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Abstract 

In earlier work, we proposed a Telescopic approach which is a multi-layered 

approach for extreme-scale parallel mesh generation and adaptation. In this paper, 

we describe the Parallel Data Refinement (PDR) layer of the Telescopic approach. 

Namely focus on PDR’s:  (i) design and implementation and (ii) evaluation using 

TetGen, an open source mesh generation software, on shared memory machines.  

We outline lessons learned and future directions for revisiting the PDR layer and 

making adjustments in the implementation of the remaining layers of the Telescopic 

approach.   

 

1. Introduction 

 

Our long term goal is to achieve extreme-scale adaptive CFD simulations on the 

complex, heterogeneous 

High Performance 

Computing (HPC) 

platforms. To achieve this 

goal, we proposed in a 

telescopic approach (see 

Figure 1) [1] [2]. The 

telescopic approach is 

critical in leveraging the 

concurrency that exists at 

multiple levels in 

anisotropic and adaptive 

simulations. At the chip 

and node levels, the 

telescopic approach 

deploys a Parallel 

Optimistic (PO) layer and 

Parallel Data Refinement 

(PDR) layer, respectively 

(see Sections below). In 

this paper, we focus on the implementation of PDR. In future efforts, the PDR layer will 

be implemented on top of the PO layer [3]. The PDR layer relies on theory presented for 

parallel mesh generation and adaptivity [4] [5] [6]. The requirements for parallel mesh 

generation and adaptivity are:  

Figure 1  Telescopic Approach to parallel mesh generation and adaptation and 

PDR layer in the middle. 

https://crtc.cs.odu.edu/


1. Stability: the quality of the mesh generated in parallel must be comparable to that 

of a mesh generated sequentially. The quality is defined in terms of the shape of 

the elements (using a chosen location/error-dependent metric), and the number of 

the elements (fewer is better for the same shape constraint). 

2. Robustness: the ability of the software to correctly and efficiently process any 

input data. Operator intervention into a massively parallel computation is not only 

highly expensive, but most likely infeasible due to the large number of 

concurrently processed sub-problems. 

3. Code re-use: a modular design of the parallel software that builds upon 

previously designed sequential meshing code, such that it can be replaced and/or 

updated with a minimal effort. Code re-use is feasible only if the code satisfies the 

reproducibility criterion, identified for the first time in this project. However, the 

experience from this project indicated that the complexity of state-of-the-art codes 

inhibits their modifications to a degree that their integration with parallel 

frameworks like PDR becomes impractical. 

4. Scalability: the ratio of the time taken by the best sequential implementation to 

the time taken by the parallel implementation. The speedup is always limited by 

the inverse of the sequential fraction of the software, and therefore all non-trivial 

stages of the computation must be parallelized to leverage the current 

architectures with millions of cores. 

The experience from the PDR implementation suggests that the code-reuse criterion 

ought to be adjusted for several reasons: (i) complexity of industrial strength sequential 

mesh generation codes and (ii) their reproducibility properties.  

 

1.1 Reproducibility 

  

A sequential mesh generation code like TetGen is an obvious 

choice for local mesh refinement within PDR. However, in 

distributed memory implementations (i.e., using MPI), a mesh 

needs to be reconstructed out of a set of points and tetrahedra 

in order to populate the data structures of TetGen and to then 

continue refining the subdomains.  

 

Although this capability exists as a function in TetGen 

(tetgenmesh::reconstruct()), the reconstruction procedure is not 

robust enough even for simple inputs. For example, for the 

socket geometry depicted in Figure 2 and using TetGen 1.5.0 [7] 

with an input of a set of points and tetrahedra produced from 

TetGen itself,  the TetGen software reports many 

errors about wrong segment connections and then 

aborts. This type of behavior is exacerbated when 

more complex volumes generated from some data 

decomposition of a volume mesh is considered as 

input. 

 

This is a generic error due to wrong initialization in 

Figure 2. Coarse mesh of the 

socket geometry. Black dots 

represent points where TetGen 

reports errors 

Figure 3. Zoom-in view of the center of the 

socket 

 



some of the core data structures. TetGen provides functions that test the integrity of the 

internal data structures. Enabling these functions and visualizing the information reveals 

that at 2363 out of the 10472 boundary points (see Figure 3), the 

tetgenmesh::reconstructmesh()procedure did not link the segments 

appropriately. Even by passing more information to the aforementioned function, that is, 

boundary edge and boundary face connectivity, the final result is the same. 

 

The reproducibility criterion is not required for shared memory PDR implementations, 

since the mesh is not reconstructed at any leaf during the refinement; instead, the PDR 

layer accesses the mesh directly. However, in the case of distributed memory 

implementations of the PDR layer, the original sequential software (e.g., TetGen) is 

initialized differently in the threaded versus the MPI versions. In the former one, the 

mesh is unique and available to all threads, which means that if one considers the 

boundary as a union of faces and segments it is unique throughout the execution. On the 

other hand, in the MPI version the parts of the mesh that are under refinement are 

oblivious to the rest of the mesh. This causes TetGen to treat the subdomain (in the case 

of PDR an octree leaf) boundary as an external boundary even if it lies away from the 

object’s boundary, which means that special pre-refinement of edges and faces will 

occur. To avoid this, the TetGen code had to be explicitly modified by disabling these 

two pre-refinement stages.  
 

 

2. Parallel Data Refinement (PDR) Algorithm  
 

One way to decompose a meshing problem is through the 

introduction of permanent sub-domain boundaries to which 

the final mesh has to conform. However, any extra boundary 

adds constraints to the meshing problem, and therefore 

reduces the available optimization space. For example, one 

small angle or short segment can cause mesh quality 

deterioration on the global scale. The automatic construction 

of suitable three-dimensional subdomain boundaries that do 

not over-constrain the meshing problem is a very hard task 

that has not been solved to the team’s knowledge. In fact, this is one of the major 

problems for the “pseudo” 

constrained AFLR modifications 

to be realized so far. 

The PDR approach is instead 

based on data decomposition, 

illustrated in Figure 4, where the 

boundaries of the octree nodes do 

not become part of the mesh. 

 

Modular software design for 

code re-use. Figure 5 presents a 

high level diagram of the 

software design. The blocks 
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Figure 4. 2D octree for PDR 

Figure 5. Software Architecture of PDR approach 



marked Serial Mesh Refinement represent P instances of a sequential refinement code, 

which is TetGen in the current implementation, and had been planned to be replaced by 

AFLR. The Element Scheduling boxes represent the management of poor quality element 

queues by the sequential code. In this implementation, TetGen’s worklist was split to 

create a separate queue for each of the leaves of the octree. One schedules only one leaf 

at a time for refinement by a single core/thread, so that each thread draws from and 

pushes into a separate poor element queue. The Point Selection box is the abstraction for 

choosing a particular strategy for inserting points to eliminate poor quality tetrahedra. As 

shown previously [8], sequential Delaunay refinement algorithms have the flexibility to 

choose Steiner points from entire regions inside the circumspheres of poor quality 

tetrahedra, which are named selection balls. This approach is likely to extend to 

Advancing Front (AF) methods, too. The box marked “Scheduling of Octree Leaves” 

represents the construction of the octree and the scheduling of leaves for refinement. The 

leaves with larger volumes have higher refinement priorities than the leaves with smaller 

volumes, and the leaves of the same size are processed in first-in-first-out order. This 

strategy is designed to achieve high concurrency as early as possible in the progress of 

the algorithm without introducing large overheads. 

 

Abstract Data Structures. If a part of the mesh associated with a leaf L of the octree is 

scheduled for refinement by a thread, no other thread can refine the parts of the mesh 

associated with the buffer zone BUF(L) of this leaf. This avoids fine grain 

synchronization overheads associated with concurrent point insertions. For each leaf L of 

the octree the following relation is maintained, which is required for the proof of 

correctness [6]: the circumradius of any tetrahedron which intersects L is less than 1/6 of 

the side length of L. In the case of AF methods, a similar argument can be made, but 

there is no mathematical proof due to the heuristic nature of AF methods. 

 

When an octree leaf, L, is scheduled for refinement, one removes not only the nodes in 

the buffer zone BUF(L) from the refinement queue, but also the nodes from BUF(L’) for 

each L’ in BUF(L). Although this is not required by the theory, there are two 

implementation considerations for doing so, and both are related to the goal of reducing 

fine-grain synchronization. First, each leaf has an associated data structure that stores the 

poor quality tetrahedra whose circumspheres intersect this leaf, so that the circumradius-

to-leaf side ratio can be maintained. Even though in theory the refinement of the mesh by 

concurrent threads is not going to cause problems when the threads work within the same 

octree leaf, in practice synchronization would need to be introduced for updating these 

poor quality lists. Second, for efficiency considerations, each tetrahedron contains 

pointers to neighboring tetrahedra for fast mesh traversal. However, if two cavities share 

an edge and are updated by concurrent threads, which can be done legitimately in certain 

cases, these tetrahedron-neighbor pointers will be invalidated. For these reasons, the sets 

of leaves affected by the mesh refinement performed by multiple threads were completely 

separated. 

 

The PDR algorithm is designed for the execution by one master thread, which manages 

the work pool, and by multiple refinement threads that refine the mesh and the octree. 

The poor quality tetrahedra whose Steiner points are inside the square of L are stored in 



the data structure denoted here as PoorTetrahedra(L). Leaf L needs to be scheduled for 

refinement if this data structure is not empty. In addition, each leaf has a counter for the 

tetrahedra that violate one half of the circumradius-to-leaf side ratio. When such a 

counter associated with L becomes zero, it implies that this ratio would hold for each of 

the children of L, and L can be split. As a result of a leaf subdivision, the overall 

concurrency is increased.  

2.1 PDR Implementation  

There are two parallel mesh generation approaches for the implementation of the PDR  

algorithm:   

1. Given a surface, generate in parallel a volume mesh. A progressive PDR method 

exploits maximum concurrency as soon as it is feasible according to the PDR theory. 

2. Given an initial volume mesh in core, adapt (refine) the mesh in parallel to meet error-

based metrics.  A non-progressive PDR method explores a fixed level of 

concurrency, in contrast to the progressive PDR method.  

2.1.1 Progressive PDR Approach 

 

High level description of the algorithm:  

1. Input: surface mesh 

2. Create a coarse size volume mesh (sequentially).  

3. Create the root box of the octree.  

4. Refine the mesh and the octree in parallel as needed, maintaining the 

circumradius-to-leaf size ratio. 

By allowing the octree and the mesh to be refined simultaneously, a finer mesh can be 

constructed. Parallel refinement can progressively utilize additional cores as the available 

concurrency increases. The progressive approach reduces the startup overheads present in 

the non-progressive approach. The progressive approach introduces the need to classify 

certain tetrahedra as obstacles (to the splitting of octree leaves). A potential obstacle is a 

tetrahedron whose circumsphere intersects an octree leaf. One tetrahedron can be a 

potential obstacle to several octree leaves, and one octree leaf can have multiple potential 

obstacles. An actual obstacle to leaf L is any potential obstacle that violates the 

circumradius-to-leaf side ratio for L.  

 

The progressive approach requires that each tetrahedron and its metadata be recorded. 

Each leaf contains a look-up table with records for all of its potential obstacles. This is 

necessary to redistribute the potential obstacles to the children of this leaf, and as a result 

some potential obstacles for L can become actual obstacles for the children of L. These 

tables are maintained by three operations: (i) Obstacle Registration, (ii) Obstacle 

Deregistration, and (iii) Distribution of Obstacle Entries.  Obstacle Registration is the 

process during which a tetrahedron circumsphere is checked against the leaf currently 

under refinement and its first level neighbors. Each intersected leaf is recorded and added 

to a list. This list and the circumsphere are entered into the look-up table of each 

intersected leaf. The tetrahedron pointer serves as the key. 



 

Obstacle Deregistration is the process during which a tetrahedron that has been split or 

updated is removed from all look-up tables. During this process, the list of intersected 

leaves is retrieved, by using the tetrahedron pointer to retrieve the corresponding entry 

from the look-up table of the leaf currently under refinement. Once the entry has been 

retrieved, it is removed from the look-up tables of all intersected octree leaves. 

Distribution of Obstacle Entries is the process during which obstacle entries are 

redistributed to the children of a leaf. This process occurs immediately after a leaf is split. 

Each entry in the look-up table for the leaf is reassigned to the corresponding child. The 

list of intersections is updated replacing the split node with the appropriate children. 

 

The cost of obstacle tracking is mesher-dependent. The overhead of tracking obstacles 

was further reduced by attaching direct pointers to each tetrahedron instead of using a 

look-up table (as in the current implementation after properly modifying the pertinent 

internal tetrahedron data structure for TetGen 1.4).  

Data Structures: The first two processes (Obstacle Registration and Deregistration) are 

dependent on the selected data structure for the look-up table implementation. The 

original look-up table implementation was based on the C++ std::map. This container is 

based on the sorting of the keys. The insert and erase std::map methods used during 

Obstacle Registration and Obstacle Deregistration respectively, are logarithmic in 

complexity. The current look-up table implementation is based on the C++11 

std::unordered_map. The unordered_map::insert operation (used during Obstacle 

Registration) has a best case constant complexity and worst case linear complexity. The 

unordered_map::erase method has an average case constant complexity and worst case 

linear complexity. The results for Progressive PDR refinement show 70% parallel 

efficiency for about 800M elements on a 32-core node. 

2.1.2 Non-Progressive PDR Approach  

High level description of the algorithm:  

1. Input: surface mesh 

2. Create a volume mesh. Create an octree of depth N.  

3. Refine the volume mesh sequentially to match the circumradius-to-leaf side ratio 

for all octree leaves.  

4. Refine the volume mesh in parallel  

An Octree of depth 4 provides sufficient concurrency for a 32-core node and initial mesh 

of 703K elements (it takes 21 sec to generate). A higher depth tree implies a higher 

initialization cost and thus the need for progressive PDR. A larger octree (i.e., 

expectations for higher concurrency) requires a larger size mesh. The benefit of the non-

progressive approach is in avoiding the overheads associated with the maintenance of the 

obstacles. This is done by a single call to TetGen instructing it to refine all tetrahedra 

below the specified circumradius bound. 
 

3. Performance Evaluation  

PDR.Tetgen was compiled on CentOS with version 4.9 of the gnu g++ compiler. Local 

analysis was performed on the ODU Turing Cluster on a high memory node (32 cores 



and 768 GiB RAM). PDR was evaluated for up to 32 cores. Analysis of large meshes 

(>500M elements) was performed on the retired PSC Greenfield machine. Greenfield was 

a large Distributed Shared Memory (DSM) machine;  with each node contained 4 15-core 

CPUs and provided 3 TiB RAM. PDR was evaluated for up to 75 cores. 

 

3.1 Quantitative Results 

This section presents preliminary performance data collected to identify pros and cons of 

the two different PDR approaches: (i) progressive and (ii) non-progressive, using three 

different size meshes: (i) small, (ii) medium, and (iii) large size meshes.   

Table 1 presents observations with respect to two different approaches and meshes of 

various sizes. 

 
Table 1. Overview of Progressive PDR Behavior using TetGen. 

Mesh Size Parallel Mesh Generation Adaptability 

Small 

(2M to 100M) 

Progressive performs worse than Non-
Progressive PDR 

High startup time 

Medium 
(>100M) 

Progressive performs better than Non-
Progressive PDR for more than 4 cores 

Minimal startup time (for 
appropriate initial octree 
depth) 

Large 
(>500M) 

Progressive has higher runtime than Non-
Progressive PDR. Lower idle times within 
worker threads. 

Minimal startup cost (for 
appropriate initial octree 
depth)  

 

3.1.1 Progressive PDR allows the initial octree depth to be tuned to the number of 

available cores. By decoupling the initial octree depth and the final octree depth, an initial 

subset of available cores can be utilized. As octree leaves are split, additional work 

becomes available, and additional cores can be utilized.  

 

Remark: The progressive PDR approach has a very low cost for the initial mesh 

construction, since it progressively utilizes cores on demand, i.e., uses as many cores as 

the concurrency in the computation becomes apparent. This approach is suitable for 

parallel mesh generation (Problem I) when the input is a surface mesh or comes from a 

CAD model. Table 2 indicates that the scaled (weak) speedup of the method is very good.  

 
Table 2. Runtime breakdown for Progressive PDR for selected medium meshes (approximately 2 million to 70 

million elements). Time (in seconds) is divided into time spent in each phase of PDR. 

# Cores 1 2 4 8 16 32 

Total 84.28 87.51 90.84 105.16 125.63 226.82 

Octree Construction 3.49 3.38 3.53 8.69 8.15 7.44 

Mesh Construction 2.63 2.66 2.65 21.92 22.19 20.94 

Parallel Refinement 78.15 81.47 84.65 74.51 95.25 198.38 

# Elements 1,890,949 3,682,307 6,418,835 12,532,332 29,537,735 70,683,194 

 



3.1.2 Non-Progressive PDR constructs the final octree before parallel refinement begins. 

If non-progressive PDR requires an octree of depth N, the octree must be constructed for 

a given initial mesh, i.e., only the final octree depth can be tuned. This approach is 

suitable for parallel adaptive mesh refinement (Problem II) when the input is a volume 

mesh already generated in parallel (e.g., using the progressive PDR approach) and 

requires mesh refinement.  Consequently, by eliminating the initial mesh construction in 

Table 1, one observes good scalability for the non-progressive PDR method even for 

small & medium size meshes. While, Table 3 lists a breakdown of the runtimes for 

meshes of selected sizes, where the initial mesh construction is removed. The octree 

construction and initialization is taking place sequentially; this is an area for 

improvement.  

 
Table 3. Runtime breakdown for Non-Progressive PDR for medium meshes (approximately 2 million to 70 

million elements). Time (s) is divided into time spent in each phase of PDR. Octree Construction and Mesh 

Construction are sequential operations. For 1 and 2 cores an octree of depth 4 is constructed, while for 4 and 

higher number of cores and octree of depth 5 is constructed. 

# Cores 1 2 4 8 16 32 

Total 32.72 36.33 75.25 40.54 50.19 64.37 

Octree Construction 4.12 3.82 16.43 16.26 16.23 16.49 

Parallel Refinement 28.60 32.75 58.77 24.08 33.96 47.88 

# Elements 1,995,089 3,718,464 7,281,459 13,694,447 29,762,341 70,192,796 

 

Remark: The overheads introduced by obstacles and neighbor re-computation cause 

Progressive PDR to perform worse than Non-Progressive PDR. However, one needs to 

take into account that the progressive PDR generates both the octree and the initial mesh.  

In summary, we observe good scalability for a small (< 32) number of cores for PDR. 

However, different PDR approaches behave differently for small to medium size meshes. 

Namely, (i) progressive PDR is suitable for parallel mesh generation that starts from 

CAD (in the present study a surface mesh) and generates a volume mesh. Current end-to-

end times for a generated mesh of size 796.4M tets, using different numbers of cores are: 

1 core: 26,122 sec, 16 cores: 2064 sec, and 32 cores: 1596 sec. These data suggest a fixed 

speedup of more than 16. There are still a number of optimizations that would help 

improve upon this performance;  (ii) non-Progressive PDR is suitable for adaptive mesh 

refinement of an existing mesh. Current end-to-end time (including the cost for an initial 

coarse mesh) for a generated mesh of size 797M tets, using different numbers of cores 

are: 1 core: 17,010 sec, 16 cores: 1,646 sec, 32 cores: 1,633 sec. The optimum end-to-end 

performance is for 24 cores: 1,560 sec. These data suggest a fixed speedup of about 11, 

when the time for the initial coarse mesh is included. However, the non-progressive 

method will be used in the context of adaptive volume mesh refinement where the mesh 

to be refined concurrently is already generated and the cost is charged in an earlier phase.  

3.2 Qualitative Evaluation  

Figure 6 shows the angle distributions for the socket geometry using Non-Progressive 

PDR on a single core (a) and Non-Progressive PDR on 32 cores (b). While, Figure 7 

shows the face angle distributions for the socket geometry for Non-Progressive PDR for a 

single core (a), and Non-Progressive PDR for 32 cores (b). Finally, Figure 8 shows the 



aspect ratio distributions for the socket geometry for Non-Progressive PDR for a single 

core (a), and Non-Progressive PDR for 32 cores (b) using TetGen 1.4. 

 

 
(a) 

 
(b) 

Figure 6. Dihedral angle distributions for the socket geometry. The y-axis runs from 0 to 0.4.  On the left (a) the 

dihedral angle distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the 

distribution for Non-Progressive PDR on 32 cores is shown. 

 
(a) 

 
(b) 

Figure 7. Face angle distributions for the socket geometry. The y-axis runs from 0 to 0.4.  On the left (a) the face 

angle distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the distribution 

for Non-Progressive PDR on 32 cores is shown. 

 
(a) 

 
(b) 

Figure 8. Aspect ratio distributions for the socket geometry. The y-axis runs from 0 to 0.6.  On the left (a) the 

aspect ratio distribution for Non-Progressive PDR when run on a single core is shown. On the right (b) the 

distribution for Non-Progressive PDR on 32 cores is shown.  



Figure 10. Curved Duct Geometry Figure 9. Defroster Geometry 

The stability and robustness of the PDR method for parallel isotropic Delaunay-based 

mesh generation is not only theoretically proven [4] [5] [6], but experimentally verified. 

Similar behavior is observed for the Advancing Front type of methods. Figure 9 depicts a 

defroster geometry and Figure 10 depicts a curved duct geometry.  

Figure 11 shows qualitative results for the refinement of these two geometries using an 

early implementation of PDR with AFLR. Detailed description of these efforts will 

appear elsewhere.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 

Figure 11. Dihedral angle distributions of the output meshes are shown and compared between the serial AFLR 

code and PDR.AFLR. The left (a) gives the qualitative results of the defroster geometry and the right (b) gives 

the results of the curved duct geometry. 
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4. Conclusions and Future Work 

 

The lessons learned from the challenges faced with the implementation of the PDR layer 

suggest:  

 The complexity of existing state-of-the-art sequential mesh generation codes for 

building robust HPC parallel codes is very high – to a degree that their modifications 

can NOT even be managed by their own original creators within reasonable time-

frames and even for the simplest of the parallel mesh generation approaches (i.e., 

PDR-type methods); their main challenge is to achieve robustness and stability. 

 In the long run, the CFD community is better off building from scratch new parallel 

mesh generation codes such as CTD3D [3] implemented  as an alternative to TetGen 

and AFLR. 

Due to TetGen’s lack of reproducibility (AFLR meets the weak reproducibility criterion), 

future efforts will be focused on the Distributed Shared Memory (DSM) implementation 

of the PDR framework. This will permit the efficient implementations of the Parallel 

Constrained (PC) step of the Telescopic approach.  Because of reproducibility and 

software complexity issues that prevent major and proper modifications (especially in the 

case of fine grain optimistic layer of the telescopic approach) of state-of-the-art 

sequential software required for parallel mesh generation, at this point it is our experience 

that it is best to consider the design and implementation for new parallel mesh generation 

codes on small numbers of cores (i.e., multi-core shared memory machines) ready to be 

integrated in subsequent layers of the telescopic approach to achieve large- to extreme-

scale codes.  

 

Finally, early preliminary results suggest that the PDR layer is suitable for end-user 

productivity in the short term and it can likely be used within a multi-core single node 

platform to increase the concurrency of the Optimistic Layer. Preliminary (un-optimized) 

data on Distributed Shared Memory (DSM) machines suggest that at the node level, 

linear speedup up to 60 or 100 cores can be achieved. Figure 12 depicts the fixed speedup 

remains close to 16 for a mesh with 800M element and scalable (weak) speedup is close 

to 20.  However, more work remains to be 

done to optimize the PDR scheduler for DSM 

nodes.  
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