREMA 2.0 [9]. During run

time, the PDR.AFLR method will expose

data decomposition information (number of

subdomains waiting to be refined) to the

underlying run-time system. In turn, this

system will facilitate work-load balancing

and guide the program’s execution towards

the most efficient utilization of hardware

resources. PREMA 2.0 is a parallel runtime

system that supports asynchronous

communication, global address space and

load balancing for adaptive and irregular

applications. Capable of executing

applications in both shared and distributed

memory, PREMA 2.0 alleviates the burden

of monitoring data and computations in

parallel and as such is an ideal system to

support the execution of PDR.AFLR.

5. Conclusion

The Parallel Data Refinement method

maintains a fixed level of concurrency while

parallelizing the refinement process and

guarantees stability, robustness, code re-use,

and scalability. The data-decomposed AFLR

essentially decomposes an input geometry

into subdomains, refines each subdomain

using the Advancing Front Local

Reconnection mesh refinement code, and

then combines all of the refined subdomain

data into a single, conforming mesh. Several

modifications were made to both PDR and

AFLR in order to accommodate each other

and reliably generate meshes with quality

comparable to those generated by the

original AFLR software. AFLR meets the

reproducibility requirement and the data-

decomposed AFLR maintains its stability.

The data-decomposed AFLR will undergo

further development and become fully

integrated into PDR in order to meet the

remaining parallel mesh generation

requirements – robustness, code re-use, and

scalability. By the completion of this

Garner, Kennedy, Tsolakis, and Chrisochoides 11

project, PDR.AFLR will be the first fully

functional unstructured mesh

generation/refinement application that will

be capable of maintaining good parallel

efficiency at 106 concurrency levels in order

to improve end-user productivity.

6. Acknowledgements

We would like to thank Dr. David

Marcum, of the Center of Advanced

Vehicular Systems at Mississippi State

University, for acting as our consultant for

any questions we had regarding the

modifications of AFLR. This research was

sponsored by NASA's Transformational

Tools and Technologies Project (grant no.

NNX15AU39A) of the Transformative

Aeronautics Concepts Program under the

Aeronautics Research Mission Directorate.

This work in part is funded by the Virginia

Space Grant Consortium (VSGC) Graduate

Research Fellowship and NSF grant no.

CCF-1439079.

7. References

[1] D. Marcum and N. Weatherill,

"Unstructured Grid Generation Using

Iterative Point Insertion and Local

Reconnection," AIAA Journal, pp. 1619-

1625, 1995.

[2] N. Chrisochoides, "Telescopic Approach

for Extreme-scale Parallel Mesh

Generation for CFD Applications," in

AIAA Aviation, 2016.

[3] N. Chrisochoides, A. Chernikov, A.

Fedorov, A. Kot, L. Linardakis and P.

Foteinos, "Towards Exascale Parallel

Delaunay Mesh Generation," in 18th

International Meshing Roundtable, Salt

Lake City, UT, 2009.

[4] A. Chernikov and N. Chrisochoides,

"Parallel Guaranteed-quality Delaunay

Uniform Mesh Refinement," SIAM

Journal on Scientific Computing, vol. 28,

no. 5, pp. 1907-1926, 2006.

[5] A. Chernikov and N. Chrisochoides,

"Practical and Efficient Point-insertion

Scheduling Method for Parallel

Guaranteed-quality Delaunay

Refinement," in 18th ACM International

Conference on Supercomputing, 2004.

[6] A. Chernikov and N. Chrisochoides,

"Three-dimensional Delaunay

Refinement for Multi-Core Processors,"

in 22nd ACM International Conference

on Supercomputing, Island of Kos,

Greece, 2008.

[7] N. Chrisochoides, A. Chernikov, T.

Kennedy, C. Tsolakis and K. Garner,

"Parallel Data Refinement Layer of a

Telescopic Approach for Extreme-scale

Parallel Mesh Generation for CFD

Applications," in AIAA Aviation 2018

(Accepted), Atlanta, Georgia, 2018.

[8] K. Garner, T. Kennedy and N.

Chrisochoides, "Integration of Parallel

Data Refinement Method with

Advancing Front Local Reconnection

Mesh Refinement Software," in Virginia

Space Grant Consortium (VSGC) 2017

Student Research Conference,

Williamsburg, Virginia, 2017.

[9] P. Thomadakis, C. Tsolakis, K.

Vogiatzis, A. Kot and N. Chrisochoides,

"Parallel Software Framework for Large-

scale Parallel Mesh Generation and

Adaptation for CFD Solvers," in AIAA

Aviation 2018 (Submitted), Atlanta,

Georgia, 2017.

