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Abstract - Interventional MRI (iMRI) has proven to be an effective tool for the 

visualization of brain deformation and for the optimization of the maximal safe 

volumetric tumor resection during Image-Guided Neurosurgery. Earlier we pro-

posed two adaptive non-rigid registration methods between pre-operative and in-

tra-operative MRI based on: (i) Nested Expectation Maximization (NEM) [8, 10] 

which implicitly compensates for tissue removal, and (ii) Geometric-based which 

explicitly adapts the mesh to compensate for the changes in the geometry of the 

brain [7, 23]. In this paper, we assess the accuracy of these methods and compare 

them with two widely used registration schemes: ITK’s rigid registration, and 

ITK’s Physics Based Non-Rigid Registration (PBNRR). The evaluation is based 

on registration error, for the brain deformation induced by cerebral glioma resec-

tion, and it utilizes three metrics for the error: (i) 100% Hausdorff Distance, (ii) er-

ror at specific anatomical points identified by a neurosurgeon, and (iii) visual in-

spection by a neurosurgeon. We conduct a retrospective study on ten patients with 

a malignant glioma. The evaluation shows that the geometric adaptive approach 

achieves the most accurate alignments compared to ITK’s PBNRR and the Nested 

Expectation Maximization. It significantly reduces the alignment error due to rigid 

registration commonly used by commercial neuronavigators, and completes a vol-

umetric alignment, on average, in about 2.3 minutes on a 12-core Linux work-

station, satisfying the time constraints imposed by neurosurgery. 

1. Introduction 

Malignant gliomas are the most common primary brain tumors, accounting for ap-

proximately 70% of the 22,500 new cases of primary brain tumors annually diag-

nosed in adults in the United States [1]. The heterogeneity and infiltrative nature 

of gliomas suggests that a resection within or adjacent to the eloquent areas is 

challenging and carries a risk of post-operative neurologic deficit [2]. Therefore, 

the main challenge for neurosurgeons in glioma surgery is to achieve a maximal 

tumor resection while still preserving eloquent areas. 
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Image-guided neurosurgery (IGNS) has yielded faster, safer, and more effective 

minimally invasive procedures [3-8]. During the procedure (i.e., after the opening 

of the skull and dura), the shape of the brain changes because of the cerebrospinal 

fluid drainage, gravity, the application of dehydrolyzing agent, and other opera-

tions (i.e., resection, retraction), introducing discrepancies in relation to the pre-

operative configuration. Interventional MRI can compensate for the intra-

operative brain deformation. However, the acquisition of other image modalities 

(fMRI, DT-MRI) is impractical due to long processing time (e.g., a 3T 

MAGNETOM Verio scanner requires about 20 minutes to acquire a DT-MRI and 

more than 30 minutes to acquire a BOLD fMRI).  

Commonly, commercial systems exclusively use rigid registration to project the 

pre-operatively acquired imaging (MRI, fMRI, and DT-MRI) into the navigational 

system; however, a number of studies have tracked surface points in the brain and 

reported that movements on the order of a centimeter or more can occur intra-

operatively [11]. Additionally, shift can occur in deep subcortical white matter be-

cause of tissue retraction, lateral ventricle, and the application of a dehydrolyzing 

agent. Therefore, a non-rigid registration is necessary to accurately capture the 

soft tissue deformation induced by tumor resection. 

A commonly used non-rigid transformation model is based on the finite element 

method (FEM). FE biomechanical models allow more principled control of local-

ized deformations and have been applied to improve the efficacy and efficiency of 

brain surgery [3-8, 13-16]. A FE model is represented by a series of Partial Differ-

ential Equations (PDE’s), which describe the physical deformation of the underly-

ing tissues. The tissues are delineated in the image by using a segmentation tech-

nique [17, 18]. The segmented image is tessellated into a volumetric mesh and 

each element is assigned to a local physical description of the anatomical structure 

to which it belongs. To find the numerical solution of the PDE’s, constraints are 

applied to the model, and a linear system of equations is solved to compute the 

displacements on the mesh vertices. A dense deformation field can be estimated 

by interpolating the computed mesh displacements at each image voxel.  

Meshless methods have been presented as alternatives to FE methods. A Meshless 

Total Lagrangian Explicit Dynamics (MTLED) algorithm was developed to com-

pute soft tissue deformation in surgical simulation [24]. This method was accurate 

in terms of overall reaction forces but not quite as good with individual displace-

ments or forces. In [25] a MTLED-based suite of algorithms was used to perform 

a comprehensive patient-specific surgical simulation. The results obtained using 

MTLED were as useful and accurate as those obtained with the FE method. 

The produced non-rigid transformation can be useful to create augmented reality 

visualizations of pre-operative multi-modal imaging (MRI, fMRI, DT-MRI) with 

iMRI, and thus to facilitate real-time resection guidance in glioma surgery involv-

ing language areas and neighboring subcortical motor pathways (e.g. Pyramid 

Tracts). Figure 1(a) depicts such a visualization. The DTI tractography is shown in 

real-time together with a tumor model (red) during the neurosurgical resection. 
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(a)                                                                         (b) 

 
The augmented reality visualization helps neurosurgeon to achieve an appropriate 

volumetric resection while preserving neighboring subcortical motor pathways. 

The aim of this paper is to evaluate the efficiency (i.e., accuracy, robustness) of 

two adaptive biomechanical non-rigid registration methods [7, 8] to compensate 

for the brain deformation induced by cerebral glioma resection. The first method 

employs a point/element outlier rejection scheme integrated into a Nested Expec-

tation and Maximization framework to simultaneously resolve the point corre-

spondence, the deformation field and the resection region. The second approach 

iteratively estimates a dense deformation field by inclemently and accurately in-

corporating small changes in the geometry of the domain resulted by tumor resec-

tion. The evaluation performed on MRI data from ten patients who underwent par-

tial, complete, and extended glioma resection at Huashan Hospital. Structural MRI 

(SPGR, MP-RAGE, FLAIR, T2w) were acquired prior and during each surgery 

with a 3T movable scanner. The registration accuracy was assessed on totally 40 

volumetric alignments by: (i) a visual inspection, (ii) a Hausdorff Distance (HD)-

based error metric, and (iii) a landmark-based error measured by neurosurgeon. 

2. Materials and Methods 

2.1 Patient Population 

Ten patients with an age range of 19-75 years, underwent surgery on a single, uni-

lateral, and supratentorial primary glioma from September 2010 to August 2013. 

The lesions involved in Pyramid Tracts (PTs) were in cortical regions in the motor 

or somatosensory areas, cortical regions adjacent to the central gyrus, subcortical 

regions with an infiltrative progression along the PTs, and/or deep temporal or in-

sular regions in relation to the internal capsule. Pre- and intra-operative brain im-

ages were obtained in the integrated neurosurgical suite (IMRIS, Winnipeg, Mani-

Fig. 1: (a): Non-rigid alignment of pre-operative DTI tractography with iMRI. The fused image 

shows that the partially resected tumor is directly adjacent to the Pyramid Tracts. (b): Multi-

tissue mesh (number of tetrahedra: 160179; minimum dihedral angle: 4.41˚). Top row: mesh su-

perimposed on MRI. Cyan and red represent the surface of the brain parenchyma mesh and the 

tumor mesh, respectively. Bottom row: mesh fidelity illustrated on an axial, sagittal, and coronal 

slice. Each slice depicts an intersection between the mesh surface (cyan and red lines) and the 

segmented volume (green and yellow regions). The closer the mesh surface to the physical im-

age boundaries, the higher the mesh fidelity. 
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toba, Canada) using a  ceiling-mounted movable 3.0 T MAGNETOM Verio scan-

ner (Siemens AG, Erlangen, Germany) with a 70 cm working aperture. A neuro-

surgeon categorized the image data as: (i) Partial Tumor Resection (PTR), (ii) 

Complete Tumor Resection (CTR), and (iii) Extensive Tumor Resection (ETR). 

Table 1 lists the clinical data. 

Table 1:  Clinical MRI data. PTR: Partial Tumor Resection; CTR: Complete Tumor Resection; 

ETR: Extensive Tumor Resection. 

# Genre Type 
Image Size (voxels) Image Spacing (mm) 

Pre-op Intra-op Pre-op Intra-op 

1 M PTR 448x512x176 512x448x176 0.488x0.488x1 0.488x0.488x1 

2 M PTR 448x512x80 512x456x66 0.468x0.468x2 0.468x0.468x2 

3 M PTR 448x512x176 512x448x176 0.488x0.488x1 0.488x0.488x1 

4 M CTR 512x448x176 512x448x176 0.488x0.488x1 0.488x0.488x1 

5 F CTR 448x512x176 448x512x176 0.488x0.488x1 0.488x0.488x1 

6 M CTR 448x512x176 384x512x144 0.488x0.488x1 0.488x0.488x1 

7 M ETR 448x512x144 448x512x144 0.488x0.488x1 0.488x0.488x1 

8 F ETR 512x456x66 456x512x66 0.468x0.468x2 0.468x0.468x2 

9 F ETR 512x456x66 512x456x68 0.468x0.468x2 0.468x0.468x2 

10 M ETR 448x512x176 448x512x176 0.488x0.488x1 0.488x0.488x1 

2.2 Segmentation 

The biomechanical non-rigid registration in this study requires a pre-operative 

segmentation. Pre-operative imaging is usually acquired few days before the first 

intra-operative acquisition, therefore any computational requirements of a pre-

operative segmentation are easily satisfied. Before the segmentation, the brain is 

extracted from the skull using the BET tool [17]. Then a combination of automatic 

operators implemented in 3D Slicer (i.e., region growing and level-set filters) [18] 

and a slice-by-slice manual segmentation is performed to correct any erroneously 

included regions. An evaluation on how the segmentation accuracy affects the reg-

istration accuracy is beyond the scope of this paper, however it will be included in 

our future work. 

2.3 Rigid Registration 

The first intra-operative scan is acquired after the head of the patient is positioned 

for the craniotomy and fixed but before the opening of the skull. At this stage no 

brain shift occurs. A Rigid Registration (RR) was performed with the BRAINSFit 

module in 3D Slicer v4.4.0 [12] to compensate for any translations or rotations be-
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tween the pre- and the intra-operative image. RR uses a Versor Rigid 3D Trans-

form (VR3DT) to apply a rotation and translation to the space. RR relies on histo-

gram bins and spatial samples to estimate a Mattes Mutual Information (MMI) 

cost metric for the alignment. The larger the number of samples, the slower and 

more precise the fit. In order to achieve higher accuracy, we set 100 histogram 

levels and 5% sampling percentage (50 and 0.2%, are the default values, respec-

tively). For the rest of the RR parameters we used the default values. 

2.4 Adaptive Non-Rigid Registration 

The last 10 years we explored the feasibility of three biomechanical non-rigid reg-

istration methods to compensate for the brain deformation induced by tumor re-

section: (i) A Physics-Based Non-Rigid Registration (PBNRR) integrated on ITK 

and 3D Slicer [9]; (ii) A Nested Expectation-Maximization Non-Rigid Registra-

tion (NEMNRR) [8, 10]; (iii) An Adaptive Physics-Based Non-Rigid Registration 

(APBNRR) [7, 23]. NEMNRR, and APBNRR are adaptive; PBNRR is non-

adaptive.  

The above non-rigid registration methods do not simulate the skull or an interac-

tion between the brain parenchyma and the skull. Before the registration, the pre-

operative and the intra-operative intracranial brain cavities are extracted from the 

skull [17]. A sparse displacement field is computed from the distances between 

features in the pre-operative intracranial cavity and their corresponding features in 

the intra-operative intracranial cavity. PBNRR, and APBNRR rely on a cross cor-

relation metric to compute the corresponding features. NEMNRR relies on a 

Gaussian distribution function. A tetrahedral mesh of the brain parenchyma is 

generated from a segmented pre-operative intracranial cavity and the sparse dis-

placement field is applied on the mesh nodes. The prescribed displacement field 

implicitly accounts for a brain-skull interaction in the case where corresponding 

features are located on the surface of the brain parenchyma. In this study, the 

nodes on the parenchyma surface are free to translate in 3-dimensions as no ex-

plicit interaction between the brain and the skull is assumed. 

A linear assumption is used for the displacements and the materials of the model. 

The values of the mechanical properties of the isotropic materials (i.e., Young’s 

modulus, Poisson ratio) were obtained from [6]. These values were extrapolated 

from best-fit data obtained in porcine studies. For tumor, a value ten times stiffer 

than that for normal tissue is used (Table 2). The adaptive methods employ a het-

erogeneous model (brain parenchyma, tumor). The non-adaptive method employs 

a homogeneous model (brain parenchyma). The quality of the tetrahedral mesh 

(e.g. dihedral angle) influences the accuracy of the numerical solution of a linear 

system of equations and thus, the correctness of the estimated transformation. The 

higher the quality of the elements (e.g. the larger the minimum dihedral angle), the 

better the conditioning of the coefficient matrix and, consequently, the conver-

gence of the linear solver. Figure 1(b) depicts a multi-tissue mesh used for biome-

chanical non-rigid registration. Parameter 𝛿 (Table 2) determines the size of the 

mesh (𝛿 > 0). 
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NEMNRR formulates the registration as a three-variable (point correspondence, 

deformation field and resection region) functional minimization problem, in which 

point correspondence is represented by a fuzzy assign matrix, deformation field is 

represented by a piecewise linear function regularized by the strain energy of a 

heterogeneous biomechanical model, and resection region is represented by a 

maximal connected tetrahedral mesh. This method utilizes a point/element outlier 

rejection incorporated into a Nested Expectation and Maximization framework to 

simultaneously resolve these three variables. Figure 2 illustrates the NEMNRR 

framework. 

APBNRR iteratively estimates a dense deformation field by inclemently and accu-

rately incorporating small changes in the geometry of the domain resulted by tu-

mor resection. The computation of the dense field is facilitated by a sparse dis-

placement vector associated with highly discriminant blocks inside the cranial 

cavity, and a heterogeneous biomechanical model which describes the physical 

deformation of the brain. After each deformation, the quality of the elements dete-

riorates, and thus the model is globally re-meshed in real-time using a Delaunay 

meshing algorithm [19] to avoid the heavily distorted elements, and to recover the 

anatomical boundaries with geometric guarantees. Figure 3 illustrates the 

APBNRR framework. The model is globally re-meshed from a warped segmented 

image to capture not only the brain deformations but also the complex geometric 

Fig. 2: Nested Expectation Maximization framework [8]. In the horizontal direction, the inner 

EM iteratively estimates the correspondence and the deformation field until no point outliers are 

detected. In the vertical direction the outer EM rejects the element outliers and computes the re-

sected region. 
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changes nearby the tumor margins, while maintaining throughout the process 

meshes with good quality elements - critical for the accuracy and convergence rate 

of the solver. 

 

Table 2:  Parameters for non-rigid registration. All: PBNRR, NEMNRR, APBNRR.  

Parameter Value Description Method 

Connectivity pattern face Pattern for block selection PBNRR, APBNRR 

𝐅𝐬 5% 
% selected blocks from total num-

ber of blocks 
PBNRR, APBNRR 

𝐁𝐬,𝐱 × 𝐁𝐬,𝐲 × 𝐁𝐬,𝐳 3 × 3 × 3 Block size (in voxels) PBNRR, APBNRR 

𝐖𝐬,𝐱 × 𝐖𝐬,𝐲 × 𝐖𝐬,𝐳 

9 × 9 × 3 (PTR) 

13 × 13 × 3 (CTR, 

ETR) 

Block matching window size 

(PBNRR, APBNRR) or Search 

range (NEMNRR) (voxels). 

All 

𝐑 0.93 Annealing factor NEMNRR 

𝛅 5 Mesh size All 

𝐄𝐛, 𝐯𝐛 2.1 KPA, 0.45 
Young’s modulus, Poisson ratio 

for brain parenchyma 
All 

𝐄𝐭, 𝐯𝐭 21 KPA, 0.45 
Young’s modulus, Poisson ratio 

for tumor 
NEMNRR, APBNRR 

𝐅𝐫 25% % of rejected outlier blocks PBNRR, APBNRR 

𝐍𝐫𝐞𝐣 10 Number of outlier rejection steps PBNRR, APBNRR 

𝐍𝐢𝐭𝐞𝐫,.𝐦𝐚𝐱 10 Max number of iterations APBNRR 

𝐍𝐛𝟎,𝐦𝐢𝐧 
1%*total number of 

blocks 

Minimum number of blocks  

without a correspondence 
APBNRR 

3. Results 

We performed an evaluation on imaging data from ten patients underwent partial, 

complete, and extended glioma resection. We assessed the registration accuracy 

Fig. 3: APBNRR framework [7]. The red arrows show the execution order of the different mod-

ules in the loop. The loop breaks when the number of blocks without correspondence is less than 

a threshold or when the maximum number of iterations has been reached. 
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with a visual inspection, a Hausdorff Distance (HD)-based error metric, and a 

landmark-based error measured by a neurosurgeon. Table 2 presents the parame-

ters used for the non-rigid registration. More details about the parameters of each 

method are given in [7-9]. 

3.1 Visual Assessment 

In most applications, careful visual inspection remains the first and most important 

validation check available for previously unseen data. Figure 4 depicts a qualita-

tive assessment for six patients of this study. For each patient, we depict an intra-

operative MRI, a registered pre-operative MRI, and a subtraction between the in-

tra-operative and the registered pre-operative MRI. Based on Figure 4, APBNRR 

aligns more accurately the MR images and preserves the brain morphology during 

the neurosurgical resection, especially near the tumor margins. The assessment 

shows that the quality of the alignments is not significantly affected by the volu-

metric resection (partial, complete, or extended). In contrast, the other methods 

show significant misalignments near the tumor cavities. 

3.2 Quantitative Assessment with the HD metric 

We employed a publicly available implementation of the Hausdorff Distance 

(HD) metric [20] to quantitatively evaluate the registration accuracy. This metric 

is a measurement of the degree of mismatch between two point sets. The first set 

is extracted from the pre-operative volume, and then it is transformed according to 

the estimated deformation field. The second point set is extracted from the intra-

operative volume. The HD metric is computed between the transformed point set 

and the fixed point set. For the point extraction, we employed a Canny edge detec-

tion implemented in ITK. Compare to a previous evaluation of the registration ac-

curacy [3], this study uses the 100% HD metric. The smaller the HD value, the 

more precise the alignment (HD ≥ 0). The ideal case with perfect alignment is 

when HD is equal to 0.The ratio = HDX/HDY denotes how many times more ac-

curate one method is when compared to another. When ratio > 1 then method Y 

is ratio times more accurate than method X. Table 3 presents the results. We com-

puted a total of 40 HD errors. APBNRR achieved the smallest error in each indi-

vidual case, and the smallest average error (3.69 mm) among all the methods. 

APBNRR is on average, 6.83, 6.41 and 6.34 times more accurate compared to RR, 

PBNRR, and NEMNRR, respectively. 
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  (a)              (b)              (c)                (d)                (e)               (f)               (g)              (h) 

 

3.3 Quantitative Assessment with Anatomical Landmarks 

A neurosurgeon quantitatively evaluated the alignment accuracy on six anatomical 

locations, as suggested in [21]. The neurosurgeon selected six landmarks in the 

pre-operative volume and identified their correspondent locations in the intra-

operative volume. Two landmarks were selected at the cortex near the tumor de-

pending on the shift of the brain surface; other two landmarks were selected at the 

anterior horn and at the triangular part of the lateral ventricle; the last two land-

marks were selected at the junction between the pons and mid-brain and at the 

roof of fourth ventricle. For each landmark, the error was calculated as the dis-

tance between the physical location of the point in the intra-operative volume and 

Fig. 4: Qualitative evaluation of the registration accuracy. Each row represents a single case. We 

depict the same representative slice for all the images belonging to the same row. The results 

were confirmed by a neurosurgeon who inspected the full registered volumes. From top to bot-

tom row: PTR cases 1, 2; CTR cases: 4, 5; ETR cases: 7,  9. From left to right column: (a) intra-

op MRI; (b) RR pre-op MRI; (c) PBNRR pre-op MRI; (d) NEMNRR pre-op MRI; (e): 

APBNRR pre-op MRI; (f): (a) subtracted from (c); (g): (a) subtracted from (d); (h): (a) subtract-

ed from (e). 
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its transformed location in the registered volume. For each patient, we calculated a 

minimum, a maximum, and a mean error based on six landmarks. We then calcu-

lated their corresponding average errors for ten patients. Table 4 presents the re-

sults. The landmark-based assessment confirms that the APBNRR provides the 

most accurate alignments on the specific anatomical locations. APBNRR exhibits 

the lowest average mean error (4.71 mm) which may be clinically useful. 

Table 3: Quantitative evaluation of the registration accuracy with a HD metric. HDRR, 
HDPBNRR, HDNEMNRR, and HDAPBNRR is the alignment error after a RR, PBNRR, NEMNRR, and 

APBNRR registration, respectively. PTR: Partial Tumor Resection; CTR: Complete Tumor Re-

section; ETR: Extensive Tumor Resection. All errors are in mm. 

Case Type 𝐇𝐃𝐑𝐑 𝐇𝐃𝐏𝐁𝐍𝐑𝐑 𝐇𝐃𝐍𝐄𝐌𝐍𝐑𝐑 𝐇𝐃𝐀𝐏𝐁𝐍𝐑𝐑 
𝐇𝐃𝐑𝐑

𝐇𝐃𝐀𝐏𝐁𝐍𝐑𝐑

 
𝐇𝐃𝐏𝐁𝐍𝐑𝐑

𝐇𝐃𝐀𝐏𝐁𝐍𝐑𝐑

 
𝐇𝐃𝐍𝐄𝐌𝐍𝐑𝐑

𝐇𝐃𝐀𝐏𝐁𝐍𝐑𝐑

 

1 PTR 16.15 15.12 15.08 4.60 3.51 3.29 3.28 

2 PTR 26.89 26.89 23.87 4.00 6.72 6.72 5.97 

3 PTR 29.93 27.76 28.11 2.83 10.58 9.81 9.93 

4 CTR 17.90 15.56 16.84 4.11 4.36 3.79 4.10 

5 CTR 30.37 28.96 28.96 3.13 9.70 9.25 9.25 

6 CTR 23.22 21.44 21.27 3.08 7.54 6.96 6.91 

7 ETR 17.59 16.63 15.20 4.19 4.20 3.97 3.63 

8 ETR 32.32 30.13 30.20 3.45 9.37 8.73 8.75 

9 ETR 18.48 18.15 17.86 3.97 4.65 4.57 4.50 

10 ETR 27.07 24.91 25.16 3.54 7.65 7.04 7.11 

Average 23.99 22.56 22.26 3.69 6.83 6.41 6.34 

Table 4: Quantitative evaluation of the registration accuracy with six anatomical landmarks 

identified by a neurosurgeon. The values are the average minimum, maximum, and mean errors 

computed on the six anatomical locations, from ten patients. All errors are in mm. 

Method Average min error Average max error Average mean error 

RR 3.49 11.96 7.27 

PBNRR 1.72 9.94 5.38 

NEMNRR 2.31 11.76 6.01 

APBNRR 1.52 9.05 4.71 

4. Conclusion 

A retrospective study was carried out on volumetric MRI data acquired from ten 

patients. The patients underwent an incomplete, complete, and extensive glioma 

resection at Huashan Hospital. The accuracy of the alignments was assessed with 

a: (i) robust HD metric, (ii) anatomical points identified by a neurosurgeon, and 

(iii) visual assessment inspected by a neurosurgeon. 



11 

The experimental evaluation confirmed that a geometric-based adaptive deforma-

ble registration approach exhibits the most accurate alignments among all the 

methods in this study, independently of the volumetric resection (PTR, CTR, or 

ETR). This method significantly reduces the error due to rigid registration com-

monly used by commercial neuronavigators within the time constraints imposed 

by neurosurgery. Indeed, it completes a volumetric alignment, on the average, in 

137.90 seconds (including I/O) on a Linux workstation with 12 Intel Xeon 

X5690@3.47 GHz CPU cores and 96 GB of RAM. 

We observed differences between the alignment errors measured with a Hausdorff 

Distance metric and manually identified anatomical landmarks. We believe that, 

this is because the HD approach computes the degree of mismatch between two 

point sets 𝐴, 𝐵 by measuring the distance of the point of 𝐴 that is farthest  from 

any point of 𝐵 and vice versa, but there is no explicit pairing of points of 𝐴 with 

points of 𝐵 [22]. On the other hand, the landmark-based approach measures the 

Euclidian distance between two but corresponding points, though in some applica-

tions (e.g., inter-subject brain registration) the true point-to-point correspondence 

can never be known and may not even exist. 
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