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A parallel method for topological transformations for local reconnection methods is pre-

sented. The proposed scheme combines known parallel techniques like data over-decomposition

and load balancing with widely used topological transformations also known as flips or swaps.

In contrast to most mesh generation methods, the proposed optimizes the connectivity in par-

allel throughout the mesh generation procedure. The speculative scheme is evaluated on a va-

riety of aerospace configurations. Early results indicate that the high quality and performance

attributes of this method see substantial improvement over existing state-of-the-art technology.

I. Introduction
The long term goal of this project is to achieve extreme-scale adaptive CFD simulations on the complex, heteroge-

neous High Performance Computing (HPC) platforms. To achieve this goal, a telescopic approach (see Figure 1) is
proposed in [1, 2]. The telescopic approach is critical in leveraging the concurrency that exists at multiple levels in
parallel anisotropic and adaptive simulations. At the chip level the telescopic approach deploys a Parallel Optimistic
(PO), sometimes here and elsewhere is also called speculative approach, which explores concurrency at a fine-grain
(element) level using data decomposition. In this paper, we focus on the implementation of the speculative layer, having
however in mind that the code should be modular enough in order to be used throughout the telescopic approach.

Fig. 1 Telescopic Approach for Extreme-Scale Parallel Mesh Generation [2]

The mesh generation kernel of the telescopic approach for CFD applications is essentially a combination of Advanc-
ing Front type point placement, direct point insertion, and parallel multi-threaded connectivity optimization schemes.
The proposed speculative method repetitively reconnects the mesh using tightly-coupled topological transformations.
Simple hill-climbing is employed to maximize the quality of the worst local element. The local reconnection scheme is
based on: (i) data over-decomposition, (ii) atomic operations to avoid data races and maintain a valid mesh throughout
the procedure, and (iii) load-balancing to redistribute work-units among the threads.

The proposed method and its implementation is designed to be a module of the CDT3D mesh generation software
which focuses on five important aspects of parallel mesh generation and adaptation:

1) Stability. The quality of the mesh generated in parallel must be comparable to that of a mesh generated
sequentially. The quality is defined in terms of the shape of the elements (using a chosen space-dependent
metric) and the number of the elements (fewer is better for the same shape constraint).



2) Robustness. The ability of the software to correctly and efficiently process any input data and to consistently
generate high quality elements. Operator intervention into a parallel computation is not only highly expensive,
but most likely infeasible due to the large number of concurrently processed sub-problems.

3) End-User Productivity. The ability of the software to process the input data faster compared to state-of-the-art
codes. Scalability is defined as the ratio of the time taken by the best sequential implementation to the time
taken by the parallel implementation. The speedup is always limited by the inverse of the sequential fraction of
the software, and therefore all non-trivial stages of the computation must be parallelized to leverage the current
multi-core architectures.

4) Code Re-Use. A modular design of the parallel software, such that it can be replaced and/or updated with
minimal effort. Due to the complexity of mesh generation codes, this is the only practical approach for keeping
up with the ever-evolving algorithms and computer architectures.

5) Reproducibility. Related to the stability notion is the one of reproducibility, were the mesh generator should
first terminate and produce comparable quality no matter if it is initialized with a CAD- or image-driven model
or a surface of a volume mesh generated by the mesher itself.
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Fig. 2 High level mesh generation pipeline of the CDT3D software.

The focus in this paper is the generation of high quality isotropic meshes employing the speculative local reconnection
approach. While boundary layer and metric-based anisotropic mesh generation are not supported yet, CDT3D’s modular
design allows for these methods to be integrated in the future.

CDT3D is inspired from state-of-the-art unstructured grid technology AFLR (Advancing Front-Local Reconnec-
tion) [3, 4] and is designed to be an alternative for industrial-strength extreme-scale parallel mesh generation. AFLR is
directly incorporated in several industrial-strength systems. However, its software complexity, given that is designed
and optimized to be super-efficient on single-core machines raised questions as to whether its parallelization can meet
all five requirements stated above and it can be accomplished within the time constrains of its users.

Mesh generation codes typically improve the shape of the elements in a post-processing step, on the contrary, the

proposed method optimizes the connectivity throughout the generation procedure to obtain a maximum quality.
The connectivity is optimized using topological transformations coupled with a combined quality criterion : Delaunay
in-sphere [5] and Min-Max type [6]. Topological transformations are fundamental operations in local reconnection.
A topological transformation removes elements and replaces them with a different set of elements that occupy the
same space. Transformations can be computationally expensive and time-consuming, mainly for two reasons: (i) a
transformation does not always produce a geometrically valid connectivity, hence the orientation of the new elements
needs to be verified, and (ii) a quality metric needs to be computed to decide whether the new connectivity is locally
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optimal or not. However, transformations involving more than three elements may have more than one candidate
solutions and the cost to compute the optimal solution is a-priori non-polynomial [7]. Also, a transformation does
not always produce a geometrically valid connectivity, hence the orientation of the new elements needs to be verified.
Experimental evaluation of the proposed method indicates that a sequential optimization with local reconnection
accounts for at least 70% of the mesh generation time (without post-improvement).

For those reasons, CDT3D employs a parallel speculative local reconnection approach. This approach is character-
ized by intense communication and resolution of dependences at runtime. The low cost of communication allows the
speculative approach to take advantage from dynamic load balancing schemes like the one presented in [8] that is used
in this work.

II. Previous Work
Two approaches are typically used to generate a tetrahedral mesh from an input surface mesh: Delaunay or

Advancing Front [9]. Delaunay methods can handle constrained polyhedral domains of arbitrary complexity with the
use of heuristic mesh modification techniques [10, 11]. Other Delaunay approaches provide mathematically guarantees
on the mesh quality but do not preserve the boundary triangulation [12, 13].

The first efforts on the parallelization of existing sequential Delaunay mesh generation algorithms are reported
in [14, 15]. These methods are based on the parallelization of a Bowyer-Watson kernel [16, 17]. A tightly-coupled
distributed parallel Delaunay refinement algorithm for simple polyhedral domains whose constituent bounding edges
and surfaces are separated by angles between 90◦ to 270◦ is presented [18]. This algorithm, can create and place large
meshes up to 6 times faster than the traditional approach (i.e., sequentially generate a sufficiently dense mesh, partition
the mesh into submeshes, distribute the submeshes to the processors, and sequentially refine the mesh) to generating
and refining a distributed mesh.

A Delaunay method that allows for safe insertion of points independently without synchronization is presented [19].
This method, based on a carefully constructed octree, splits the work-list of the candidate points up into smaller lists
such that the available sequential codes can be used without modifications to process the sublists. The drawback is
that the amount of work assigned to different processors can vary significantly. However, by using over-decomposition
in a combination with runtime software system for dynamic load balancing [20], the work among the nodes can be
redistributed.

In some cases (e.g., high-aspect ratio viscous meshes or three-dimensional meshes with sliver elements formed from
four nearly coplanar points) the Delaunay criterion may not be the most suitable. For this reason, other approaches to
improve the quality over that of a Delaunay mesh by using topological transformations have been introduced [6, 21–23].

Advancing Front methods offer the advantages of a high quality mesh due to optimal point placement and boundary
integrity [24, 25]. Its main drawbacks are complexity and lower element quality when fronts collide in 3-dimensions.
An Advancing Front mesh generator for shared memory architectures is presented in [26]. The domain to be meshed is
first subdivided spatially using a coarse octree, and then the boxes are meshed in parallel. In [27], a coarse tetrahedral
mesh is generated first to provide the basis of block interfaces and then partitioned into a number of subdomains using
METIS [28] partitioning algorithms. A volume mesh is generated on each subdomain in parallel using an Advancing
Front method, and all subdomains are later combined to create a single mesh. To remove the artifacts in the interfaces
between subdomains, an angle-based node smoothing was used, but no topological changes (i.e., local reconnections)
are introduced.

Many parallel Delaunay or Advancing Front algorithms have been proposed [8, 18, 19, 26, 29–32]. However, few
parallel local reconnection algorithms have been presented in the literature. In [33] a parallel distributed Advancing
Front mesh generation method with quality improvement is presented. Quality improvement includes a combination of
several algorithms, i.e., diagonal swapping, removal of bad elements, node smoothing, and selective mesh movement.
In the first pass of quality improvement, each submesh is reconnected by swapping edges in its interior, so the inter-
processor boundary remains unchanged. In the second pass, a new partition is created by adding 1-2 extra layers
of elements to each subdomain from the neighboring domains, the submeshes are redistributed among processors,
and mesh improvement operations are performed again. However, it is unclear how the work load is balanced after
re-partitioning.

A multi-threaded local reconnection and smoothing algorithm for mesh improvement is presented [34]. The
parallelization of smoothing operations is based on an existing data-decomposition technique [35], which colors the
dual graph of the mesh to subdivide the points into a few independent sets. The parallelization of local reconnection
operation is based on a new data-decomposition technique, which defines a feature point in the interior of each local
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reconnection operation and sorts the feature points along a Hilbert curve [36, 37]. The decomposition of this Hilbert
curve results in an initial load-balanced distribution of local operations, i.e., edge removals from those low quality
tetrahedra.

A two-step thread-parallel edge and face swapping algorithm is presented [38]. In the first step, a vertex locking
strategy is introduced to select a maximal conflict-free set of edges and faces for swapping. In the second step, edge and
face migration between threads is performed to balance the work-load in each thread, and then parallel edge and face
swaps are applied without any interference. However, the evaluation of the 3-dimensional algorithm is limited.

Other approaches suggest a combination of smoothing and untangling operations [39, 40]. A log-barrier interior
point method is developed to solve a smooth constrained optimization problem and untangle a mesh with inverted
elements, improving its quality [41]. This method is parallelized for distributed memory machines using an edge-
based coloring communication synchronization technique in which edges corresponding to a graph of communicating
processes are colored to synchronize the communication [42].

A parallel optimization technique that smooths independent sets of vertices simultaneously is developed in [43].
This technique performs local vertex movement using a vertex-coloring scheme to avoid conflicting updates to vertex
positions. The method is implemented for a parallel random access machine (PRAM) model and distributed memory
architectures.

A parallel advancing front algorithm for distributed memory machines based on the advancing partition algorithm is
presented in [44]. This method utilizes the advancing front method to generate separators that decouple the domain.
The separators are build by generating and inserting points along imaginary partition planes. The generated subdomains
are refined then in parallel with no synchronization.

An optimization-based smoothing algorithm for anisotropic mesh adaptivity is presented in [45]. The smoothing
kernel solves a non-linear optimization problem by differentiating the local mesh quality with respect to mesh vertex
position and employing hill-climbing to maximize the quality of the worst local element. The method is parallelized for
hybrid OpenMP/MPI using standard coloring techniques.

Previous work on 3-dimensional Delaunay refinement [8] indicates that a speculative approach performs well on
hardware-shared memory. Similarly to a Delaunay reconnection, roll-backs are possible during speculative reconnection
with topological transformations, due to intersections of polyhedra that are attempted to transform concurrently.
The proposed scheme employs atomic operations to avoid such intersections, thus maintaining a valid connectivity
throughout the procedure. To exploit additional parallelism, the proposed method implements a load-balancer to migrate
work-units (buckets) from busy threads to threads without work. The granularity of the decomposition (i.e., size of
work-units) and the amounts of data for migration can be adjusted to achieve an optimum performance.

Details of the proposed algorithm are presented in the following sections along with an extensive evaluation on
quality and scalability aspects of the code for 3-dimensional aerospace configurations.

III. Refinement
The proposed refinement algorithm is essentially a combination of Advancing Front type point placement, direct

element subdivision, and parallel multi-threaded connectivity optimization schemes.

A. Procedure

During the refinement, new points are created and inserted into the mesh until the mesh satisfies a desired point
distribution function. Points are generated using an Advancing Front type point placement and inserted by direct
subdivision of the contained elements. Topological transformations are applied in parallel to reconnect the mesh.
An overview of the procedure is the following (see Figure 2)

1) Compute distribution function for each point on the boundary
2) Mark all tetrahedra as active (i.e., eligible for reconnection)
3) While new field points are accepted:

a) Deactivate tetrahedra that satisfy the point distribution function
b) Create new field points
c) Insert field points
d) Optimize connectivity

In this paper, the Parallel Connectivity Optimization is described in detail. Main operation of the connectivity
optimization is the topological transformations.
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IV. Topological Transformations
Topological transformations are necessary in the majority of mesh generation algorithms [3, 7, 22, 23, 35, 46, 47].

Flips or swaps are alternative terms often used in computational geometry literature [48]. A topological transformation
modifies the mesh connectivity by replacing a set of elements with a different set of elements that occupy the same
space. Topological transformations include a variety of operations such as edge/face flipping but also point insertion or
point removal, which makes them a powerful tool for mesh generation since most mesh operations boil down to these
basic operations. Topological transformations are typically used in conjunction with an objective function to optimize
the mesh. Typical objective functions are the average quality of the elements or the quality of the worst element.
The proposed method, implements various objective functions such as: (i) Delaunay empty sphere property [5], (ii)
maximization of the minimum Laplacian edge weight [6], (iii) minimization of the maximum dihedral angle, and (iv)
maximization of the minimum dihedral angle. The parallel reconnection step uses both the (i) Delaunay empty sphere
criterion [5] and (ii) Maximization of the minimum Laplacian edge weight [6] to optimize the mesh. Transformations
are also used to enforce a specific connectivity into the mesh without taking into account quality aspects. Such an
example is the boundary recovery and the point insertion algorithm employed by CDT3D.

CDT3D implements also recursive n − m flips [37] (n ≥ 3, m = 2n − 4). These flips are essentially a combination
of (n − 3) 2-3 flips followed by a final 3-2 flip. The n − m flip has been proven very effective in terms of robustness for
edge removal. However, due to the fact that the number of candidate tetrahedralizations for n tetrahedra surrounding
an edge increases exponentially in n, thus the cost to exhibit these tetrahedralizations is a priori non-polynomial [7],
recursive n − m flips are employed only during boundary recovery.

Point insertion is implemented using 4-1,6-2,n-2n flips for inserting a point in a tetrahedron, on a shared face and
on a shared edge respectively. For performance reasons, the refinement and improvement modules reconnect clusters
of up to n = 4 tetrahedra. When n = 4, the two candidate configurations are computed in advance and the one that
maximizes the objective function is selected. During local reconnection three types of flips are used: 2-3, 3-2, 4-4.
Flips 2-3 and 3-2 are used to reconnect five non coplanar points. A 2-3 flip removes a face from the mesh, while a 3-2
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Fig. 3 3(a) A 2-3 flip removes a face (abc) from the mesh, creating a new edge (de). Flip 2-3 is geometrically

valid if the edge de intersects face abc in the interior. The inverse operation removes an edge (de) from the

mesh, creating a new face (abc). 3(b) 4-4 flip. Left: Initial configuration with four tetrahedra (abcd, abde,

abe f , ab f c) surrounding an edge (ab). Middle: first alternative configuration with edge ab being replaced by

edge ce. The new tetrahedra are: ceda, c f ea, cdeb, ce f b. Right: second alternative configuration with edge ab

being replaced by edge df . The new tetrahedra are: dc f a, df ea, df cb, de f b.

flip removes an edge (Figure 3(a)). A 4-4 flip interchanges two edges in a set of four tetrahedra surrounding an edge
(Figure 3(b)). It is essentially a combination of a 2-3 flip (that inserts a new edge) and a 3-2 flip (that removes an old
edge). The first 2-3 flip may temporarily create a flat tetrahedron which will be removed by the followed 3-2 flip. Two
candidate configurations are computed in advance for a 4-4 flip. The configuration that optimizes an objective function
is then selected.
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V. Parallel Connectivity Optimization
Local reconnection with topological transformations has been proven very effective for mesh optimization [3, 7, 22,

23, 35]. Nevertheless, it can be the bottleneck for the performance of the mesh generation. The experimental evaluation
of this study indicates that the sequential reconnection scheme accounts for about 80% of the total refinement time. The
proposed parallel speculative approach reduces the overheads significantly. To the best of our knowledge, CDT3D is
the first software that optimizes the connectivity using parallel tightly-coupled topological transformations throughout
the mesh generation (including a post-improvement step).

A. Parallel Procedure

The connectivity is optimized using tightly-coupled topological transformations. The parallelization is based on:
1) Over-decomposition
2) Thread safe operations
3) Load balancing

1. Over-decomposition

The active (i.e. eligible for reconnection) elements of the mesh are grouped into equal-sized work-units (buckets)
which are then distributed to the threads. The granularity (grain size) of the decomposition is adjusted with a parameter
nbuckets ∈ [nthreads,nactelem], where nthreads and nactelem are the number of threads and the number of
active elements, respectively. After decomposition, each bucket contains approximately the same number of elements
(nactelem/nbuckets), and each thread owns approximately the same number of buckets (nbuckets/nthreads).

Optionally, the active elements can be pre-sorted in space using a Biased Randomized Insertion Order (BRIO) [49]
and then ordered within each group along a Hilbert curve [36], to both improve the geometric locality and reduce
the chance of a conflict between concurrent attempts of reconnection for adjacent elements [34]. Figure 4 depicts a
decomposition of a tetrahedral mesh of a nozzle with and without element pre-sorting. Each thread maintains a unique
list of buckets throughout the reconnection and processes the buckets in a consecutive manner. The elements within
each bucket are repetitively reconnected until no new reconnections are possible.

(a) With element pre-sorting (b) Without element pre-sorting

Fig. 4 Decomposition of a tetrahedral mesh of a nozzle into 4 buckets with and without element pre-sorting.

The centroids of the elements are sorted using a Biased Randomized Insertion Order (BRIO) [49] and a Hilbert

curve [36]. Pre-sorting can potentially speedup the reconnection because it reduces the conflicts between con-

current attempts of reconnections for adjacent set of elements. The surface mesh obtained from CAVS Sims

Center at MSU.

2. Thread safe operations

The presence of multiple threads operating on a shared mesh during local reconnection introduces the possibility of
data races. First, topological transformations that have intersecting set of elements need to be synchronized. Another
issue is that creation and deletion of elements needs to be synchronized in order to retain the data structure’s integrity.
For the former, atomic operations are employed. In particular, the vertices of the elements that take part in a topological
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transformation remain locked throughout the transformation. If a thread encounters a locked vertex, it advances to the
next transformation or the next element in the bucket( see line 9 in algorithm 1). Moreover, in case reconnection of a set
of elements is not possible (i.e., the reconnection produces invalid elements or the objective function is not optimized),
then the element is marked to avoid re-checking. For these operations atomic functions are utilized for synchronization
since they perform faster than the conventional pthread try_locks [8].

To avoid communication when creating or deleting elements. New elements are inserted into the bucket of the
thread that performs the reconnection. Deleted elements are removed from a bucket only if this bucket belongs to the
thread that performs the reconnection; otherwise the element is marked as invalid, and the thread that owns the bucket
removes it in a later step.

3. Load balancing

The static decomposition described in subsection1 is not always sufficient for balancing the work load throughout the
parallel procedure because: (i) the number of geometrically valid transformations (i.e., those producing non-intersecting
elements), and (ii) the number of optimum transformations (i.e. those optimizing the objective function), are not known
a priori and may vary significantly among the different work units. To compensate these load differences a dynamic
load balancing algorithm based on work-stealing [8, 50] is employed.

The load balancing algorithm migrates work units (buckets) between threads, when they run out of work units. For
example, when thread Ti has finished processing its own list of buckets, it pushes its id, i, into a global list (Waiting List)
that tracks down threads without work( see line 41 of algorithm 1). Then Ti yields until an other thread Tj transfers
some work units to Ti’s work pool. Every time a running thread Tj completes the processing of one bucket, it checks
if the Waiting List contains any threads. If Waiting List is empty, then Tj continues with the next bucket. If Waiting

List contains threads, then Tj transfers a fraction of its unprocessed buckets to those threads. The user controlled
parameter f rbtrans f ∈ (0,1] adjusts the fraction of work to be transferred (see lines 29 - 38 of algorithm 1). The
default value is 30% but different values can be used for more or less aggressive behavior. Subsection C reports results
on the performance of the parallel reconnection for varied fractions. Figure 5 illustrates an example with load balancing.

1 2 3 4 5 6 7 8

T1 T2 T3

Fig. 5 Load balancing with three running threads in eight time steps. Gray indicates the work-units (buckets)

currently processed in each time step. White indicates the work-units that have not been processed yet, in each

time step. Solid red indicates the work-units to be transferred from a busy thread. Stroke red indicates the

work-units to be received by a waiting thread. At step 1, each thread owns seven work-units and T2 is on a

waiting state. At step 2, T2 is awakened by T1 after T1 transfers two work-units to T2. At step 3, T3 is on a

waiting state. At step 4, one work-unit is transferred from T1 to T3. At step 5, all threads are busy. At step 6,

one work-unit is transferred again from T1 to T3. At step 7, all threads are busy. At step 8, all threads have

completed the processing of all work-units.
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1 Function ParallelLocalReconnection(tid):

2 Start:

3 while BucketList[tid] , ∅ do /* iterate buckets of tid */

4 bucket = BucketList[tid]→get_next()
// Bucket Refinement

5 while Flips are perfomed and iter_limit has not been exceeded do /* termination condition for a

bucket */

6

7 for tet ∈ bucket do

8

9 success = tet→lock_vertices()
10 if not sucess then continue

11 else if tet is not active then tet→unlock_vertices() continue

12

13 for neigh : tet→neighbors do /* Loop the four neighbors */

14 if neigh == NULL then continue /* a boundary face */

15 v = neigh→get_opposite_vertex(tet)
16 success = v→lock() /* the other three vertices are already locked at line 9

*/

17 if not sucess then continue

18 else

19 if FindCandidate32Flip (tet,neigh,cavity) then Flip32 (cavity)
20 else if FindCandidate23Flip (tet,neigh,cavity) then Flip23 (cavity)
21 else if FindCandidate44Flip (tet,neigh,cavity) then Flip44 (cavity)
22 v→unlock()
23 end

24 endfor

25 tet→unlock_vertices()
26

27 endfor

28 endwhile

// Load Balancing

29 if WaitingList , ∅ and f rbtrans f > 0 then /* there are threads waiting for work and load

balancing is enabled */

30 w = ceil(unprocessed buckets · f rbtrans f )
31 while w > 0 do

32 other_tid =WaitingList→pop()
33 w_give = max(1,w/WaitingList→size)
34 Push w_give of unprocessed buckets into BucketList[other_tid]
35 Notify other_id
36 w -= w_give
37 endwhile

38 end

39 endwhile

40 if WaitingList→size != #threads -1 then // If I am NOT the last thread to ask for work

41 WaitingList→push_back(tid)
42 Wait Until notified
43 if BucketList[tid] , ∅ then goto Start // Some other thread gave work to tid
44 else return // Proceed to next Refinement Iteration

45 else

46 return // Proceed to next Refinement Iteration

47 end

48 End Function

Algorithm 1: Pseudocode of the fine-grained parallel reconnection scheme for topological transformations.
FindCandidate<n><m>Flip finds an <n>-<m> flip between tet and neigh and the appropriate number of
common neighbors that improves the objective function. Flip23,Flip32,Flip44 implement the transformations
of Figure 3.
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4. Method Overview

A high level description of the algorithm is given in algorithm 1. This function is executed by each thread. Entering
this function the mesh tetrahedra have been divided into buckets (see subsection 1) and the buckets have been divided
among the threads. Each thread iterates the tetrahedra in each bucket of its own bucketList (lines 3 -7). Prior to any
operation the tetrahedron is locked by locking the vertices utilizing atomic operations (line 9). In case, another thread
has locked any of the vertices the thread skips this tetrahedron and proceeds to the next one. After acquiring the lock of
the tet’s vertices the algorithm will attempt to lock one of the 4 neighboring tetrahedra. Since any tetrahedron shares 3
vertices with a neighbor, a lock of the opposite vertex is enough (line 16). Having the two tetrahedra locked allows now
to check for candidate flips. FindCandidate32Flip will try to find a configuration similar to figure 3. That is, a third
tetrahedron that shares and edge with tet and neigh, note that the edge should be shared exactly by three tetrahedra.
Upon return, cavity contains the three tetrahedra that will take part in the flip and Flip32 implements the topological
transformation. FindCandidate23Flip and FindCandidate44Flip operate in a similar fashion.

After refining the tetrahedra in a bucket. The thread will check the W aitingList for idle threads and it will give to
the idle threads at most f rbtrasn f % of its buckets (lines 29 - 38). In case the thread runs out of work it will push its id
in the W aitingList and wait until either work has been given or the refinement iteration has been terminated (lines 40 -
44).

B. Improving Data Locality by Grouping Element Link-list

CDT3D stores the elements in a double link-list data structure. The link-list contains both active and inactive
elements. Some components (i.e., point creation, element deactivation, over-decomposition, and parallel reconnection)
do not require a traversal of the inactive elements, therefore a separation between active and inactive elements can
potentially improve the performance (Figure 6).

(a) Element link-list with grouped elements.

(b) Element link-list with shuffled elements.

Fig. 6 The two types of link-lists in CDT3D. Green represents the active elements. Red represents the inactive

elements.

The grouped link-list reduces threefold the refinement time compared to a shuffled link-list. Table 1 illustrates
the improvements in more detail. Figure 7 depicts the quality histogram between the two types of link-list. The two
histograms are very close. There is however a significant difference in number of elements (88.88M in Shuffled case,
78.97M in Grouped). This could be attributed to the different order of refinement. It should be noted that, grouping the
link-list during the post-processing quality improvement step didn’t offer substantial speedup because the time required
for smoothing dominates the quality improvement step.

Table 1 Performance Improvement due to grouping active elements for mesh refienement operations (times in

min).

Mesh Refinement Operations Shuffled Grouped Improvement

Point Creation 11.10 5.17 2.15x

Element Deactivation 14.66 3.90 3.76x

Mesh Decomposition 10.93 1.60 6.82x

Parallel Reconnection 25.11 9.21 2.73x

Mesh Refinement (total) 62.14 20.19 3.07x
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Fig. 7 Element angle distribution (in 5-deg increments) of Lv2b grids generated using a grouped and a shuffled

element link-list.

VI. Evaluation Results
The evaluation on the quality and scalability was performed on geometries pertinent to aerospace applications. In

particular, three realistic aerospace configurations from the CAVS Sims center at MSU and a surface triangulation of a
DLR-F6 Airbus type aircraft were used.

A. Comparison with AFLR

CDT3D is compared with state-of-the-art unstructured grid technology AFLR v16.9 [3, 4]. AFLR is directly
incorporated in several systems. CDT3D and AFLR have a handful of options for quality mesh generation and
optimization. Only a few basic options of these codes are tested, hence these comparisons are far from comprehensive.
The comparison is performed on three realistic aerospace configurations:

1) An aircraft nacelle with engine inside a section of wind tunnel (Figure 8(a))
2) A rocket with engine, nozzle, and transparent internal data surfaces inside a flow field (Figure 8(b))
3) A launch vehicle with solid boosters inside a flow field (Lv2b) (Figure 8(c))

The surface meshes of the geometries obtained from CAVS Sims Center at MSU in .surf format. The experiments
performed on a DELL workstation with Linux Ubuntu 12.10, 12 cores Intel R©Xeon R©CPU X5690@3.47 GHz, and 96
GB RAM. Table 2 presents the results. This study uses the dihedral angle as a metric to evaluate the element quality.

(a) nacelle with engine (b) rocket with engine (c) launch vehicle with solid
boosters

Fig. 8 Surface Meshes used in this evaluation.

Both methods generate meshes of good quality elements. CDT3D exhibits a comparable quality compared to AFLR in
both the sequential and the parallel runs. CDT3D eliminates all elements whose dihedral angles are smaller than 6.60◦

or larger than 159.68◦. The corresponding values for AFLR are 5.58◦ and 164.86◦, respectively (Table 2).
Figure 9 depict the element angle distribution. At the completion of the refinement a small percentage of sliver

elements may survive (< 0.003%). CDT3D incorporates effective quality improvement techniques to eliminate the
sliver elements.

CDT3D completes the end-to-end mesh generation (including initial mesh construction, refinement, and improve-
ment) up to 1.90 times faster than AFLR, when 12 hardware cores are utilized (Table 2). Most notably, CDT3D refines
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Table 2 Evaluation results on unstructured mesh generation. CDT3D is compared with state-of-the-art tech-

nology AFLR v16.9.19 [3]. CDT3D’s runs are performed with 1 and 12 hardware cores. The sliver elements

have a dihedral angle smaller than 2◦ or larger than 178◦. Initial mesh includes Delaunay tetrahedralization

and Boundary Recovery. The I/O time is not included.

Case Software #Cores

%Slivers #Tets Min/Max Angle Time

(w/o improv.) (w/ improv.) (w/ improv.) Initial Mesh Refinement Quality Improvement Total

(×10−3) (M) (deg) (sec) (min) (min) (min)

Nacelle
CDT3D

1 3.74 43.65 13.57◦/153.44◦ 1.36 20.01 14.30 34.33

12 3.70 42.85 12.06◦/159.52◦ 1.36 5.02 18.59 23.64

AFLR 1 2.97 43.16 7.00◦/164.86◦ 5.63 22.59 6.40 29.09

Rocket
CDT3D

1 2.96 118.41 9.39◦/159.30◦ 1.58 52.85 64.56 117.44

12 2.95 119.06 9.21◦/158.33◦ 1.58 14.51 68.23 82.76

AFLR 1 3.05 123.13 5.58◦/164.75◦ 6.76 131.89 25.41 157.42

Lv2b
CDT3D

1 5.09 98.21 6.60◦/159.68◦ 5.45 41.57 94.63 136.29

12 4.69 113.99 8.24◦/158.59◦ 5.45 12.92 62.36 75.37

AFLR 1 3.49 104.10 6.84◦/164.88◦ 16.97 98.24 18.51 117.03

the mesh up to 2.5 and 10 times faster compared to AFLR, when 1 and 12 hardware cores are utilized, respectively. On
the other hand, AFLR exhibits very good performance at the quality improvement step. Both methods complete the
construction of the initial mesh (i.e., Delaunay tetrahedralization and boundary recovery) at a negligible cost (less than
1% of the total generation time).

(a) Nacelle (b) Rocket (c) Lv2b

Fig. 9 Element angle distribution (in 5-deg increments) after improvement of Nacelle, Rocket and Lv2b

meshes. The dihedral angle extrema are reported for each method.

Fig. 10 Detail views of tetrahedral field cuts of aircraft nacelle generated with CDT3D.
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Fig. 11 Tetrahedral field cuts of the rocket mesh generated with CDT3D.

Fig. 12 Tetrahedral field cuts of the Lv2b mesh generated with CDT3D.

B. Results using NASA’s Common Research Model

This study evaluates the scalability of CDT3D using NASA’s Common Research Model∗. The model is a DLR-F6
Airbus type aircraft. A tetrahedral mesh of this model is generated with VGRID† [51, 52] for the purposes of the 6th
AIAA CFD Drag Prediction Workshop‡. The surface mesh is then extracted using UGC§ and it is passed to CDT3D
for volume mesh generation. Figure 13 depicts the input surface mesh. In this case, boundary recovery is challenging,
because the surface mesh contains high aspect-ratio anisotropic triangles at the junction of the symmetry wall and the
aircraft’s body (Figure 13(c)). In CFD, the boundary is usually recovered from an isotropic triangulation rather than an
anisotropic triangulation, because boundary layers are first generated. Therefore the isotropic generator starts with a
new isotropic boundary surface. Nevertheless it is good to demonstrate robustness. A tetrahedral mesh is attempted to
generate with AFLR, but the execution failed due to a topological error in boundary recovery.

(a) Aircraft with symmetry plane (b) Wing-nacelle-pylon system (c) Anisotropic boundary layers

Fig. 13 Surface mesh of a DLR-F6 Airbus type aircraft with anisotropic boundary layers on a symmetry plane;

#points: 1006144; #triangles: 2012288.

∗https://commonresearchmodel.larc.nasa.gov/2012/01/19/hello-world-2
†https://geolab.larc.nasa.gov/GridTool/Training/VGRID/
‡https://aiaa-dpw.larc.nasa.gov
§http://www.simcenter.msstate.edu/
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(a) Overall view (b) Detail view

Fig. 14 Cut of the tetrahedral mesh of the flow field of DLR-F6 Airbus aircraft, generated with CDT3D. A

smaller mesh (≈200 M tetrahedra) is depicted due to limitations in visualization.

Table 3 Performance results on parallel refinement of mesh of a flow domain around a DLR-F6 Airbus aircraft.

The (included) sorting time and efficiency are reported in parenthesis. The sliver elements have a dihedral angle

smaller than 2◦ or larger than 178◦. #Iter is the number of mesh generation passes.

nthreads

%Slivers Time Speedup (% Efficiency)

#Tets (w/o improv.) #Iter Recon./Iter Reconnection Refinement
Recon./Iter Reconnection Refinement

(Bi) (×10−2) (min) (hours) (hours)

1 1.414 1.438 61 51.69 52.56 58.98 1 1 1

w/o sorting

12 1.413 1.472 73 4.81 5.85 13.10 10.74 (89.58) 8.98 (74.83) 4.50
24 1.455 1.563 83 2.51 3.48 11.81 20.59 (85.67) 15.11 (62.96) 5.00
36 1.438 1.487 79 1.98 2.62 10.59 26.10 (72.17) 20.06 (55.72) 5.57
48 1.451 1.556 118 1.84 3.62 14.36 28.09 (58.52) 14.52 (30.25) 4.10

w/ sorting

12 1.414 1.563 89 3.99 5.92 17.38 (3.62) 12.95 (107.92) 8.88 (74.00) 3.39
24 1.439 1.499 75 1.98 2.48 12.74 (3.16) 26.10 (108.63) 21.21 (88.38) 4.62
36 1.458 1.518 93 1.67 2.60 14.87 (4.00) 30.95 (85.75) 20.25 (56.25) 3.96
48 1.448 1.625 122 1.39 2.84 18.77 (5.08) 37.18 (77.06) 18.49 (38.52) 3.14

This evaluation conducts a total of nine runs; a sequential run and two sets of parallel runs for varied number
of threads (12-48). The first set of parallel runs is performed without element sorting (default option in CDT3D).
The second set is performed with element sorting. Element sorting has been suggested in the literature [34] because
it reduces the overlaps between regions involved in concurrent transformations, thus providing a good initial work
load distribution for parallel reconnection. Quality improvement is disabled because the anisotropic surface creates
a high number of slivers on the boundary which is time consuming to remove. The elements are sorted based on the
coordinates of their centroids, according to a Hilbert curve [36, 37]. CDT3D sorts the elements in each refinement pass
before over-decomposition. Figure 14 depicts a cut of the isotropic tetrahedral mesh. Table 3 presents the results, the
additional cost for element sorting is in parenthesis. This cost is included in the refinement module. Also refinement
includes overheads due to other sequential components. Speedup and efficiency are calculated using as a base case
CDT3D with 1 thread. The experiments performed on a DELL workstation with Linux Red Hat Enterprise, 24 hardware
cores (2x Intel R©Xeon R©CPU E5-2697v2@2.70 GHz), Hyper Threading support and 757 GB RAM.

When using hardware threads the efficiency of the average reconnection iteration is close to 90%. Sorting the
elements offers more than 10% improvement allowing thus for superlinear speedup. Hyper-Threading performs also
well with up to 72% efficiency without sorting and 85% with sorting. These results verify the choice of implementing
the topological transformations using the speculative approach. The high density of communication of these operations
matches well with the lower part of the telescopic approach. However, due to the non-determinism of the parallel
execution the required number of iterations varies significantly. This could be related to the fact that in case of rollbacks
(see lines 10 and 17 of algorithm 1) elements are not checked again until the next iteration, requiring thus more iterations
to refine all active elements. Future work will investigate efficient methods to revisit these conflicts during the same
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iterations in combination with contention managers that proved quite effective in previous work [8].
Increase in number of iterations causes an increase the total reconnection time decreasing thus the efficiency. Yet

still the code exhibits up to 88% efficiency on 24 threads when sorting is enabled. The last column includes the overall
speedup for reference. Since only the reconnection part is parallel Amdahl’s law constrains the efficiency of the overall
algorithm. When 1 thread is utilized, the non-parallelized components together account for (58.98 − 52.56)/58.98 =
10.89% of the total refinement time. When 48 threads are utilized (without sorting), they account for 74.80%. When 48
threads are utilized and sorting is employed, the overheads due to sequential components increase to 84.94% (Table 3).
Still, CDT3D enhances user productivity offering a significant improvement over the more than 2 days required for the
single threaded execution.

The use of sorting during the mesh decomposition decreases the reconnection time due to the reduced number of
rollbacks. However, due to the big size of the mesh its cost in non-negligible. Furthermore, since sorting enforces
different order of refinement and thus a different mesh throughout the iterations, it may also affect indirectly the number
of iterations. Evaluating these dependencies as well as optimizing and parallelizing the sorting procedure is part of the
future work.

C. Results with Speculative Execution
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Fig. 15 Performance results on parallel reconnection and refinement of Lv2b grid, for varied granularities for

over-decomposition (nbuckets/24), and fractions for bucket-migration (frbtransf) using 24 hardware threads.

A set of runs are conducted to assess the performance of the CDT3D for varied granularities for over-decomposition,
and fractions for bucket-migration. The experiments performed on a DELL workstation with Linux Red Hat Enterprise,
24 hardware cores (2x Intel R©Xeon R©CPU E5-2697v2@2.70 GHz) and 757 GB RAM. Each run is performed with 24
hardware cores. The granularity is adjusted with parameter nbuckets. The higher the number of buckets, the finer the
decomposition. The fraction for bucket-migration is adjusted with parameter f rbtrans f . The higher the fraction, the
higher the number of buckets to be transferred between threads. The rest of the parameters are fixed among the runs.
The experiments are conducted on the Lv2b geometry. Figure 15 depicts the results.

Enabling the load balancer ( f rbtrans f > 0) increases the average speedup per iteration for all bucket counts.
The best speedup obtained is 26.63 which corresponds to a superlinear efficiency of 110% (Figure 15(a)). However,
the best speedup for the reconnection module is 21.39 ( f rbtrans f = 0.6) due to the variation on the number of
iterations (Figures 15(b) and 15(c)). The correlation to the number of iterations can be clearly seen by the fact that for
(nbuckets/24 > 20) Figures 15(b) and 15(c) are almost symmetric to each other. From Figure 15(b) one can see
that with lower number of initial buckets < 20, load balancing improves the performance of reconnection, while as
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the number of initial buckets grows the results are inconclusive. On the other hand, the number of iterations remains
approximately the same when no data-migration is performed, regardless of the level of granularity. Figure 15(d)
depicts the number of tetrahedra for each run. The final size of the mesh ranges between 75 to 89 million elements.
It should be noted that all the generated meshes are of a high quality. In the worst case scenario, only 0.00017%
of the elements have a dihedral angle smaller than 2◦ or larger than 178◦. Overall, the speculative results show that
CDT3D achieves a good trade-off between the percentage of slivers, the number of mesh generation iterations and the
reconnection time, when nbuckets/24 : 15 − 20 and f rbtrans f : 0.2 − 0.6.

The above results suggest that over-decomposition should be used with care. A finer grain size and thus a higher
number buckets caused a noticeable performance deterioration. Investigating the cause is part of the future work. As
with the results of the previous section, this could be related to the current absence of treatment for rollbacks during
each iteration.

VII. Conclusion
A new speculative local reconnection method for unstructured mesh generation of high quality isotropic elements has

been presented. To the best of our knowledge, this is the first non-Delaunay fine-grain tightly-coupled parallel method
that optimizes the mesh connectivity in parallel throughout the generation procedure, including a post-improvement step.
Similar tightly-coupled parallel Delaunay-based methods using speculative execution model appeared in [18, 53]. The
connectivity optimization is based on a speculative approach that has been proven to perform well on hardware-shared
memory (i.e., single chip). The results are very encouraging and suggest that integration with next layers as in [54, 55]
can scale linearly to both Distributed Shared Memory and Distributed Memory platforms. The mesh generator is
evaluated on a variety of aerospace configurations. The results indicate that the high quality and performance attributes
of this method are comparable to existing state-of-the-art technology. In the future, performance is expected to improve
by completing the fine-grained parallelization of other components (i.e., point creation as well as vertex smoothing)
which is currently under active development. Moreover, a more throughout study on the dependence of the meshing
time and the final mesh quality to the input parameters will be conducted. Given the importance of mesh adaptation
in aerospace applications, generating anisotropic meshes adapted to a metric field will be investigated. The proposed
framework will be part of an Extreme-Scale Anisotropic Mesh Generation Environment to meet industries expectations
and NASA’s CFD Vision for 2030 [2, 56].
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