
Telescopic	Approach	for	Extreme-scale	Parallel	Mesh	Generation	for	CFD	
Applications	

	
Nikos	Chrisochoides,	CRTCLab	
Computer	Science	Department	
Old	Dominion	University	

	
Abstract	

We address two challenges related to Extreme-scale Mesh Generation Environments: (1) Design a multi-
layered algorithmic and software framework for 3D tetrahedral parallel mesh generation using state-of-the-
art functionality supported by our telescopic approach for parallel mesh generation. Our approach explores
concurrency at all hardware layers using abstractions at (a) medium-grain level for many cores within a
single chip and (b) coarse-grain level, i.e., sub-region and sub-domain level using proper error metric- and
application-specific discrete data and continuous decomposition methods. We anticipate that the
telescoping approach will be capable of sustaining a billion-way concurrency the next 15 years by (i)
leveraging concurrency at different granularity levels and (ii) carefully mapping work units to take
advantage of the memory and network hierarchies. (2) Design a Parallel Runtime System for extreme-scale
anisotropic mesh computations to target modules like mesh generation and CFD solvers. The runtime
system will provide support for: (a) One-sided explicit message passing, (b) Global name-space, (c) multi-
threaded programming model for inter-layer interactions, (d) automatic and preemptive load balancing, (e)
customizable data-movement and load-balancing, and (f) domain-specific energy-efficient race-to-halt,
concurrency throttling, and component-level (core and memory) power scaling. In addition, we present
preliminary results from our work on parallel isotropic 3D Delaunay-based guaranteed quality mesh
generation on hundreds of cores and potential extensions of to 4D meshes and 3D anisotropic advancing
front methods for CFD applications.

	
1.	Introduction	

Finite Element Mesh Generation is a critical component for CFD computations. We describe
deliver a novel framework for highly scalable and energy efficient guaranteed quality mesh
generation for the Finite Element (FE) analysis in three and four dimensions. We combine
domain-and application-specific knowledge with run-time system support to improve energy
efficiency and scalability of parallel FE mesh generation codes. Traditionally, parallel FE mesh
generation methods and software are developed without considering the architectural features of
the supercomputer platforms on which they are eventually used for production. The main reason
is the complexity of sequential, and moreover parallel, mesh generation algorithms. As a result, it
is too expensive, in terms of labor and time, to customize the performance of parallel mesh
generation software for specific supercomputing architectures. For the same reason, the energy
efficiency of these codes is not well understood, since it depends on the architecture. The
proposed approach is to abstract and expose parallel mesh generation run-time information to the
underlying run-time system which can guide the execution towards the most efficient utilization
of resources on the given supercomputer. The issues of performance and energy efficiency are
closely related, and we will study them in tandem.
	
As a result, this project is expected to deliver the first unstructured mesh generation application
capable of sustaining concurrency on the order of 106. At the same time, this application will
allow for a range of power lowering regimes: from highest speed with opportunistic energy
savings, to modest speed with high energy savings. This goal will be achieved by: (1) leveraging
concurrency at different granularity levels (i.e., the work units could be sub-domains, regions
within a sub-domain, and cavities), (2) carefully mapping these work units to take advantage of

the memory and network architecture of the target platforms, and (3) applying dynamic
concurrency throttling in conjunction with a race-to-halt execution model, and component-level
power scaling.

2. Telescopic Approach for Anisotropic Mesh Generation and Adaptation.
Our plan to achieve extreme-scale adaptive simulations on the complex, heterogeneous HPC
architectures that will be increasingly prevalent through 2030 is to implement a telescopic
approach (see Figure 1) we
initially developed for 2D
problems [1] and in the near
future integrate it with
Advancing Front/Local
Reconnection (AFLR)
developed at MSU [2, 3] and
MOESS methods developed
MIT [4]. The telescopic
approach is critical to leverage
the concurrency that exists at
multiple levels for anisotropic
and adaptive simulations. At the
chip and node levels, the
telescopic approach deploys a
Parallel Optimistic (PO) layer
and Parallel Data Refinement
(PDR) layer, respectively (see
Sections below). In our current
effort, we will focus on the
implementation of the PDR layers for AFLR and MOESS. In future efforts, the PDR layer will
be implemented on top of PO layer. Based on our preliminary results [28] we expect that the PDR
layer will improve PO’s scalability by at least a fact of O(102).
Together after optimizations we expect to get about 104 -way concurrency i.e., close to linear
weak speedup: in other words for 104 cores achieve about 0.8 parallel efficiency. Then at the
super-node and/or rack level, the telescopic approach deploys a Parallel Constrained layer [29],
with its asynchronous communication is expected to perform well at higher latency and lower
bandwidth network switches utilized at the super-node and/or rack levels. In combination with
PDR, it is expected to deliver about 105-way concurrency. Finally, for inter-rack level, we plan to
use a Parallel Domain Decoupled (PDD) layer [5] that requires very little to no communication.
Our experience indicates that PDD can easily scale up to 103, so in combination all four layers-
methods together are expected to deliver concurrency in the order of 106 to 107. The “work-
horse” of the telescopic approach is the PO layer i.e., all cores in the system run PO at the lowest
level. The rest of the layers like PDR etc. are used to explore additional concurrency at additional
levels of granularity (eg. mesh data-block, sub-region and subdomain). Both mesh generation and
adaptation challenges will be addressed at the lowest level, with one exception the PDD. The
domain decomposition should take advantage of existing metric information available in our
adaptive algorithm. In the past we developed application-specific decompositions [6]. In this
project we will extend them to be error metric-specific, too. Both the data and domain
decomposition methods will over-decompose the geometry so that issues like load-balancing and
out-of-core (in the future) in parallel mesh generation and adaptation will be managed by a multi-
layered runtime system (see below). This separation of concerns helps portability,
maintainability, and performance and thus enables labor-effective and performance-efficient
extreme-scale parallel mesh generation and adaptation software.

Figure 1. Telescopic Approach to parallel mesh generation and
adaptation.

The design of the telescopic approach is based on a combination of data and domain
decomposition methods in order to explore locality at the chip, single node, and multiple nodes
levels. In this section, we discuss the layers of the telescopic approach for the AFLR-based
meshing. In the next section, we describe the telescopic implementation of the MOESS
algorithm.

2.1	Parallel	Optimistic	(PO)	layer	at	the	chip	level. This is
a tightly coupled method [7,8]. Our preliminary data on 3D
Delaunay methods indicate that speculative (optimistic) methods
perform well on hardware shared memory [8] i.e., single chip.
We expect the number of cores to emerging chips and for HPC
nodes will be in the order of hundreds. Figure 4, depicts the
concurrent expansion of three cavities, however because of the
speculative nature of this layer, roll-backs are possible, due to a
possible intersection of cavities. Such intersections lead to
non-conforming or non-Delaunay meshes. In [8] we present a
way to efficiently implement such codes for 3D Delaunay
based methods. We will investigate a new Parallel Optimistic for AFLR method based on our
earlier Parallel Optimistic Delaunay Mesh (PODM) work [8,9] on speculative execution model
for parallel Delaunay-based methods. AFLR similar to Delaunay refinement algorithms works by
inserting additional points (so-called Steiner for Delaunay methods) into an existing mesh to
improve the quality of the elements.

2.2	 Parallel	 Data	 Refinement	 (PDR)	 layer	 at	 the	 node	 level. This is partially coupled
method [10,11] with locally synchronous communication. In our previously published results we
developed a distributed memory (MPI) implementation of two-dimensional [10,11] and 3-
dimensional [12] Parallel Delaunay Refinement methods. The partitioning and the decoupling of
the subdomains was achieved by creating a special buffer zone around every subregion, so that
we can mathematically guarantee that the insertion of a point in one subregion can modify the
triangles only inside this subregion and its
buffer zone, but the changes do not
propagate to other subregions and their
buffer zones. After refining the subregions,
the buffer zones are refined in a similar way.
An adjustment to the sequential Delaunay
refinement code allowed for the insertion of
only those circumcenters that satisfy some
user defined condition (i.e., being inside a
given box). The drawback is that the amount
of work assigned to different processors can
vary significantly.
However, by using over-decomposition in a
combination with runtime software system
we developed [13] for dynamic load
balancing, we can redistribute the work
among the nodes. Figure 5 depicts the
results of the first two layers of telescopic
approach for Delaunay-based methods
using a 3D abdominal multi-material atlas; the mesh is generate on 256 cores using Parallel Data

Figure 2. Concurrent cavity
expansion according to PODM.

Figure 3. The first two layers of the telescopic approach for a 3D
abdominal multi-material atlas. The PDR blocks left and right
are meshed in parallel (eg. on different nodes) and within each
block there are cavities that are computed concurrently (eg. on
different cores of each node) using speculative execution PODM
layer.

Refinement (PDR) by exploring concurrency at data block level [10-12] and Parallel Optimistic
Delaunay Mesh (PODM) by exploring concurrency at the cavity level [7, 8, 9]. The telescopic
approach works both for parallel mesh generation and adaptation. The adaptation step is more
efficient since all data structures are in
place for either refinement or de-
refinement operations that rely on an
abstraction similar to the cavity.
Like Delaunay-based methods AFLR is a
volume meshing method that will be used
(after proper modifications) for the
individual sub-regions (i.e., leaves of the
octree). Figure 6 depicts the weak speedup
on a 256 core Distributed Shared Memory
(DSM) machine [14]. These results show
the impact of PDR on 3D Parallel
Optimistic Delaunay Meshing (PODM).
PDR improves scalability due to improved
data locality and the absence of rollbacks.
We expect the implementation of the PDR
layer on distributed memory machines to
further improve the performance we are
getting on DSM (cc-NUMA) machines
like the Blacklight at Pittsburgh Supercomputing center.

2.3 Parallel Constrained (PC) layer. This is partially coupled method [15] with asynchronous
communication. With PC we will combine first the PDR and PO into a single highly efficient
parallel and scalable engine: the PDR.PO.AFLR which will be used for the implementation of
the PC. Each subdomain contains the collections of the constrained faces, edges, and points. In
the case of Delaunay-based methods we used use the Bowyer-Watson kernel for mesh generation.
The constrained (boundary) segments are protected by diametral lenses and each time a segment
is encroached, it is split in the middle; as a result, a split message is sent to the neighboring
subdomain [15]. In this project, we will explore the use of similar tools in the case of AFLR-
based methods. PC.AFLR will be designed to run on multi-processor nodes and clusters of nodes,
i.e., it uses the message-passing paradigm. Each process lies in its own address space and uses its
own copy of a custom memory allocator. In addition to reducing substantially the communication
PC.AFLR can be further optimized by using message aggregation of the split-messages, which
are sent between neighboring subdomains as a result of inserting points on the common
boundaries [29].
	
2.4	 Parallel	 Domain	 Decoupled	 (PD2)	 layer	 is similar to PC layer, however before the
subdomains become available for further processing by the PC.PDR.PO layer they are discretized
using the pre-processing step similar to one we presented in [5, 6]. This guarantees that any
Delaunay-based algorithm can generate independently a mesh on each of the subdomains in a
way that does not introduce any new points on the boundary of the subdomains (i.e., the
algorithm terminates and can guarantee conformity and Delaunay properties without the need to
communicate with any of the neighbor subdomains).

2.5 Domain Decomposition. There are numerous methodologies that could be employed for
obtaining a domain decomposition. Different approaches will be used for the over-decomposition
of the parallel mesh generation and adaptation phases. In addition to the data decomposition, a
domain decomposition for the parallel mesh generation phase will be considered based on a

Number of threads (cores)
0 50 100 150 200 250 300

Sp
ee

du
p

0

50

100

150

200

250

300
PODM+PDR
PODM
ideal

Figure 4. Weak Speedup comparison of PODM and its
combination with PDR (PDR.PODM) for meshes that vary
from 3M tets on a single core to 745M tets on 256 cores [28].

Medial Axis Domain Decomposition (MADD) software, similar to one we presented [5, 6], for
2D geometries. MADD can produce domain decompositions which satisfy the following three
basic criteria: (1) the boundary of the subdomains create good angles, i.e., angles no smaller than
a given tolerance, where the value of the tolerance is user-defined, (2) the size (area) of the
separator should be relatively small compared to the volume of the subdomains and (3) the
subdomains should have approximately equal mesh-size (even if the mesh is non-uniform) given
application-specific size function. The domain decomposition uses an approximation of a Medial
Axis as an auxiliary structure for constructing the boundary of the
subdomains (separators). Figure 7, depicts the result of a 2D MADD.
Notice that the decomposition satisfies constrains 1-3, in contrast to
data decompositions (see Figure 4) where those conditions are not
guaranteed. However, in the PODM and PO.AFLR the interfaces are
not preserved and thus, there is no need to satisfy conditions 1-3. The
domain decomposition approach is based on “Divide and conquer”
algorithmic paradigm and a smoothing procedure for eliminating the
creation of any new artificial features in the subdomains. However, in
the adaptation phase we will only consider those approaches that
impose no restrictions on the mesh generation, e.g. a fixed artificial
boundary like we plan to use in the PDR layer. We also have
available, after initial mesh generation, the existing mesh (from the
previous solution adaptation step) along with the new metric values. A suitable decomposition
can be derived from that mesh. In all cases we will utilize the metric values to determine the
estimated mesh size in each subdomain. This estimate progressively will become more accurate
as the solution evolves and the mesh is further resolved via the adaptation. In addition,
exploratory work with AFLR indicates it could be used to generate a very coarse mesh that
mimics the true mesh and can be used as a domain decomposition that satisfies conditions 1-3
naturally.

3. Parallel Runtime Software System
The upcoming Aurora supercomputer, and likely many others in the future, will have multiple
levels of memory with slower but larger non-volatile memory supplementing faster RAM. Burst
SSD storage can be seen as yet another slower intermediate layer of memory. Also, due to power
constraints, the amount of RAM per core will likely shrink considerably as more cores are
integrated into a single CPU.
This makes our out-of-core
system [16] even more relevant
since exploiting memory
locality and controlling
placement of data in fast or slow
memory will be critical to
achieve adequate performance.
In addition, having “traditional”
out-of-core support by
temporarily retiring data to a
disk would be beneficial since it
would facilitate such tasks as
checkpointing (out of the scope
of this project; it will be
addressed in follow up phases). Indeed, resilience is important to current supercomputers (e.g.,
Blue Waters requires some remedial repair actions every few hours) and is expected to be a

Figure 5. Medial Axis
Domain Decomposition.

	
	

one-sided	
message	
passing	
library	

	
	

two-sided	
message	
passing	
library	

						multi-layered	
memory	manager	

multithreading	technology	ap
p	

ru
nt
im
e	

sy
s	

multi-layered	
object	
manager	

mobile	
object	
layer	

slow(er)	
memory	
object	
manager	

disk	
object	
manager	

slow(er)	memory	/	disk	 high-speed	network	

Figure 6. Potential proposed MRTS design based on current and
emerging hardware and software technologies for HPC.

major challenge to exascale computing. Having built-in capabilities that enable checkpointing or
other forms of algorithmic fault tolerance would be highly beneficial.
Given these current and emerging trends in parallel hardware, our long-term goal is to redesign a
Multi-Layer Runtime System (MRTS) [13,16] based on the evaluation of current and emerging
software technologies we reviewed earlier. We also plan to extensively evaluate new technologies
in the next three years. This study will help us to identify and adopt suitable state-of-the-art
communication substrates of interest to NASA, so that we can implement a global address space
with one-sided communication and load balancing libraries. These libraries will be used to
implement the Telescopic approach to parallel anisotropic mesh generation and adaptation.
Figure 6 depicts the high level design of the runtime system. At the top, the application will
directly interact with a multithreading technology to exploit fine grain parallelism. The data of the
application will be organized into distributed data-structures consisting of mobile objects [17]
linked via mobile pointers. The mobile object layer will provide a global addressing scheme and
an efficient mechanism for communicating between objects and forwarding to enable seamless
migration of the mobile objects. While the mobile object layer is responsible for communication
between nodes, the multi-layered object manager controls the placement of local objects within a
local nodes as well as scheduling the delivery of messages to/from the local objects. It is
integrated with a multi-layered memory manager that is responsible for managing message and
object pools in all available layers of memory. Low-level one-sided message passing technology
will serve as the communication substrate to the runtime system. Interoperability with MPI will
be preserved to leverage collective communication and legacy parallel codes as well as codes that
will be developed independently of our system and this project. The runtime system will manage
the movements and storage of objects, as well as placement of objects into fast or slow memory.
There is a trade-off between reusing as much of an existing application code as possible and
taking full advantage of the runtime system. The less the application will rely on using MPI the
more control will be given to the runtime system and ultimately better performance can be
achieved and more features (e.g., “free” checkpointing) can be utilized. Moreover, moving to a
different platform should require virtually no porting and considerably less tuning since that
should be handled by the runtime system transparently to the user. The benefits of the MRTS
system will become apparent in the adaptation phase, where only some parts of the mesh need to
be refined and de-refined. In this case, the Implicit Load Balancing (ILB) library [13] will be used
to develop error- and application-specific policies for load balancing. The ILB library will be
built on top of MRTS system.

4. Putting It All Together
First we will focus on the implementation of PDR layer of the telescopic approach. Each block of
the PDR phase will be prepared so that it can eventually become a Mobile Work Unit (MWU),
which can migrate to any node of the system without the programmer being concerned about
hardware-dependent communication and load balancing issues. As we showed in [38], this
abstraction is extremely convenient for the development of parallel mesh generation codes, and is
indispensable for two of the most challenging problems in parallel unstructured mesh generation:
dynamic data movement & control and load balancing. Given the ability to create and migrate
MWUs, the MRTS system will implement high-level logic [16] by monitoring the status of the
system and the available objects (i.e., MWUs), and rearranging them accordingly across the
distributed memory of the hardware platform. In the case of adaptation, we will use either
existing or we can develop new policies using the ILB library that will take into account the
error-based metrics in order to tolerate latencies i.e., migrate MWU based on look ahead
mechanism for work-load imbalances or power savings using information by analyzing error-
based metrics.

Acknowledgements This work in part is funded by NSF grant no. CCF-1439079, NASA grant
no. NNX15AU39A and DoD’s PETTT Special Project PP-CFD-KY07-007. In addition, it
utilized resources from the Extreme Science and Engineering Discovery Environment (XSEDE),
which is supported by National Science Foundation grant number ACI-1053575. Finally, it is
partially supported by the Richard T. Cheng Endowment. The content is solely the responsibility
of the authors and does not necessarily represent the official views of the government agencies
that support this work. The author developed the parallel mesh generation methods with his PhD
students Dr. A. Chernikov, Dr. L. Linardakis and Dr. P. Foteinos and runtime systems with his
PhD students Dr. K. Barker and A. Kot. On going work in parallel mesh generation involves his
current graduate students T. Kennedy, D. Feng and C. Tsolakis. In addition he recently discussed
his telescopic approach to parallel mesh generation with Dr. D. Marcum (MSU) and D. Darmofal
(MIT) for its application to AFLR and Error-based metrics for large scale CFD, in the context of
the NRA and DoD grant applications. The author thanks Dr. D. Darmofal for his help in
improving the clarity of the ideas presented in this paper.

References

[1] N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot, L. Linardakis, and P. Foteinos,
"Towards Exascale Parallel Delaunay Mesh Generation," B. W. Clark, Ed., ed: Springer
Berlin Heidelberg, 2009, pp. 319-336.

[2] D. L. Marcum, "Unstructured Grid Generation Using Automatic Point Insertion and
Local Reconnection," in Handbook of Grid Generation, ed: CRC Press, 1998.

[3] D. L. Marcum and N. P. Weatherill, "Unstructured grid generation using iterative point
insertion and local reconnection," AIAA Journal, vol. 33, pp. 1619-1625, 1995.

[4] M. Yano and D. L. Darmofal, "An optimization-based framework for anisotropic simplex
mesh adaptation," Journal of Computational Physics, vol. 231, pp. 7626-7649, Sep. 2012.

[5] L. Linardakis and N. Chrisochoides, "Graded Delaunay Decoupling Method for Parallel
Guaranteed Quality Planar Mesh Generation," SIAM Journal on Scientific Computing,
vol. 30, pp. 1875-1891, Jan. 2008.

[6] L. Linardakis and N. Chrisochoides, "Algorithm 870: A Static Geometric Medial Axis
Domain Decomposition in 2D Euclidean Space," ACM Trans. Math. Softw., vol. 34, pp.
4:1–4:28, Jan. 2008.

[7] N. Chrisochoides, "Parallel Mesh Generation," in Numerical Solution of Partial
Differential Equations on Parallel Computers, A. M. Bruaset and A. Tveito, Eds., ed:
Springer Berlin Heidelberg, 2006, pp. 237-264.

[8] P. Foteinos and N. Chrisochoides, "High quality real-time Image-to-Mesh conversion for
finite element simulations," Journal of Parallel and Distributed Computing, vol. 74, pp.
2123-2140, Feb. 2014.

[9] D. Nave, N. Chrisochoides, and L. P. Chew, "Guaranteed-quality parallel Delaunay
refinement for restricted polyhedral domains," Computational Geometry, vol. 28, pp.
191-215, Jun. 2004.

[10] A. Chernikov and N. Chrisochoides, "Parallel Guaranteed Quality Delaunay Uniform
Mesh Refinement," SIAM Journal on Scientific Computing, vol. 28, pp. 1907-1926, Jan.
2006.

[11] A. N. Chernikov and N. Chrisochoides, "Practical and Efficient Point Insertion
Scheduling Method for Parallel Guaranteed Quality Delaunay Refinement," in
Proceedings of the 18th Annual International Conference on Supercomputing, 2004, pp.
48–57.

[12] A. Chernikov and N. Chrisochoides, "Three-dimensional Delaunay Refinement for
Multi-core Processors," in Proceedings of the 22nd Annual International Conference on
Supercomputing 2008, pp. 214–224.

[13] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali, "A load balancing framework
for adaptive and asynchronous applications," IEEE Transactions on Parallel and
Distributed Systems, vol. 15, pp. 183-192, Feb. 2004.

[14] D. Feng, C. Tsolakis, A. Chernikov, and N. Chrisochoides, "Scalable 3D Hybrid Parallel
Delaunay Image-to-Mesh Conversion Algorithm for Distributed Shared Memory
Architectures," Proceedings of 24th International Meshing Roundtable, 2015.

[15] A. Chernikov and N. P. Chrisochoides, "Algorithm 872: Parallel 2D Constrained
Delaunay Mesh Generation," ACM Trans. Math. Softw., vol. 34, pp. 6:1-6:20, Jan. 2008.

[16] A. Kot, A. N. Chernikov, and N. P. Chrisochoides, "The Evaluation of an Effective Out-
of-Core Run-Time System in the Context of Parallel Mesh Generation," in Parallel
Distributed Processing Symposium (IPDPS), 2011 IEEE International 2011, pp. 164-175.

[17] N. Chrisochoides, Barker, K., Nave, D., Hawblitzel, C., "Mobile object layer: a runtime
substrate for parallel adaptive and irregular computations," Advances in Engineering
Software, vol. 31, pp. 621-637, 2000.

