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Abstract	

We address  two challenges related to Extreme-scale Mesh Generation Environments: (1) Design a multi-
layered algorithmic and software framework for 3D tetrahedral parallel mesh generation using state-of-the-
art functionality supported by our telescopic approach for parallel mesh generation. Our approach explores 
concurrency at all hardware layers using abstractions at (a) medium-grain level for many cores within a 
single chip and (b) coarse-grain level, i.e., sub-region and sub-domain level using proper error metric- and 
application-specific discrete data and continuous decomposition methods.  We anticipate that the 
telescoping approach will be capable of sustaining a billion-way concurrency the next 15 years by (i) 
leveraging concurrency at different granularity levels and (ii) carefully mapping work units to take 
advantage of the memory and network hierarchies. (2)  Design a Parallel Runtime System for extreme-scale 
anisotropic mesh computations to target modules like mesh generation and CFD solvers.  The runtime 
system will provide support for:  (a) One-sided explicit message passing, (b) Global name-space, (c) multi-
threaded programming model for inter-layer interactions, (d) automatic and preemptive load balancing, (e) 
customizable data-movement and load-balancing, and (f) domain-specific energy-efficient race-to-halt, 
concurrency throttling, and component-level (core and memory) power scaling. In addition, we present 
preliminary results from our work on parallel isotropic 3D Delaunay-based guaranteed quality mesh 
generation  on hundreds of  cores and potential extensions of to 4D meshes and 3D anisotropic advancing 
front methods for CFD applications. 

	
1.	Introduction	

Finite Element Mesh Generation is a critical component for CFD computations.  We describe  
deliver a novel framework for highly scalable and energy efficient guaranteed quality mesh 
generation for the Finite Element (FE) analysis in three and four dimensions. We combine 
domain-and application-specific knowledge with run-time system support to improve energy 
efficiency and scalability of parallel FE mesh generation codes. Traditionally, parallel FE mesh 
generation methods and software are developed without considering the architectural features of 
the supercomputer platforms on which they are eventually used for production. The main reason 
is the complexity of sequential, and moreover parallel, mesh generation algorithms. As a result, it 
is too expensive, in terms of labor and time, to customize the performance of parallel mesh 
generation software for specific supercomputing architectures. For the same reason, the energy 
efficiency of these codes is not well understood, since it depends on the architecture. The 
proposed approach is to abstract and expose parallel mesh generation run-time information to the 
underlying run-time system which can guide the execution towards the most efficient utilization 
of resources on the given supercomputer. The issues of performance and energy efficiency are 
closely related, and we will study them in tandem.  
	
As a result, this project is expected to deliver the first unstructured mesh generation application 
capable of sustaining concurrency on the order of 106. At the same time, this application will 
allow for a range of power lowering regimes: from highest speed with opportunistic energy 
savings, to modest speed with high energy savings. This goal will be achieved by: (1) leveraging 
concurrency at different granularity levels (i.e., the work units could be sub-domains, regions 
within a sub-domain, and cavities), (2) carefully mapping these work units to take advantage of 



the memory and network architecture of the target platforms, and (3) applying dynamic 
concurrency throttling in conjunction with a race-to-halt execution model, and component-level 
power scaling. 
 
2. Telescopic Approach for Anisotropic Mesh Generation and Adaptation. 
Our plan to achieve extreme-scale adaptive simulations on the complex, heterogeneous HPC 
architectures that will be increasingly prevalent through 2030 is to implement a telescopic 
approach (see Figure 1) we 
initially developed for 2D 
problems [1] and in the near 
future integrate it with 
Advancing Front/Local 
Reconnection (AFLR) 
developed at MSU [2, 3] and 
MOESS methods developed 
MIT [4]. The telescopic 
approach is critical to leverage 
the concurrency that exists at 
multiple levels for anisotropic 
and adaptive simulations. At the 
chip and node levels, the 
telescopic approach deploys a 
Parallel Optimistic (PO) layer 
and Parallel Data Refinement 
(PDR) layer, respectively (see 
Sections below). In our current 
effort, we will focus on the 
implementation of the PDR layers for AFLR and MOESS.  In future efforts, the PDR layer will 
be implemented on top of PO layer. Based on our preliminary results [28] we expect that the PDR 
layer will improve PO’s scalability by at least a fact of O(102). 
Together after optimizations we expect to get about 104 -way concurrency i.e., close to linear 
weak speedup: in other words for 104 cores achieve about 0.8 parallel efficiency. Then at the 
super-node and/or rack level, the telescopic approach deploys a Parallel Constrained layer [29], 
with its asynchronous communication is expected to perform well at  higher latency and lower 
bandwidth network switches utilized at the super-node and/or rack levels.  In combination with 
PDR, it is expected to deliver about 105-way concurrency. Finally, for inter-rack level, we plan to 
use a Parallel Domain Decoupled (PDD) layer [5] that requires very little to no communication. 
Our experience indicates that PDD can easily scale up to 103, so in combination all four layers-
methods together are expected to deliver concurrency in the order of 106 to 107. The “work-
horse” of the telescopic approach is the PO layer i.e., all cores in the system run PO at the lowest 
level. The rest of the layers like PDR etc. are used to explore additional concurrency at additional 
levels of granularity (eg. mesh data-block, sub-region and subdomain). Both mesh generation and 
adaptation challenges will be addressed at the lowest level, with one exception the PDD. The 
domain decomposition should take advantage of existing metric information available in our 
adaptive algorithm. In the past we developed application-specific decompositions [6]. In this 
project we will extend them to be error metric-specific, too. Both the data and domain 
decomposition methods will over-decompose the geometry so that issues like load-balancing and 
out-of-core (in the future) in parallel mesh generation and adaptation will be managed by a multi-
layered runtime system (see below). This separation of concerns helps portability, 
maintainability, and performance and thus enables labor-effective and performance-efficient 
extreme-scale parallel mesh generation and adaptation software. 

Figure 1. Telescopic Approach to parallel mesh generation and 
adaptation. 



 
 
The design of the telescopic approach is based on a combination of data and domain 
decomposition methods in order to explore locality at the chip, single node, and multiple nodes 
levels. In this section, we discuss the layers of the telescopic approach for the AFLR-based 
meshing.  In the next section, we describe the telescopic implementation of the MOESS 
algorithm. 
 
2.1	Parallel	Optimistic	(PO)	layer	at	the	chip	level. This is 
a tightly coupled method [7,8].  Our preliminary data on 3D 
Delaunay methods indicate that speculative (optimistic) methods 
perform well on hardware shared memory [8] i.e., single chip. 
We expect the number of cores to emerging chips and for HPC 
nodes will be in the order of hundreds. Figure 4, depicts the 
concurrent expansion of three cavities, however because of the 
speculative nature of this layer, roll-backs are possible, due to a 
possible intersection of cavities. Such intersections lead to 
non-conforming or non-Delaunay meshes. In [8] we present a 
way to efficiently implement such codes for 3D Delaunay 
based methods.  We will investigate a new Parallel Optimistic for AFLR method based on our 
earlier Parallel Optimistic Delaunay Mesh (PODM) work [8,9] on speculative execution model 
for parallel Delaunay-based methods. AFLR similar to Delaunay refinement algorithms works by 
inserting additional points (so-called Steiner for Delaunay methods) into an existing mesh to 
improve the quality of the elements.  
 
2.2	 Parallel	 Data	 Refinement	 (PDR)	 layer	 at	 the	 node	 level. This is partially coupled 
method [10,11] with locally synchronous communication.  In our previously published results we 
developed a distributed memory (MPI) implementation of two-dimensional [10,11] and 3-
dimensional [12] Parallel Delaunay Refinement methods. The partitioning and the decoupling of 
the subdomains was achieved by creating a special buffer zone around every subregion, so that 
we can mathematically guarantee that the insertion of a point in one subregion can modify the 
triangles only inside this subregion and its 
buffer zone, but the changes do not 
propagate to other subregions and their 
buffer zones. After refining the subregions, 
the buffer zones are refined in a similar way. 
An adjustment to the sequential Delaunay 
refinement code allowed for the insertion of 
only those circumcenters that satisfy some 
user defined condition (i.e., being inside a 
given box). The drawback is that the amount 
of work assigned to different processors can 
vary significantly. 
However, by using over-decomposition in a 
combination with runtime software system 
we developed [13] for dynamic load 
balancing, we can   redistribute the work 
among the nodes.  Figure 5 depicts the 
results of the first two layers of telescopic 
approach for Delaunay-based methods 
using a 3D abdominal multi-material atlas; the mesh is generate on 256 cores using Parallel Data 

Figure 2.  Concurrent cavity 
expansion according to PODM.  

Figure 3. The first two layers of the telescopic approach for a 3D 
abdominal multi-material atlas.  The PDR blocks left and right 
are meshed in parallel (eg. on different nodes) and within each 
block there are cavities that are computed concurrently (eg. on 
different cores of each node) using speculative execution PODM 
layer. 



Refinement (PDR) by exploring concurrency at data block level [10-12] and Parallel Optimistic 
Delaunay Mesh (PODM) by exploring concurrency at the cavity level [7, 8, 9]. The telescopic 
approach works both for parallel mesh generation and adaptation. The adaptation step is more 
efficient since all data structures are in 
place for either refinement or de-
refinement operations that rely on an 
abstraction similar to the cavity.  
Like Delaunay-based methods AFLR is a 
volume meshing method that will be used 
(after proper modifications) for the 
individual sub-regions (i.e., leaves of the 
octree). Figure 6 depicts the weak speedup 
on a 256 core Distributed Shared Memory 
(DSM) machine [14]. These results show 
the impact of PDR on 3D Parallel 
Optimistic Delaunay Meshing (PODM). 
PDR improves scalability due to improved 
data locality and the absence of rollbacks. 
We expect the implementation of the PDR 
layer on distributed memory machines to 
further improve the performance we are 
getting on DSM (cc-NUMA) machines 
like the Blacklight at Pittsburgh Supercomputing center.  
 
2.3 Parallel Constrained (PC) layer. This is partially coupled method [15] with asynchronous 
communication. With PC  we will combine first the PDR  and PO  into a single highly efficient 
parallel and scalable engine: the PDR.PO.AFLR  which will  be used for the implementation of 
the PC. Each subdomain contains the collections of the constrained faces, edges, and points. In 
the case of Delaunay-based methods we used use the Bowyer-Watson kernel for mesh generation. 
The constrained (boundary) segments are protected by diametral lenses and each time a segment 
is encroached, it is split in the middle; as a result, a split message is sent to the neighboring 
subdomain [15]. In this project, we will explore the use of similar tools in the case of AFLR-
based methods. PC.AFLR will be designed to run on multi-processor nodes and clusters of nodes, 
i.e., it uses the message-passing paradigm. Each process lies in its own address space and uses its 
own copy of a custom memory allocator. In addition to reducing substantially the communication 
PC.AFLR can be further optimized by using message aggregation of the split-messages, which 
are sent between neighboring subdomains as a result of inserting points on the common 
boundaries [29].  
	
2.4	 Parallel	 Domain	 Decoupled	 (PD2)	 layer	 is similar to PC layer, however before the 
subdomains become available for further processing by the PC.PDR.PO layer they are discretized 
using the pre-processing step similar to one we presented in [5, 6]. This guarantees that any 
Delaunay-based algorithm can generate independently a mesh on each of the subdomains in a 
way that does not introduce any new points on the boundary of the subdomains (i.e., the 
algorithm terminates and can guarantee conformity and Delaunay properties without the need to 
communicate with any of the neighbor subdomains).  
 
2.5 Domain Decomposition.   There are numerous methodologies that could be employed for 
obtaining a domain decomposition. Different approaches will be used for the over-decomposition 
of the parallel mesh generation and adaptation phases. In addition to the data decomposition, a 
domain decomposition for the parallel mesh generation phase will be considered based on a 
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Figure 4.  Weak Speedup comparison of PODM and its 
combination with PDR (PDR.PODM) for meshes that vary 
from 3M tets on a single core to 745M tets on 256 cores [28]. 



Medial Axis Domain Decomposition (MADD) software, similar to one we presented [5, 6], for 
2D geometries. MADD can produce domain decompositions which satisfy the following three 
basic criteria: (1) the boundary of the subdomains create good angles, i.e., angles no smaller than 
a given tolerance, where the value of the tolerance is user-defined, (2) the size (area) of the 
separator should be relatively small compared to the volume of the subdomains and (3) the 
subdomains should have approximately equal mesh-size (even if the mesh is non-uniform) given 
application-specific size function. The domain decomposition uses an approximation of a Medial 
Axis as an auxiliary structure for constructing the boundary of the 
subdomains (separators). Figure 7, depicts the result of a 2D MADD.  
Notice that the decomposition satisfies constrains 1-3, in contrast to 
data decompositions (see Figure 4) where those conditions are not 
guaranteed. However, in the PODM and PO.AFLR the interfaces are 
not preserved and thus, there is no need to satisfy conditions 1-3. The 
domain decomposition approach is based on “Divide and conquer” 
algorithmic paradigm and a smoothing procedure for eliminating the 
creation of any new artificial features in the subdomains.  However, in 
the adaptation phase we will only consider those approaches that 
impose no restrictions on the mesh generation, e.g. a fixed artificial 
boundary like we plan to use in the PDR layer.  We also have 
available, after initial mesh generation, the existing mesh (from the 
previous solution adaptation step) along with the new metric values. A suitable decomposition 
can be derived from that mesh. In all cases we will utilize the metric values to determine the 
estimated mesh size in each subdomain. This estimate progressively will become more accurate 
as the solution evolves and the mesh is further resolved via the adaptation.  In addition, 
exploratory work with AFLR indicates it could be used to generate a very coarse mesh that 
mimics the true mesh and can be used as a domain decomposition that satisfies conditions 1-3 
naturally. 
 
3. Parallel Runtime Software System  
The upcoming Aurora supercomputer, and likely many others in the future, will have multiple 
levels of memory with slower but larger non-volatile memory supplementing faster RAM. Burst 
SSD storage can be seen as yet another slower intermediate layer of memory. Also, due to power 
constraints, the amount of RAM per core will likely shrink considerably as more cores are 
integrated into a single CPU. 
This makes our out-of-core 
system [16] even more relevant 
since exploiting memory 
locality and controlling 
placement of data in fast or slow 
memory will be critical to 
achieve adequate performance. 
In addition, having “traditional” 
out-of-core support by 
temporarily retiring data to a 
disk would be beneficial since it 
would facilitate such tasks as 
checkpointing (out of the scope 
of this project; it will be 
addressed in follow up phases). Indeed, resilience is important to current supercomputers (e.g., 
Blue Waters requires some remedial repair actions every few hours ) and is expected to be a 

Figure 5.  Medial Axis 
Domain Decomposition. 
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major challenge to exascale computing. Having built-in capabilities that enable checkpointing or 
other forms of algorithmic fault tolerance would be highly beneficial.  
Given these current and emerging trends in parallel hardware, our long-term goal is to redesign a 
Multi-Layer Runtime System (MRTS) [13,16] based on the evaluation of current and emerging 
software technologies we reviewed earlier. We also plan to extensively evaluate new technologies 
in the next three years. This study will help us to identify and adopt suitable state-of-the-art 
communication substrates of interest to NASA, so that we can implement a global address space 
with one-sided communication and load balancing libraries.  These libraries will be used to 
implement the Telescopic approach to parallel anisotropic mesh generation and adaptation. 
Figure 6 depicts the high level design of the runtime system. At the top, the application will 
directly interact with a multithreading technology to exploit fine grain parallelism. The data of the 
application will be organized into distributed data-structures consisting of mobile objects [17] 
linked via mobile pointers. The mobile object layer will provide a global addressing scheme and 
an efficient mechanism for communicating between objects and forwarding to enable seamless 
migration of the mobile objects. While the mobile object layer is responsible for communication 
between nodes, the multi-layered object manager controls the placement of local objects within a 
local nodes as well as scheduling the delivery of messages to/from the local objects. It is 
integrated with a multi-layered memory manager that is responsible for managing message and 
object pools in all available layers of memory.  Low-level one-sided message passing technology 
will serve as the communication substrate to the runtime system. Interoperability with MPI will 
be preserved to leverage collective communication and legacy parallel codes as well as codes that 
will be developed independently of our system and this project. The runtime system will manage 
the movements and storage of objects, as well as placement of objects into fast or slow memory. 
There is a trade-off between reusing as much of an existing application code as possible and 
taking full advantage of the runtime system. The less the application will rely on using MPI the 
more control will be given to the runtime system and ultimately better performance can be 
achieved and more features (e.g., “free” checkpointing) can be utilized. Moreover, moving to a 
different platform should require virtually no porting and considerably less tuning since that 
should be handled by the runtime system transparently to the user.  The benefits of the MRTS 
system will become apparent in the adaptation phase, where only some parts of the mesh need to 
be refined and de-refined. In this case, the Implicit Load Balancing (ILB) library [13] will be used 
to develop error- and application-specific policies for load balancing. The ILB library will be 
built on top of MRTS system.  
 

4. Putting It All Together  
First we will focus on the implementation of PDR layer of the telescopic approach. Each block of 
the PDR phase will be prepared so that it can eventually become a Mobile Work Unit (MWU), 
which can migrate to any node of the system without the programmer being concerned about 
hardware-dependent communication and load balancing issues. As we showed in [38], this 
abstraction is extremely convenient for the development of parallel mesh generation codes, and is 
indispensable for two of the most challenging problems in parallel unstructured mesh generation: 
dynamic data movement & control and load balancing.  Given the ability to create and migrate 
MWUs, the MRTS system will implement high-level logic [16] by monitoring the status of the 
system and the available objects (i.e., MWUs), and rearranging them accordingly across the 
distributed memory of the hardware platform.  In the case of adaptation, we will use either 
existing or we can develop new policies using the ILB library that will take into account the 
error-based metrics in order to tolerate latencies i.e., migrate MWU based on look ahead 
mechanism for work-load imbalances or power savings using information by analyzing error-
based metrics.  
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