
Garner, Kennedy, & Chrisochoides 1

INTEGRATION OF PARALLEL DATA REFINEMENT METHOD WITH ADVANCING

FRONT LOCAL RECONNECTION MESH REFINEMENT SOFTWARE

Abstract

A procedure is presented for parallelizing an

industrial-strength sequential mesh generator

called Advancing Front Local Reconnection

(AFLR) which has been under development

for the last 25 years at the NSF/ERC center at

Mississippi State University. AFLR is

currently used at NASA (including

NASA/LaRC) and other government

agencies as well as in the aerospace industry

such as Boeing. The parallelization

procedure for AFLR presented in this paper

is called Parallel Data Refinement (PDR) and

it consists of the following steps: (i) use an

octree data-decomposition scheme to break

the original geometry into subdomains

(octree leaves), (ii) refine each subdomain

with the proper adjustments of its neighbors

using the given refinement code, and (iii)

combine all subdomain data into a single,

conforming mesh. This approach is stable

(i.e., guarantees the same mesh quality as the

sequential mesh generation), it is robust (i.e.,

it can generate meshes for the same type of

geometries AFLR can), and it can speed up

execution time to a point where it can be 10

to 20 times faster on a 32-core node (PETTT

Year 1 report sent to U.S. Department of

Defense) (Kennedy, Chernikov, & Marcum,

2016). Finally, given earlier experience of an

implementation of PDR with TetGen, a

similar open source mesh generation code,

the expectation is that one can modify about

5% of the AFLR code, achieving high code

re-use. By the completion of this project, the

robustness, stability, and end-user

productivity aspects of the parallel mesh

generation will be delivered.

1. Introduction

 Simulations that involve complex

geometries and physics are used in the health-

care, transportation, and defense industries.

Large meshes are required to produce

accurate numerical results in simulations,

such as in computational fluid dynamics

applications. There are several sequential

mesh generation and refinement procedures

currently in use in these industries.

Advancing Front Local Reconnection

(AFLR) is one of them (Marcum &

Weatherill, 1995). Although this software

produces meshes of the highest quality, it has

not been parallelized yet. When generating

large meshes (consisting of billions of

elements), it is imperative to utilize parallel

meshing algorithms. The Center for Real-

time Computing (CRTC) team at Old

Dominion University (ODU) developed

Parallel Delaunay Refinement (Chernikov &

Chrisochoides, 2006).

Parallel Delaunay Refinement

maintains a fixed level of concurrency while

parallelizing the refinement process and

guarantees four essential requirements –

stability, robustness, code re-use, and

scalability. Stability ensures that a mesh

generated in parallel maintains a level of

quality comparable to that of a sequentially

Kevin Garner

Department of Computer Science

Old Dominion University

Norfolk, VA 23529, USA

kgarn006@odu.edu

Thomas Kennedy

Department of Computer Science

Old Dominion University

Norfolk, VA 23529, USA

tkennedy@cs.odu.edu

Nikos Chrisochoides

Department of Computer Science

Old Dominion University

Norfolk, VA 23529, USA

nikos@cs.odu.edu

Garner, Kennedy, & Chrisochoides 2

generated mesh. This quality is determined

by the number and shape of the elements.

Robustness guarantees that the parallel

software produces the same geometries as its

sequential counterpart. The input would be

decomposed into many concurrently

processed subdomains, so operator

intervention is both highly expensive and

infeasible. Code re-use essentially means that

the parallel algorithm should be designed in

such a way that it can be replaced and/or

updated with minimal effort, regardless of the

sequential meshing code it uses. This is the

only practical approach due to the fact that

sequential codes are constantly evolving to

accommodate the functionality requirements

from the wide ranges of applications and

input geometries. Rewriting new parallel

algorithms for every sequential meshing code

can be highly expensive in time investment.

Scalability compares the runtime of the best

sequential implementation to the runtime of

the parallel implementation, which should

achieve a speedup. Non-trivial stages of the

computation must be parallelized if one is to

leverage current architectures that contain

millions of cores.

Parallel Delaunay Refinement

decomposes an input geometry by

introducing an octree, where each node of the

octree may contain a subdomain of the

geometry that is established by a node (or

leaf) boundary. The boundaries of the nodes

do not become a part of the mesh because this

would only add constraints to the meshing

problem and reduce the available

optimization space. A Delaunay refinement

algorithm is used, which has been proven to

produce a mesh with guaranteed bounds on

radius-edge ratio and on the density of

elements. Delaunay refinement replaces poor

quality elements with those of better quality

by inserting Steiner points inside the

circumdisks of the poor quality elements,

thus eliminating them. There is a risk of

losing stability and robustness when

concurrently inserting points into two

separate subdomains (or leaves of the octree)

due to a possible data dependency

(Chernikov & Chrisochoides, 2004). A buffer

zone must be established around a leaf when

it is scheduled for refinement. When one

thread refines a part of the mesh associated

with a leaf of the octree, no other thread may

refine the parts of the mesh associated with

the buffer zone around that leaf. This

eliminates any data dependency risks and

avoids fine grain synchronization overheads

caused by concurrent point insertions. A

thread refines a leaf by running a sequential

refinement code on the subdomain within

that leaf.

The implementation of the new

Parallel Data Refinement (PDR) presented in

this paper uses the Advancing Front Local

Reconnection method to refine individual

leaves. AFLR accepts an input geometry with

an established boundary triangulation. A

Delaunay triangulation criterion is used to

construct an initial boundary conforming

tetrahedral mesh. Each initial boundary point

is assigned a value, by a point distribution

function, representative of the local point

spacing on the boundary surface. This

function is used to control the final field point

spacing. All elements are initially made

active, meaning that they need to be refined.

If the edge points of an element satisfy the

point distribution function, the element is

made inactive and does not need to be

refined. The advancing front method is used

on an active element. A face of the element

that is adjacent to another active element is

selected. A new point is created by advancing

in a direction, normal to the selected face, a

distance that would produce an equilateral

element based on an appropriate length scale

(using the average point distribution). If a

new point is too close to an existing point or

another new point, it is rejected and removed.

Accepted points are inserted into the existing

grid by subdividing their containing

Garner, Kennedy, & Chrisochoides 3

elements. For example, if an edge point is

inserted, then all elements sharing that edge

are split. If a face point is inserted, then both

of the elements sharing that face are split into

three elements. All elements modified by

point insertion, or any that undergo

reconnection, are classified as active. A local

reconnection scheme is used to optimize the

connections between points (or edges). Edges

are repeatedly reconnected, or swapped, until

their containing elements satisfy a desired

quality criterion. Finally, all active elements

undergo three quality improvement passes,

which consist of sliver removal and further

reconnection.

2. Integration of AFLR with PDR

 Minimal modifications were made to

AFLR to ease its integration into

PDR.AFLR. PDR.AFLR is designed to use

any refinement code on a leaf/subdomain.

This requires an API. Two functions were

created within AFLR for this purpose – a

function that constructs only the initial

volume mesh and passes this data back to

PDR.AFLR (to construct the octree and

assign data to the octree leaves) and a

function that calls the AFLR refinement code

using the subdomain data given as

parameters.

 As stated earlier, AFLR accepts an

input geometry that has an established

boundary triangulation. The subdomain

boundary surface must satisfy several rules.

At this point, we focus on a manifold genus

zero input geometry. The points of these

surface triangles must have consistent, right-

hand rule ordering and there must not be any

one edge that is shared by more than two

triangles. The boundary must be a closed

surface. Since the input geometry is

subdivided among the leaves of the octree,

this means that no leaf will initially have a

closed boundary.

 An algorithm was added to

PDR.AFLR (seen in figure 1) which

generates a temporary boundary, connecting

it with the input geometry external boundary

found within that leaf. If the leaf is internal

(completely inside the geometry), a full

boundary is generated around the entire leaf.

The current version of the implementation

accepts only manifold genus zero input

geometries, thereby guaranteeing that there

are no holes in the connectivity of tetrahedra.

With this assumption, there will always be

either external boundary triangles or

tetrahedra surrounding a leaf. The

connectivity between the external boundary

triangles is closed and the connectivity

between surrounding tetrahedra is closed.

Every tetrahedron immediately located

outside an octree leaf boundary is connected

to a tetrahedron inside that boundary. If the

faces shared between these adjacent

tetrahedra are collected, a closed boundary is

created. Since every tetrahedron has a

neighboring tetrahedron or triangle adjacent

to each of its faces, a closed boundary surface

is guaranteed. Once refinement is complete,

the portion of the boundary created

temporarily for AFLR is removed.

Garner, Kennedy, & Chrisochoides 4

An example of a mesh divided into

octree leaves can be seen in figure 2. One of

these leaves is shown with a closed boundary

in figure 3. The mesh consists of a rocket

body, engine, and nozzle that are all enclosed

in an outer boundary that is relatively close to

the rocket, keeping the domain size small.

After refinement has been completed for all

leaves, all of the leaf data is combined to

create one mesh which is finally output.

Figure 1 Boundary Gathering Algorithm

Garner, Kennedy, & Chrisochoides 5

Figure 2 Initial Volume Mesh of Rocket Divided into Octree Leaves/Subdomains

Figure 3 Octree Leaf Subdomain of Rocket Initial Volume Mesh with Closed Boundary

Garner, Kennedy, & Chrisochoides 6

3. Future Work

 There is still much to be

accomplished for the completion of

PDR.AFLR. In the current implementation,

elements near the boundary are not refined in

order to maintain connectivity between the

subdomains, which affects stability. Since

these elements do not undergo refinement,

they retain poor quality in the final mesh.

Figure 4 shows the distribution of the low

quality elements in PDR.AFLR compared to

the serial AFLR. The next implementation

will allow the refinement of elements near the

boundary while still preserving leaf

connectivity. AFLR currently does not refine

past the specified boundary triangulation of

the domain. In the next implementation, point

insertion will be modified to occur on the

boundaries themselves. The buffer zone

around a leaf will also be used to establish a

secondary boundary for AFLR, in which it

will allow local reconnection to occur outside

the initial boundary but inside the secondary

boundary. These changes will help to

eliminate any poor quality elements and will

establish much stability to rival that of the

serial AFLR.

0

5

10

15

20

25

0
-1

0

2
0

-3
0

4
0

-5
0

6
0

-7
0

8
0

-9
0

1
0

0
-1

1
0

1
2

0
-1

3
0

1
4

0
-1

5
0

1
6

0
-1

7
0

P
er

ce
n

ta
ge

 o
f

El
em

en
ts

Degrees

Element Dihedral Angle Distributions

Serial AFLR

PDR.AFLR

Figure 4 Element Dihedral Angle Distributions between Serial AFLR and PDR.AFLR

Garner, Kennedy, & Chrisochoides 7

Pthreads will be used in the shared

memory implementation of this software and

three different distributed memory

implementations will be developed. One will

make use of MPI, another with OCR from

Intel, and the other will use a subsequent

project containing OCR’s integration. This

project is of a runtime system that is designed

to be a multi-layered algorithmic and

software framework for 3D tetrahedral

anisotropic parallel unstructured mesh

generation and adaptation to support state-of-

the-art functionality. The CRTC team

developed a flexible load balancing

framework and runtime software system

called PREMA (Parallel Runtime

Environment for Multicomputer

Applications) for supporting the

development of adaptive applications on

distributed-memory parallel computers

(Barker, Chernikov, Chrisochoides, &

Pingali, 2004). PREMA supports a global

namespace, transparent object migration,

automatic message forwarding and routing,

and automatic load balancing. One particular

CRTC team member, Polikarpos

Thomadakis, has improved upon the

framework by integrating into it MPI-3 and

making modifications so that it can be easily

integrated with another framework which

would control the multithreaded

communication layer of this runtime system.

As part of this project, two options

were considered to control this layer – High

Performance ParalleX (HPX-5), developed

by the Center for Research in Extreme Scale

Technologies (CREST) at Indiana

University, and the Open Community

Runtime (OCR) framework (“Open

Community Runtime,” 2016). OCR was

selected as the better candidate, given its

intended features and capabilities and

because of the fact that it is under

development by Intel. When integrated into

the PREMA runtime system, OCR will

control virtual nodes (i.e. the maximum

number of hardware nodes for which OCR

provides good performance) and processes in

both distributed and shared memory.

PREMA will be integrated with OCR to scale

a number of virtual nodes, which is ideal

since both of these systems’ APIs are similar.

PREMA will manage course-grain

granularity while OCR will handle medium-

to-fine-grain granularity. PREMA will be

modified to maintain a queue of work units

(remote handlers and data), where a unit is

thought of as an OCR Event Driven Task

(EDT). This gives OCR the responsibility of

assigning tasks to nodes/threads. PREMA

will essentially control how messages are

passed between virtual nodes, in the context

of remote unit mobility. This mobility will

allow the CRTC’s runtime system to relocate

tasks and data to respond to any system

failures, achieve a better balance of load

among processes, and to optimize memory

and energy consumption while exhibiting

strong scaling performance. PDR.AFLR will

be the ideal application to test on this new

runtime system once it is complete.

4. Conclusion

The Parallel Data Refinement (PDR)

application maintains a fixed level of

concurrency while parallelizing the

refinement process and guarantees stability,

robustness, code re-use, and scalability.

PDR.AFLR essentially decomposes an input

geometry into subdomains and refines each

subdomain using a sequential mesh

refinement code, then combines all of the

refined subdomain data into a single,

conforming mesh. The Advancing Front

Local Reconnection method was used for

refinement in this implementation. Some

modifications were made to both PDR and

AFLR to accommodate each other. A new

API was created within AFLR and a

subdomain boundary creation method was

developed within PDR.AFLR. More

modifications will be made to AFLR in the

Garner, Kennedy, & Chrisochoides 8

next implementation to increase not only the

stability of the software, but create a

significant speedup that will make

PDR.AFLR much more preferable over using

the serial AFLR. Developing four

implementations for this software (shared

memory, distributed memory with MPI,

distributed memory with OCR, and

distributed memory with the CRTC runtime

system) will provide a wide range of options

for users, allowing for fast, high quality mesh

adaptation in an extreme-scale environment.

5. Acknowledgements

We would like to thank Christos Tsolakis and

Fotis Drakopoulos for their valuable insight

on mesh generation and refinement

procedures. This work in part is funded by the

Virginia Space Grant Consortium (VSGC)

Graduate Research Fellowship, NSF grant

no. CCF-1439079, NASA grant no.

NNX15AU39A and DoD’s PETTT Project

PP-CFD-KY07-007.

6. References

Barker, K., Chernikov, A., Chrisochoides,

N., & Pingali, K. (2004). A load

balancing framework for adaptive

and asynchronous applications. IEEE

Transactions on Parallel and

Distributed Systems, 15(2), 183-192.

doi: 10.1109/TPDS.2004.1264800

Chernikov, A. & Chrisochoides, N. (2006).

Parallel guaranteed-quality delaunay

uniform mesh refinement. SIAM

Journal on Scientific Computing,

28(5), 1907-1926. doi:

10.1137/050625886

Chernikov, A. & Chrisochoides, N. (2004).

Practical and efficient point-insertion

scheduling method for parallel

guaranteed-quality delaunay

refinement. 18th ACM International

Conference on Supercomputing, 48-

57. doi: 10.1145/1006209.1006217

Marcum, D. & Weatherill, N. (1995).

Unstructured grid generation using

iterative point insertion and local

reconnection. AIAA Journal, 33(9),

1619-1625. doi: 10.2514/3.12701

(2016). Open community runtime. Retrieved

from

https://xstackwiki.modelado.org/Ope

n_Community_Runtime

United States Department of Defense.

(2016). Scalable software framework

and algorithms for parallel mesh

generation and adaptation (Final

Technical Report for PP-CFD-KY07-

007-P3, DoD’s User Productivity

Enhancement, Technology Transfer,

and Training (PETTT) Program High

Performance Computing

Modernization Program (HPCMP)).

Washington, DC: Kennedy, T.,

Chernikov, A., & Marcum, D.

