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INTEGRATION OF PARALLEL DATA REFINEMENT METHOD WITH ADVANCING 

FRONT LOCAL RECONNECTION MESH REFINEMENT SOFTWARE 

 

Abstract 

A procedure is presented for parallelizing an 

industrial-strength sequential mesh generator 

called Advancing Front Local Reconnection 

(AFLR) which has been under development 

for the last 25 years at the NSF/ERC center at 

Mississippi State University. AFLR is 

currently used at NASA (including 

NASA/LaRC) and other government 

agencies as well as in the aerospace industry 

such as Boeing. The parallelization 

procedure for AFLR presented in this paper 

is called Parallel Data Refinement (PDR) and 

it consists of the following steps: (i) use an 

octree data-decomposition scheme to break 

the original geometry into subdomains 

(octree leaves), (ii) refine each subdomain 

with the proper adjustments of its neighbors 

using the given refinement code, and (iii) 

combine all subdomain data into a single, 

conforming mesh. This approach is stable 

(i.e., guarantees the same mesh quality as the 

sequential mesh generation), it is robust (i.e., 

it can generate meshes for the same type of 

geometries AFLR can), and it can speed up 

execution time to a point where it can be 10 

to 20 times faster on a 32-core node (PETTT 

Year 1 report sent to U.S. Department of 

Defense) (Kennedy, Chernikov, & Marcum, 

2016). Finally, given earlier experience of an 

implementation of PDR with TetGen, a 

similar open source mesh generation code, 

the expectation is that one can modify about 

5% of the AFLR code, achieving high code 

re-use. By the completion of this project, the 

robustness, stability, and end-user 

productivity aspects of the parallel mesh 

generation will be delivered. 

1. Introduction 

 Simulations that involve complex 

geometries and physics are used in the health-

care, transportation, and defense industries. 

Large meshes are required to produce 

accurate numerical results in simulations, 

such as in computational fluid dynamics 

applications. There are several sequential 

mesh generation and refinement procedures 

currently in use in these industries. 

Advancing Front Local Reconnection 

(AFLR) is one of them (Marcum & 

Weatherill, 1995). Although this software 

produces meshes of the highest quality, it has 

not been parallelized yet. When generating 

large meshes (consisting of billions of 

elements), it is imperative to utilize parallel 

meshing algorithms. The Center for Real-

time Computing (CRTC) team at Old 

Dominion University (ODU) developed 

Parallel Delaunay Refinement (Chernikov & 

Chrisochoides, 2006).  

Parallel Delaunay Refinement 

maintains a fixed level of concurrency while 

parallelizing the refinement process and 

guarantees four essential requirements – 

stability, robustness, code re-use, and 

scalability. Stability ensures that a mesh 

generated in parallel maintains a level of 

quality comparable to that of a sequentially 
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generated mesh. This quality is determined 

by the number and shape of the elements. 

Robustness guarantees that the parallel 

software produces the same geometries as its 

sequential counterpart. The input would be 

decomposed into many concurrently 

processed subdomains, so operator 

intervention is both highly expensive and 

infeasible. Code re-use essentially means that 

the parallel algorithm should be designed in 

such a way that it can be replaced and/or 

updated with minimal effort, regardless of the 

sequential meshing code it uses. This is the 

only practical approach due to the fact that 

sequential codes are constantly evolving to 

accommodate the functionality requirements 

from the wide ranges of applications and 

input geometries. Rewriting new parallel 

algorithms for every sequential meshing code 

can be highly expensive in time investment. 

Scalability compares the runtime of the best 

sequential implementation to the runtime of 

the parallel implementation, which should 

achieve a speedup. Non-trivial stages of the 

computation must be parallelized if one is to 

leverage current architectures that contain 

millions of cores. 

Parallel Delaunay Refinement 

decomposes an input geometry by 

introducing an octree, where each node of the 

octree may contain a subdomain of the 

geometry that is established by a node (or 

leaf) boundary. The boundaries of the nodes 

do not become a part of the mesh because this 

would only add constraints to the meshing 

problem and reduce the available 

optimization space. A Delaunay refinement 

algorithm is used, which has been proven to 

produce a mesh with guaranteed bounds on 

radius-edge ratio and on the density of 

elements. Delaunay refinement replaces poor 

quality elements with those of better quality 

by inserting Steiner points inside the 

circumdisks of the poor quality elements, 

thus eliminating them. There is a risk of 

losing stability and robustness when 

concurrently inserting points into two 

separate subdomains (or leaves of the octree) 

due to a possible data dependency 

(Chernikov & Chrisochoides, 2004). A buffer 

zone must be established around a leaf when 

it is scheduled for refinement. When one 

thread refines a part of the mesh associated 

with a leaf of the octree, no other thread may 

refine the parts of the mesh associated with 

the buffer zone around that leaf. This 

eliminates any data dependency risks and 

avoids fine grain synchronization overheads 

caused by concurrent point insertions. A 

thread refines a leaf by running a sequential 

refinement code on the subdomain within 

that leaf. 

The implementation of the new 

Parallel Data Refinement (PDR) presented in 

this paper uses the Advancing Front Local 

Reconnection method to refine individual 

leaves. AFLR accepts an input geometry with 

an established boundary triangulation. A 

Delaunay triangulation criterion is used to 

construct an initial boundary conforming 

tetrahedral mesh. Each initial boundary point 

is assigned a value, by a point distribution 

function, representative of the local point 

spacing on the boundary surface. This 

function is used to control the final field point 

spacing. All elements are initially made 

active, meaning that they need to be refined. 

If the edge points of an element satisfy the 

point distribution function, the element is 

made inactive and does not need to be 

refined. The advancing front method is used 

on an active element. A face of the element 

that is adjacent to another active element is 

selected. A new point is created by advancing 

in a direction, normal to the selected face, a 

distance that would produce an equilateral 

element based on an appropriate length scale 

(using the average point distribution). If a 

new point is too close to an existing point or 

another new point, it is rejected and removed. 

Accepted points are inserted into the existing 

grid by subdividing their containing 
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elements. For example, if an edge point is 

inserted, then all elements sharing that edge 

are split. If a face point is inserted, then both 

of the elements sharing that face are split into 

three elements. All elements modified by 

point insertion, or any that undergo 

reconnection, are classified as active. A local 

reconnection scheme is used to optimize the 

connections between points (or edges). Edges 

are repeatedly reconnected, or swapped, until 

their containing elements satisfy a desired 

quality criterion. Finally, all active elements 

undergo three quality improvement passes, 

which consist of sliver removal and further 

reconnection. 

2. Integration of AFLR with PDR 

 Minimal modifications were made to 

AFLR to ease its integration into 

PDR.AFLR. PDR.AFLR is designed to use 

any refinement code on a leaf/subdomain. 

This requires an API. Two functions were 

created within AFLR for this purpose – a 

function that constructs only the initial 

volume mesh and passes this data back to 

PDR.AFLR (to construct the octree and 

assign data to the octree leaves) and a 

function that calls the AFLR refinement code 

using the subdomain data given as 

parameters. 

 As stated earlier, AFLR accepts an 

input geometry that has an established 

boundary triangulation. The subdomain 

boundary surface must satisfy several rules. 

At this point, we focus on a manifold genus 

zero input geometry. The points of these 

surface triangles must have consistent, right-

hand rule ordering and there must not be any 

one edge that is shared by more than two 

triangles. The boundary must be a closed 

surface. Since the input geometry is 

subdivided among the leaves of the octree, 

this means that no leaf will initially have a 

closed boundary. 

 An algorithm was added to 

PDR.AFLR (seen in figure 1) which 

generates a temporary boundary, connecting 

it with the input geometry external boundary 

found within that leaf. If the leaf is internal 

(completely inside the geometry), a full 

boundary is generated around the entire leaf. 

The current version of the implementation 

accepts only manifold genus zero input 

geometries, thereby guaranteeing that there 

are no holes in the connectivity of tetrahedra. 

With this assumption, there will always be 

either external boundary triangles or 

tetrahedra surrounding a leaf. The 

connectivity between the external boundary 

triangles is closed and the connectivity 

between surrounding tetrahedra is closed. 

Every tetrahedron immediately located 

outside an octree leaf boundary is connected 

to a tetrahedron inside that boundary. If the 

faces shared between these adjacent 

tetrahedra are collected, a closed boundary is 

created. Since every tetrahedron has a 

neighboring tetrahedron or triangle adjacent 

to each of its faces, a closed boundary surface 

is guaranteed. Once refinement is complete, 

the portion of the boundary created 

temporarily for AFLR is removed. 
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An example of a mesh divided into 

octree leaves can be seen in figure 2. One of 

these leaves is shown with a closed boundary 

in figure 3. The mesh consists of a rocket 

body, engine, and nozzle that are all enclosed 

in an outer boundary that is relatively close to 

the rocket, keeping the domain size small. 

After refinement has been completed for all 

leaves, all of the leaf data is combined to 

create one mesh which is finally output.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Boundary Gathering Algorithm 
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Figure 2 Initial Volume Mesh of Rocket Divided into Octree Leaves/Subdomains 

Figure 3 Octree Leaf Subdomain of Rocket Initial Volume Mesh with Closed Boundary 
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3. Future Work 

 There is still much to be 

accomplished for the completion of 

PDR.AFLR. In the current implementation, 

elements near the boundary are not refined in 

order to maintain connectivity between the 

subdomains, which affects stability. Since 

these elements do not undergo refinement, 

they retain poor quality in the final mesh. 

Figure 4 shows the distribution of the low 

quality elements in PDR.AFLR compared to 

the serial AFLR. The next implementation 

will allow the refinement of elements near the 

boundary while still preserving leaf 

connectivity. AFLR currently does not refine 

past the specified boundary triangulation of 

the domain. In the next implementation, point 

insertion will be modified to occur on the 

boundaries themselves. The buffer zone 

around a leaf will also be used to establish a 

secondary boundary for AFLR, in which it 

will allow local reconnection to occur outside 

the initial boundary but inside the secondary 

boundary. These changes will help to 

eliminate any poor quality elements and will 

establish much stability to rival that of the 

serial AFLR. 
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Pthreads will be used in the shared 

memory implementation of this software and 

three different distributed memory 

implementations will be developed. One will 

make use of MPI, another with OCR from 

Intel, and the other will use a subsequent 

project containing OCR’s integration. This 

project is of a runtime system that is designed 

to be a multi-layered algorithmic and 

software framework for 3D tetrahedral 

anisotropic parallel unstructured mesh 

generation and adaptation to support state-of-

the-art functionality. The CRTC team 

developed a flexible load balancing 

framework and runtime software system 

called PREMA (Parallel Runtime 

Environment for Multicomputer 

Applications) for supporting the 

development of adaptive applications on 

distributed-memory parallel computers 

(Barker, Chernikov, Chrisochoides, & 

Pingali, 2004). PREMA supports a global 

namespace, transparent object migration, 

automatic message forwarding and routing, 

and automatic load balancing. One particular 

CRTC team member, Polikarpos 

Thomadakis, has improved upon the 

framework by integrating into it MPI-3 and 

making modifications so that it can be easily 

integrated with another framework which 

would control the multithreaded 

communication layer of this runtime system. 

As part of this project, two options 

were considered to control this layer – High 

Performance ParalleX (HPX-5), developed 

by the Center for Research in Extreme Scale 

Technologies (CREST) at Indiana 

University, and the Open Community 

Runtime (OCR) framework (“Open 

Community Runtime,” 2016). OCR was 

selected as the better candidate, given its 

intended features and capabilities and 

because of the fact that it is under 

development by Intel. When integrated into 

the PREMA runtime system, OCR will 

control virtual nodes (i.e. the maximum 

number of hardware nodes for which OCR 

provides good performance) and processes in 

both distributed and shared memory. 

PREMA will be integrated with OCR to scale 

a number of virtual nodes, which is ideal 

since both of these systems’ APIs are similar. 

PREMA will manage course-grain 

granularity while OCR will handle medium-

to-fine-grain granularity. PREMA will be 

modified to maintain a queue of work units 

(remote handlers and data), where a unit is 

thought of as an OCR Event Driven Task 

(EDT). This gives OCR the responsibility of 

assigning tasks to nodes/threads. PREMA 

will essentially control how messages are 

passed between virtual nodes, in the context 

of remote unit mobility. This mobility will 

allow the CRTC’s runtime system to relocate 

tasks and data to respond to any system 

failures, achieve a better balance of load 

among processes, and to optimize memory 

and energy consumption while exhibiting 

strong scaling performance. PDR.AFLR will 

be the ideal application to test on this new 

runtime system once it is complete. 

4. Conclusion 

The Parallel Data Refinement (PDR) 

application maintains a fixed level of 

concurrency while parallelizing the 

refinement process and guarantees stability, 

robustness, code re-use, and scalability. 

PDR.AFLR essentially decomposes an input 

geometry into subdomains and refines each 

subdomain using a sequential mesh 

refinement code, then combines all of the 

refined subdomain data into a single, 

conforming mesh. The Advancing Front 

Local Reconnection method was used for 

refinement in this implementation. Some 

modifications were made to both PDR and 

AFLR to accommodate each other. A new 

API was created within AFLR and a 

subdomain boundary creation method was 

developed within PDR.AFLR. More 

modifications will be made to AFLR in the 
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next implementation to increase not only the 

stability of the software, but create a 

significant speedup that will make 

PDR.AFLR much more preferable over using 

the serial AFLR. Developing four 

implementations for this software (shared 

memory, distributed memory with MPI, 

distributed memory with OCR, and 

distributed memory with the CRTC runtime 

system) will provide a wide range of options 

for users, allowing for fast, high quality mesh 

adaptation in an extreme-scale environment. 
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