
Parallel Data Refinement Layer of a Telescopic Approach for Extreme-scale Parallel

Mesh Generation for CFD Applications

Nikos Chrisochoides, Andrey Chernikov, Thomas Kennedy, Christos Tsolakis, and

Kevin Garner

CRTCLab, Computer Science Department

Old Dominion University

Abstract

In earlier work, we proposed a Telescopic approach which is a multi-layered

approach for extreme-scale parallel mesh generation and adaptation. In this paper,

we describe the Parallel Data Refinement (PDR) layer of the Telescopic approach.

Namely focus on PDR’s: (i) design and implementation and (ii) evaluation using

TetGen, an open source mesh generation software, on shared memory machines.

We outline lessons learned and future directions for revisiting the PDR layer and

making adjustments in the implementation of the remaining layers of the Telescopic

approach.

1. Introduction

Our long term goal is to achieve extreme-scale adaptive CFD simulations on the

complex, heterogeneous

High Performance

Computing (HPC)

platforms. To achieve this

goal, we proposed in a

telescopic approach (see

Figure 1) [1] [2]. The

telescopic approach is

critical in leveraging the

concurrency that exists at

multiple levels in

anisotropic and adaptive

simulations. At the chip

and node levels, the

telescopic approach

deploys a Parallel

Optimistic (PO) layer and

Parallel Data Refinement

(PDR) layer, respectively

(see Sections below). In

this paper, we focus on the implementation of PDR. In future efforts, the PDR layer will

be implemented on top of the PO layer [3]. The PDR layer relies on theory presented for

parallel mesh generation and adaptivity [4] [5] [6]. The requirements for parallel mesh

generation and adaptivity are:

Figure 1 Telescopic Approach to parallel mesh generation and adaptation and

PDR layer in the middle.

https://crtc.cs.odu.edu/

1. Stability: the quality of the mesh generated in parallel must be comparable to that

of a mesh generated sequentially. The quality is defined in terms of the shape of

the elements (using a chosen location/error-dependent metric), and the number of

the elements (fewer is better for the same shape constraint).

2. Robustness: the ability of the software to correctly and efficiently process any

input data. Operator intervention into a massively parallel computation is not only

highly expensive, but most likely infeasible due to the large number of

concurrently processed sub-problems.

3. Code re-use: a modular design of the parallel software that builds upon

previously designed sequential meshing code, such that it can be replaced and/or

updated with a minimal effort. Code re-use is feasible only if the code satisfies the

reproducibility criterion, identified for the first time in this project. However, the

experience from this project indicated that the complexity of state-of-the-art codes

inhibits their modifications to a degree that their integration with parallel

frameworks like PDR becomes impractical.

4. Scalability: the ratio of the time taken by the best sequential implementation to

the time taken by the parallel implementation. The speedup is always limited by

the inverse of the sequential fraction of the software, and therefore all non-trivial

stages of the computation must be parallelized to leverage the current

architectures with millions of cores.

The experience from the PDR implementation suggests that the code-reuse criterion

ought to be adjusted for several reasons: (i) complexity of industrial strength sequential

mesh generation codes and (ii) their reproducibility properties.

1.1 Reproducibility

A sequential mesh generation code like TetGen is an obvious

choice for local mesh refinement within PDR. However, in

distributed memory implementations (i.e., using MPI), a mesh

needs to be reconstructed out of a set of points and tetrahedra

in order to populate the data structures of TetGen and to then

continue refining the subdomains.

Although this capability exists as a function in TetGen

(tetgenmesh::reconstruct()), the reconstruction procedure is not

robust enough even for simple inputs. For example, for the

socket geometry depicted in Figure 2 and using TetGen 1.5.0 [7]

with an input of a set of points and tetrahedra produced from

TetGen itself, the TetGen software reports many

errors about wrong segment connections and then

aborts. This type of behavior is exacerbated when

more complex volumes generated from some data

decomposition of a volume mesh is considered as

input.

This is a generic error due to wrong initialization in

Figure 2. Coarse mesh of the

socket geometry. Black dots

represent points where TetGen

reports errors

Figure 3. Zoom-in view of the center of the

socket

some of the core data structures. TetGen provides functions that test the integrity of the

internal data structures. Enabling these functions and visualizing the information reveals

that at 2363 out of the 10472 boundary points (see Figure 3), the

tetgenmesh::reconstructmesh()procedure did not link the segments

appropriately. Even by passing more information to the aforementioned function, that is,

boundary edge and boundary face connectivity, the final result is the same.

The reproducibility criterion is not required for shared memory PDR implementations,

since the mesh is not reconstructed at any leaf during the refinement; instead, the PDR

layer accesses the mesh directly. However, in the case of distributed memory

implementations of the PDR layer, the original sequential software (e.g., TetGen) is

initialized differently in the threaded versus the MPI versions. In the former one, the

mesh is unique and available to all threads, which means that if one considers the

boundary as a union of faces and segments it is unique throughout the execution. On the

other hand, in the MPI version the parts of the mesh that are under refinement are

oblivious to the rest of the mesh. This causes TetGen to treat the subdomain (in the case

of PDR an octree leaf) boundary as an external boundary even if it lies away from the

object’s boundary, which means that special pre-refinement of edges and faces will

occur. To avoid this, the TetGen code had to be explicitly modified by disabling these

two pre-refinement stages.

2. Parallel Data Refinement (PDR) Algorithm

One way to decompose a meshing problem is through the

introduction of permanent sub-domain boundaries to which

the final mesh has to conform. However, any extra boundary

adds constraints to the meshing problem, and therefore

reduces the available optimization space. For example, one

small angle or short segment can cause mesh quality

deterioration on the global scale. The automatic construction

of suitable three-dimensional subdomain boundaries that do

not over-constrain the meshing problem is a very hard task

that has not been solved to the team’s knowledge. In fact, this is one of the major

problems for the “pseudo”

constrained AFLR modifications

to be realized so far.

The PDR approach is instead

based on data decomposition,

illustrated in Figure 4, where the

boundaries of the octree nodes do

not become part of the mesh.

Modular software design for

code re-use. Figure 5 presents a

high level diagram of the

software design. The blocks

Scheduling of Octree Leaves

S
er

ia
l

M
es

h
 R

ef
in

em
en

t

S
er

ia
l

M
es

h
 R

ef
in

em
en

t

...
Scheduling

of Tetrahedra

Point

Selection

Scheduling

of Tetrahedra

Point

Selection

Figure 4. 2D octree for PDR

Figure 5. Software Architecture of PDR approach

marked Serial Mesh Refinement represent P instances of a sequential refinement code,

which is TetGen in the current implementation, and had been planned to be replaced by

AFLR. The Element Scheduling boxes represent the management of poor quality element

queues by the sequential code. In this implementation, TetGen’s worklist was split to

create a separate queue for each of the leaves of the octree. One schedules only one leaf

at a time for refinement by a single core/thread, so that each thread draws from and

pushes into a separate poor element queue. The Point Selection box is the abstraction for

choosing a particular strategy for inserting points to eliminate poor quality tetrahedra. As

shown previously [8], sequential Delaunay refinement algorithms have the flexibility to

choose Steiner points from entire regions inside the circumspheres of poor quality

tetrahedra, which are named selection balls. This approach is likely to extend to

Advancing Front (AF) methods, too. The box marked “Scheduling of Octree Leaves”

represents the construction of the octree and the scheduling of leaves for refinement. The

leaves with larger volumes have higher refinement priorities than the leaves with smaller

volumes, and the leaves of the same size are processed in first-in-first-out order. This

strategy is designed to achieve high concurrency as early as possible in the progress of

the algorithm without introducing large overheads.

Abstract Data Structures. If a part of the mesh associated with a leaf L of the octree is

scheduled for refinement by a thread, no other thread can refine the parts of the mesh

associated with the buffer zone BUF(L) of this leaf. This avoids fine grain

synchronization overheads associated with concurrent point insertions. For each leaf L of

the octree the following relation is maintained, which is required for the proof of

correctness [6]: the circumradius of any tetrahedron which intersects L is less than 1/6 of

the side length of L. In the case of AF methods, a similar argument can be made, but

there is no mathematical proof due to the heuristic nature of AF methods.

When an octree leaf, L, is scheduled for refinement, one removes not only the nodes in

the buffer zone BUF(L) from the refinement queue, but also the nodes from BUF(L’) for

each L’ in BUF(L). Although this is not required by the theory, there are two

implementation considerations for doing so, and both are related to the goal of reducing

fine-grain synchronization. First, each leaf has an associated data structure that stores the

poor quality tetrahedra whose circumspheres intersect this leaf, so that the circumradius-

to-leaf side ratio can be maintained. Even though in theory the refinement of the mesh by

concurrent threads is not going to cause problems when the threads work within the same

octree leaf, in practice synchronization would need to be introduced for updating these

poor quality lists. Second, for efficiency considerations, each tetrahedron contains

pointers to neighboring tetrahedra for fast mesh traversal. However, if two cavities share

an edge and are updated by concurrent threads, which can be done legitimately in certain

cases, these tetrahedron-neighbor pointers will be invalidated. For these reasons, the sets

of leaves affected by the mesh refinement performed by multiple threads were completely

separated.

The PDR algorithm is designed for the execution by one master thread, which manages

the work pool, and by multiple refinement threads that refine the mesh and the octree.

The poor quality tetrahedra whose Steiner points are inside the square of L are stored in

the data structure denoted here as PoorTetrahedra(L). Leaf L needs to be scheduled for

refinement if this data structure is not empty. In addition, each leaf has a counter for the

tetrahedra that violate one half of the circumradius-to-leaf side ratio. When such a

counter associated with L becomes zero, it implies that this ratio would hold for each of

the children of L, and L can be split. As a result of a leaf subdivision, the overall

concurrency is increased.

2.1 PDR Implementation

There are two parallel mesh generation approaches for the implementation of the PDR

algorithm:

1. Given a surface, generate in parallel a volume mesh. A progressive PDR method

exploits maximum concurrency as soon as it is feasible according to the PDR theory.

2. Given an initial volume mesh in core, adapt (refine) the mesh in parallel to meet error-

based metrics. A non-progressive PDR method explores a fixed level of

concurrency, in contrast to the progressive PDR method.

2.1.1 Progressive PDR Approach

High level description of the algorithm:

1. Input: surface mesh

2. Create a coarse size volume mesh (sequentially).

3. Create the root box of the octree.

4. Refine the mesh and the octree in parallel as needed, maintaining the

circumradius-to-leaf size ratio.

By allowing the octree and the mesh to be refined simultaneously, a finer mesh can be

constructed. Parallel refinement can progressively utilize additional cores as the available

concurrency increases. The progressive approach reduces the startup overheads present in

the non-progressive approach. The progressive approach introduces the need to classify

certain tetrahedra as obstacles (to the splitting of octree leaves). A potential obstacle is a

tetrahedron whose circumsphere intersects an octree leaf. One tetrahedron can be a

potential obstacle to several octree leaves, and one octree leaf can have multiple potential

obstacles. An actual obstacle to leaf L is any potential obstacle that violates the

circumradius-to-leaf side ratio for L.

The progressive approach requires that each tetrahedron and its metadata be recorded.

Each leaf contains a look-up table with records for all of its potential obstacles. This is

necessary to redistribute the potential obstacles to the children of this leaf, and as a result

some potential obstacles for L can become actual obstacles for the children of L. These

tables are maintained by three operations: (i) Obstacle Registration, (ii) Obstacle

Deregistration, and (iii) Distribution of Obstacle Entries. Obstacle Registration is the

process during which a tetrahedron circumsphere is checked against the leaf currently

under refinement and its first level neighbors. Each intersected leaf is recorded and added

to a list. This list and the circumsphere are entered into the look-up table of each

intersected leaf. The tetrahedron pointer serves as the key.

Obstacle Deregistration is the process during which a tetrahedron that has been split or

updated is removed from all look-up tables. During this process, the list of intersected

leaves is retrieved, by using the tetrahedron pointer to retrieve the corresponding entry

from the look-up table of the leaf currently under refinement. Once the entry has been

retrieved, it is removed from the look-up tables of all intersected octree leaves.

Distribution of Obstacle Entries is the process during which obstacle entries are

redistributed to the children of a leaf. This process occurs immediately after a leaf is split.

Each entry in the look-up table for the leaf is reassigned to the corresponding child. The

list of intersections is updated replacing the split node with the appropriate children.

The cost of obstacle tracking is mesher-dependent. The overhead of tracking obstacles

was further reduced by attaching direct pointers to each tetrahedron instead of using a

look-up table (as in the current implementation after properly modifying the pertinent

internal tetrahedron data structure for TetGen 1.4).

Data Structures: The first two processes (Obstacle Registration and Deregistration) are

dependent on the selected data structure for the look-up table implementation. The

original look-up table implementation was based on the C++ std::map. This container is

based on the sorting of the keys. The insert and erase std::map methods used during

Obstacle Registration and Obstacle Deregistration respectively, are logarithmic in

complexity. The current look-up table implementation is based on the C++11

std::unordered_map. The unordered_map::insert operation (used during Obstacle

Registration) has a best case constant complexity and worst case linear complexity. The

unordered_map::erase method has an average case constant complexity and worst case

linear complexity. The results for Progressive PDR refinement show 70% parallel

efficiency for about 800M elements on a 32-core node.

2.1.2 Non-Progressive PDR Approach

High level description of the algorithm:

1. Input: surface mesh

2. Create a volume mesh. Create an octree of depth N.

3. Refine the volume mesh sequentially to match the circumradius-to-leaf side ratio

for all octree leaves.

4. Refine the volume mesh in parallel

An Octree of depth 4 provides sufficient concurrency for a 32-core node and initial mesh

of 703K elements (it takes 21 sec to generate). A higher depth tree implies a higher

initialization cost and thus the need for progressive PDR. A larger octree (i.e.,

expectations for higher concurrency) requires a larger size mesh. The benefit of the non-

progressive approach is in avoiding the overheads associated with the maintenance of the

obstacles. This is done by a single call to TetGen instructing it to refine all tetrahedra

below the specified circumradius bound.

3. Performance Evaluation

PDR.Tetgen was compiled on CentOS with version 4.9 of the gnu g++ compiler. Local

analysis was performed on the ODU Turing Cluster on a high memory node (32 cores

and 768 GiB RAM). PDR was evaluated for up to 32 cores. Analysis of large meshes

(>500M elements) was performed on the retired PSC Greenfield machine. Greenfield was

a large Distributed Shared Memory (DSM) machine; with each node contained 4 15-core

CPUs and provided 3 TiB RAM. PDR was evaluated for up to 75 cores.

3.1 Quantitative Results

This section presents preliminary performance data collected to identify pros and cons of

the two different PDR approaches: (i) progressive and (ii) non-progressive, using three

different size meshes: (i) small, (ii) medium, and (iii) large size meshes.

Table 1 presents observations with respect to two different approaches and meshes of

various sizes.

Table 1. Overview of Progressive PDR Behavior using TetGen.

Mesh Size Parallel Mesh Generation Adaptability

Small

(2M to 100M)

Progressive performs worse than Non-
Progressive PDR

High startup time

Medium
(>100M)

Progressive performs better than Non-
Progressive PDR for more than 4 cores

Minimal startup time (for
appropriate initial octree
depth)

Large
(>500M)

Progressive has higher runtime than Non-
Progressive PDR. Lower idle times within
worker threads.

Minimal startup cost (for
appropriate initial octree
depth)

3.1.1 Progressive PDR allows the initial octree depth to be tuned to the number of

available cores. By decoupling the initial octree depth and the final octree depth, an initial

subset of available cores can be utilized. As octree leaves are split, additional work

becomes available, and additional cores can be utilized.

Remark: The progressive PDR approach has a very low cost for the initial mesh

construction, since it progressively utilizes cores on demand, i.e., uses as many cores as

the concurrency in the computation becomes apparent. This approach is suitable for

parallel mesh generation (Problem I) when the input is a surface mesh or comes from a

CAD model. Table 2 indicates that the scaled (weak) speedup of the method is very good.

Table 2. Runtime breakdown for Progressive PDR for selected medium meshes (approximately 2 million to 70

million elements). Time (in seconds) is divided into time spent in each phase of PDR.

Cores 1 2 4 8 16 32

Total 84.28 87.51 90.84 105.16 125.63 226.82

Octree Construction 3.49 3.38 3.53 8.69 8.15 7.44

Mesh Construction 2.63 2.66 2.65 21.92 22.19 20.94

Parallel Refinement 78.15 81.47 84.65 74.51 95.25 198.38

Elements 1,890,949 3,682,307 6,418,835 12,532,332 29,537,735 70,683,194

3.1.2 Non-Progressive PDR constructs the final octree before parallel refinement begins.

If non-progressive PDR requires an octree of depth N, the octree must be constructed for

a given initial mesh, i.e., only the final octree depth can be tuned. This approach is

suitable for parallel adaptive mesh refinement (Problem II) when the input is a volume

mesh already generated in parallel (e.g., using the progressive PDR approach) and

requires mesh refinement. Consequently, by eliminating the initial mesh construction in

Table 1, one observes good scalability for the non-progressive PDR method even for

small & medium size meshes. While, Table 3 lists a breakdown of the runtimes for

meshes of selected sizes, where the initial mesh construction is removed. The octree

construction and initialization is taking place sequentially; this is an area for

improvement.

Table 3. Runtime breakdown for Non-Progressive PDR for medium meshes (approximately 2 million to 70

million elements). Time (s) is divided into time spent in each phase of PDR. Octree Construction and Mesh

Construction are sequential operations. For 1 and 2 cores an octree of depth 4 is constructed, while for 4 and

higher number of cores and octree of depth 5 is constructed.

Cores 1 2 4 8 16 32

Total 32.72 36.33 75.25 40.54 50.19 64.37

Octree Construction 4.12 3.82 16.43 16.26 16.23 16.49

Parallel Refinement 28.60 32.75 58.77 24.08 33.96 47.88

Elements 1,995,089 3,718,464 7,281,459 13,694,447 29,762,341 70,192,796

Remark: The overheads introduced by obstacles and neighbor re-computation cause

Progressive PDR to perform worse than Non-Progressive PDR. However, one needs to

take into account that the progressive PDR generates both the octree and the initial mesh.

In summary, we observe good scalability for a small (< 32) number of cores for PDR.

However, different PDR approaches behave differently for small to medium size meshes.

Namely, (i) progressive PDR is suitable for parallel mesh generation that starts from

CAD (in the present study a surface mesh) and generates a volume mesh. Current end-to-

end times for a generated mesh of size 796.4M tets, using different numbers of cores are:

1 core: 26,122 sec, 16 cores: 2064 sec, and 32 cores: 1596 sec. These data suggest a fixed

speedup of more than 16. There are still a number of optimizations that would help

improve upon this performance; (ii) non-Progressive PDR is suitable for adaptive mesh

refinement of an existing mesh. Current end-to-end time (including the cost for an initial

coarse mesh) for a generated mesh of size 797M tets, using different numbers of cores

are: 1 core: 17,010 sec, 16 cores: 1,646 sec, 32 cores: 1,633 sec. The optimum end-to-end

performance is for 24 cores: 1,560 sec. These data suggest a fixed speedup of about 11,

when the time for the initial coarse mesh is included. However, the non-progressive

method will be used in the context of adaptive volume mesh refinement where the mesh

to be refined concurrently is already generated and the cost is charged in an earlier phase.

3.2 Qualitative Evaluation

Figure 6 shows the angle distributions for the socket geometry using Non-Progressive

PDR on a single core (a) and Non-Progressive PDR on 32 cores (b). While, Figure 7

shows the face angle distributions for the socket geometry for Non-Progressive PDR for a

single core (a), and Non-Progressive PDR for 32 cores (b). Finally, Figure 8 shows the

aspect ratio distributions for the socket geometry for Non-Progressive PDR for a single

core (a), and Non-Progressive PDR for 32 cores (b) using TetGen 1.4.

(a)

(b)

Figure 6. Dihedral angle distributions for the socket geometry. The y-axis runs from 0 to 0.4. On the left (a) the

dihedral angle distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the

distribution for Non-Progressive PDR on 32 cores is shown.

(a)

(b)

Figure 7. Face angle distributions for the socket geometry. The y-axis runs from 0 to 0.4. On the left (a) the face

angle distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the distribution

for Non-Progressive PDR on 32 cores is shown.

(a)

(b)

Figure 8. Aspect ratio distributions for the socket geometry. The y-axis runs from 0 to 0.6. On the left (a) the

aspect ratio distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the

distribution for Non-Progressive PDR on 32 cores is shown.

Figure 10. Curved Duct Geometry Figure 9. Defroster Geometry

The stability and robustness of the PDR method for parallel isotropic Delaunay-based

mesh generation is not only theoretically proven [4] [5] [6], but experimentally verified.

Similar behavior is observed for the Advancing Front type of methods. Figure 9 depicts a

defroster geometry and Figure 10 depicts a curved duct geometry.

Figure 11 shows qualitative results for the refinement of these two geometries using an

early implementation of PDR with AFLR. Detailed description of these efforts will

appear elsewhere.

(a)

(b)

Figure 11. Dihedral angle distributions of the output meshes are shown and compared between the serial AFLR

code and PDR.AFLR. The left (a) gives the qualitative results of the defroster geometry and the right (b) gives

the results of the curved duct geometry.

0

2

4

6

8

10

12

0
-5

1
5

-2
0

3
0

-3
5

4
5

-5
0

6
0

-6
5

7
5

-8
0

9
0

-9
5

1
0

5
-1

1
0

1
2

0
-1

2
5

1
3

5
-1

4
0

1
5

0
-1

5
5

1
6

5
-1

7
0

P
er

ce
n

ta
ge

 o
f

E
le

m
en

ts

Degrees

Defroster Refinement
Results

PDR.AFL
R Output
Mesh

Serial
AFLR
Output
Mesh

0

2

4

6

8

10

12

0
-5

1
5

-2
0

3
0

-3
5

4
5

-5
0

6
0

-6
5

7
5

-8
0

9
0

-9
5

1
0

5
-1

1
0

1
2

0
-1

2
5

1
3

5
-1

4
0

1
5

0
-1

5
5

1
6

5
-1

7
0

P
er

ce
n

ta
ge

 o
f

E
le

m
en

ts

Degrees

Curved Duct Refinement
Results

PDR.AFL
R Output
Mesh

Serial
AFLR
Output
Mesh

4. Conclusions and Future Work

The lessons learned from the challenges faced with the implementation of the PDR layer

suggest:

 The complexity of existing state-of-the-art sequential mesh generation codes for

building robust HPC parallel codes is very high – to a degree that their modifications

can NOT even be managed by their own original creators within reasonable time-

frames and even for the simplest of the parallel mesh generation approaches (i.e.,

PDR-type methods); their main challenge is to achieve robustness and stability.

 In the long run, the CFD community is better off building from scratch new parallel

mesh generation codes such as CTD3D [3] implemented as an alternative to TetGen

and AFLR.

Due to TetGen’s lack of reproducibility (AFLR meets the weak reproducibility criterion),

future efforts will be focused on the Distributed Shared Memory (DSM) implementation

of the PDR framework. This will permit the efficient implementations of the Parallel

Constrained (PC) step of the Telescopic approach. Because of reproducibility and

software complexity issues that prevent major and proper modifications (especially in the

case of fine grain optimistic layer of the telescopic approach) of state-of-the-art

sequential software required for parallel mesh generation, at this point it is our experience

that it is best to consider the design and implementation for new parallel mesh generation

codes on small numbers of cores (i.e., multi-core shared memory machines) ready to be

integrated in subsequent layers of the telescopic approach to achieve large- to extreme-

scale codes.

Finally, early preliminary results suggest that the PDR layer is suitable for end-user

productivity in the short term and it can likely be used within a multi-core single node

platform to increase the concurrency of the Optimistic Layer. Preliminary (un-optimized)

data on Distributed Shared Memory (DSM) machines suggest that at the node level,

linear speedup up to 60 or 100 cores can be achieved. Figure 12 depicts the fixed speedup

remains close to 16 for a mesh with 800M element and scalable (weak) speedup is close

to 20. However, more work remains to be

done to optimize the PDR scheduler for DSM

nodes.

Acknowledgements This work in part is funded

by NSF grant no. CCF-1439079, NASA grant no.

NNX15AU39A and DoD’s PETTT Project PP-

CFD-KY07-007, Richard T. Cheng Endowment

and M&S Fellowship at ODU. In addition, it

utilized resources from the Extreme Science and

Engineering Discovery Environment (XSEDE), which is supported by National Science

Foundation grant number ACI-1053575. The content is solely the responsibility of the authors

and does not necessarily represent the official views of the government agencies that support this

work. The authors thank Dr. David Marcum for the helping answer all the questions regarding the

modifications or AFLR at ODU. The presentation of this document is improved substantially

form the comments of K. Vogiatzis, H. Thornburg, and C. Peavey at Engility.

0

5

10

15

20

0 20 40 60

S
p

e
e

d
u

u
p

Cores

Figure 12. Scalable Speedup on DSM machine.

References

[1] N. Chrisochoides, "Telescopic Approach for Extreme-scale Parallel Mesh Generation

for CFD Applications," in AIAA Aviation, 2016.

[2] N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot, L. Linardakis, and P. Foteinos,

"Towards Exascale Parallel Delaunay Mesh Generation," in Proceedings of the 18th

International Meshing Roundtable, Salt Lake City, UT, 2009.

[3] F. Drakopoulos, C. Tsolakis and N. Chrisochoides, "CDT3D : Fine-Grained parallel

grid generator for Aerospace Applications," in AIAA Aviation, 2017.

[4] A. Chernikov and N. Chrisochoides, "Practical and Efficient Point Insertion

Scheduling Method for Parallel Guaranteed Quality Delaunay Refinement," in 18th

ACM International Conference on Supercomputing, Saint-Malo, France, 2004.

[5] A. Chernikov and N. Chrisochoides, "Parallel Guaranteed Quality Delaunay Uniform

Mesh Refinement," SIAM Journal on Scientific Computing, vol. 28, no. 5, pp. 1907-

1926, 2006.

[6] A. N. Chernikov and N. P. Chrisochoides, "Three-dimensional Delaunay Refinement

for Multi-core Processors," in ICS '08, Island of Kos, Greece, 2008.

[7] H. Si, "TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator," ACM Trans.

on Mathematical Software (TOMS), p. 36, 2015.

[8] A. N. Chernikov and N. . P. Chrisochoides, "Generalized Insertion Region Guides for

Delaunay Mesh Refinement," SIAM Journal on Scientific Computing, vol. 34, no. 3,

pp. A1333-A1350, 2012.

