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Abstract- We present a feasibility study using cloud 

resources for computing the deformable registration or 

non-rigid registration (NRR) of brain MR images for Image 

Guided Neurosurgery (IGNS). We consider the use of cloud 

resources in two scenarios. First, we describe a workflow 

implementation to enable speculative computation of 

registration to improve confidence in the result and assist 

in retrospective evaluation of the method. We evaluate the 

use of computing and storage capabilities of the cloud to 

handle more than 6 TB of images. Second, we evaluate the 

feasibility of large scale running NRR on the cloud to 

provide timely execution of the most time-consuming 

components of the registration in short duration of a brain 

surgery. Our preliminary results indicate that the cloud 

provides practical and cost-effective means to support 

IGNS. In addition, cloud resources could be used to 

improve the accuracy of NRR up to 57%.  

 

Keywords- Image Registration, Cloud, Big Data, Large 

Scale, Speculative Execution, Image-Guided Neurosurgery.  

I.  INTRODUCTION  

Image guided procedures become increasingly used 
in a range of clinical applications [1]. Non-rigid 
registration is one of the key enabling technologies in 
facilitating image-guided interventions. It enables the 
use of imaging data obtained from different imaging 
devices and across time-points, and facilitates integration 
of this imaging data into intra-procedural workflows. 
Image-guided neurosurgery has been one of the most 
actively investigated clinical research applications, 
where non-rigid registration widely improves accuracy 
of tumor resection and reduce patient morbidity by 
enabling the overlay of the pre-procedural structural and 
functional data over the intra-procedural imaging. A 
clinically practical non-rigid registration method should 
consider the following factors: speed, robustness, and 
accuracy. The registration should be done within a time 
period compatible with the clinical workflow constraints 
to provide timely responses to the surgeons. The 
registration results should not be susceptible to imaging 
artifacts. The registration results should also realistically 
reflect the physical deformation of the tissue. Recently, 
Liu et al. [2] developed ITK filters for physics-based 
non-rigid registration (PBNRR), which satisfy the 
following requirements: account for tissue properties in 
the registration; improve accuracy compared to rigid 
registration and reduce execution time [2]. 

Despite the improvements in accuracy of PBNRR 
compared to rigid registration, registration accuracy can 
still be improved. Previous studies [3] show that varying 
the values of registration input parameters may result in 
higher accuracy. However, the optimum values of these 

parameters are difficult to identify. For example, there is 
no consensus about the true values for the physical 
properties of the live tissue in the biomechanics 
community[4]. Likewise, depending on the properties of 
the intra-operative MRI (e.g., quality and modality), the 
best choice of similarity metric to be used for the 
registration block matching component may not be clear 
[5]. Registration accuracy may also be affected by the 
values of block matching input parameters, such as block 
size and window size. The optimum values for block size 
and window size may depend on the properties of the 
images and the scale of the brain shift [5].  

In this work we approach the registration problem as 
a speculative computation process, where to improve the 
accuracy of registration, several PBNRR instances are 
run with various input parameters and similarity metrics 
to find the parameter setting with maximum registration 
accuracy. In the current protocol of NRR, there is usually 
significant time (≈ 30 min) between the acquisition of the 
first intra-operative scan and the MRI showing brain shift 
(Figure 1). This time can be used to perform intra-
operative comparison of the similarity metrics. 
Evaluating similarity measures on a single Pentium IV 
computer takes about two months to finish [5].  
Evidently, such computations can be done intra-
operatively only with the aid of large scale computing.  

We propose to utilize large scale computing 
resources to find the optimal values of input parameters 
to improve the accuracy of registration. The approach to 
address the problem of optimal parameter selection is to 
use speculative execution of the registration [6].  The 
idea behind speculative execution is to compute multiple 
registrations on the same input images using different 
parameter settings. Variability between results computed 
in this way allows us to estimate the sensitivity of the 
method by automatically calculating certain metrics to 
assure registration accuracy.  

To enable speculative execution as well as a large-
scale study of PBNRR, many storage and computing 
resources are required simultaneously. With recent 
advances in cloud computing, many researchers are 
evaluating the usage of cloud resources for various big 
data and computationally intensive applications [7] 
including medical image processing applications. In 
most studies, however, applications do not require real-
time response as they do in IGNS. Therefore, they do not 
report the delay and scheduling issues when 
computational resources in the cloud are used. In this 
paper, we first study the use of storage and computational 
resources in the cloud to provide a computational 
platform for PBNRR during IGNS. Next, we use the 



results of speculative execution to improve our 
understanding of the registration performance using 
varying input parameters.  

The remainder of this paper is organized as follows. 
In Section II, we review the role of cloud computing in 
medical image processing applications. In Section III, 
registration is described in detail. The idea of speculative 
execution of PBNRR is explained in Section IV. In 
Section V, we present the results of speculative 
execution of PBNRR both on a private cloud and on the 
Microsoft Azure public cloud. The paper concludes with 
future research directions outlined in Section VI.   

Fig. 1 Timeline of Brain Surgery  

II.  CLOUD COMPUTING AND MEDICAL 

APPLICATIONS  

Prior to cloud computing, we [3] and other 
researchers used grid computing to evaluate medical 
image applications. In grid computing, a lack of central 
resource management hinders the usability to run an 
application over a collection of loosely connected 
resources. Representative projects are MammoGrid [10] 
and the Biomedical Informatics Research Network 
(BIRN) [11]. By design, the Grid infrastructure 
developed either for general purpose Grid computing in 
our case TeraGrid [3] or by these projects were not 
general enough to support image processing applications 
like NRR. Several efforts have been made [12],[13] to 
use a general purpose research grid environment in the 
context of specific medical applications, but the absence 
of global resource management and the need to reserve 
resources limit the effectiveness of these grids. 
Moreover, in the case of intra-operative processing for 
IGNS, the actual time and length of the phase of the 
surgery where NRR will be critical is not precisely 
known in advance. The surgery may also be canceled or 
postponed due to last minute considerations such as 
changes in the patient’s condition. Some research efforts 
[14]-[22] have designed solutions specifically for NRR 
on a grid, but network latency and issues in batch 
schedulers are such that they do not work during IGNS.  

We envision that cloud computing [7] can provide a 
scalable and efficient solution for medical image 
processing applications, such as NRR during IGNS. 
Figure 2 illustrates the deployment of the cloud for NRR 
during IGNS. The pre-operative MRI images and intra-
operative images are sent to and stored in the cloud. The 
NRR runs in speculative execution mode and the results 
of the registration with the highest accuracy are returned 
to the neurosurgeon. For subsequent registrations during 
the surgery, the parameters that provided the highest 
accuracy are used.  

The use of cloud computing provides several 
advantages.  First, resources in the cloud can be 

requested on demand; there is no need to reserve 
resources prior to the surgery. The demand can be 
adapted based on the circumstances, such as the number 
of patients or concurrent surgeries. Requesting resources 
on demand is very cost efficient for hospitals, as they do 
not pay for resources that they do not use. Nonetheless, 
the feasibility of using the cloud to optimize costs 
requires further investigation. This paper is a first step in 
this effort and focuses on real-time large scale accurate 
non-rigid registration.  

Fig. 2 Cloud Architecure for Running Speculative Execution of NRR  

III.  NON-RIGID REGISTRATION OF BRAIN MRI FOR 

IGNS  

Image-guided neurosurgery aims for maximum 
tumor removal with minimal damage to surrounding 
healthy tissues. Pre-operatively acquired medical image 
data, such as MRI, identify tumor and critical brain 
regions with high precision. Yet, as the tumor resection 
progresses, brain deformation is unavoidable. Shift of the 
brain tissue invalidates pre-operative data and additional 
processing is required to account for the deformation. 
One of the available approaches to this problem is to 
acquire sparse images during IGNS, and update the pre-
operative data according to the deformation observed in 
the intra-operative images. The specific image 
processing operation that aligns two images using high 
order transformation is known as non-rigid registration.  

The details of the robust non-rigid registration 
method are given in [2,18]. Here, we summarize the main 
points of the approach. Registration consists of the pre-
operatively initialization part and the intra-operative 
computation part. The goal of registration is to enable 
enhanced visualization of the brain under intra-operative 
deformation. Thus, the pre-operative (floating) image is 
deformed to match the intra-operative (reference) scan. 
An intra-operative image is acquired in the following 
cases: immediately after the patient’s head is fixed for the 
surgery (first intra-operative scan), after the skull 
opening, at any time when the surgeon suspects 
significant shift of the brain, or when there is a need to 
verify residual tumor volume.  

In pre-operative processing, multi-modal high-
resolution scans are acquired prior to surgery to identify 
the tumor and critical regions in its vicinity, and to 
develop the appropriate resection strategy. The intra-
cranial cavity is segmented, and the patient-specific 
biomechanical model is constructed for the subsequent 
application of Finite Element Method.  

In intra-operative processing, rigid alignment of pre-
operative data to the first intra-operative scan is the first 
processing task. This part of the intra-operative 
computation is not time-critical: there is typically 
sufficient delay between the first intra-operative scan and 
the skull opening. The time-critical component of the 



computation begins with the acquisition of a scan 
showing brain deformation. Initially, the locations of the 
floating image with the highest intensity variance in the 
surrounding region are selected to be registration points 
or landmarks. The sparse displacement field between the 
floating and reference images is estimated with the aid of 
volumetric block matching [17].  

Depending on the properties of the intra-operative 
MRI (e.g., quality and modality), the choice of the best 
similarity metric to be used for block matching may not 
be clear [5]. At the same time, in the current protocol of 
NRR, there is usually significant time (approximately 30 
min, as illustrated in Figure 1) between the acquisition of 
the first intra-operative scan and the MRI showing brain 
shift. The block matching result contains outlier 
displacements. The challenges in this phase include 
determining removal of outliers and the approximation 
of brain deformation from a sparse and irregular set of 
displacements. A mesh model of the intracranial cavity 
is used to approximate the brain shift using the finite 
element method (FEM).  

We use Physics Based Non-Rigid Registration 
(PBNRR) for image registration. PBNRR framework is 
built in the National Library of Medicine Insight 
Segmentation and Registration Toolkit (ITK) [2].  The 
PBNRR module includes three components: (i) Feature 
Point Detection: identify small image blocks (landmarks) 
that have rich structural information in the pre-operative 
MRI; (ii) Block Matching: calculate displacement for 
each image block to generate a sparse deformation field; 
(iii) Robust Finite Element (FE) Solver: estimate entire 
brain deformation based on the sparse deformation field 
estimated above.  

In PBNRR, we employ two image-to-mesh 
conversion methods for generating a mesh of the intra-
cranial segmentation. The first method is Delaunay-
based method [18], it recovers the isosurface of the 
biological object with geometric/topologic guarantees, 
and meshes the underlying volume with good shape 
tetrahedra. In this method, the parameter σ specifies the 
size of the Delaunay mesh, such that, the smaller the σ, 
the larger the mesh. The second method is  Lattice Based 
Method (CBC3D) [19], it generates meshes of high 
geometric and topologic fidelity while it smoothens the 
mesh to provide a certain degree of visual reality within 
the requested fidelity The parameter size determines the 
lattice size and the parameter fidelity determines the 
desired mesh fidelity.     

IV.  SPECULATIVE EXECUTION OF PBNRR  

Registration accuracy, robustness, and performance 
can all be affected by the values of NRR parameters. The 
optimal values of these parameters are difficult to 
identify. For example, there is no consensus about the 
true values for the physical properties of live tissue in the 
biomechanics community [4]. The optimal values for 
block size and window size used during block matching 
depend on the properties of the images and the scale of 
brain shift. The optimal similarity metric to be used 
during block matching is also not always known [5].   

The practical problem of performing speculative 
execution is the enormous amount of computation 
required. For example, for sequential block matching 
with 100K registration points using Normalized Cross 
Correlation similarity metric, we need more than 11 
hours of computation on a Intel Xeon 3.7GHz 
workstation. Considering that there may be 3-4 different 
similarity metrics that must be evaluated, a range of valid 
values for the outlier rejection in the solver, and a need 
to assess the accuracy of each NRR result, the total time 
required to perform an exhaustive evaluation of a single 
dataset would be days.   

Cloud resources provide two important applications 
for PBNRR and IGNS: (1) intra-operative speculative 
execution, and (2) time-critical intra-operative 
computation of NRR with sub-optimal parameter 
settings. In the first application, PBNRR speculative 
execution finds the sub-optimal parameter settings, for 
the specific case, to improve accuracy. Next, in the time 
critical part of the surgery, the cloud resources are used 
to run PBNRR with the optimal parameter setting to 
achieve the result in real-time. To evaluate the 
performance of speculative execution for PBNRR, we 
used our local private on-premise cloud (Turing cluster) 
at Old Dominion University, as well as Microsoft Azure 
[7],[23]. Using these clusters, we analyzed more than 
6TB of images.   

A. On-premise Cluster  

Turing cluster is mainly composed of Dell c8220 
nodes, each with 128 GB memory and 16 cores. For our 
project, we had a quota of 160 cores. This means that at 
any point of time, we could run 10 instances of PBNRR 
simultaneously, where we chose to allocate 16 cores for 
each run of PBNRR. To parallelize and schedule job 
instances of PBNRR at Turing cluster, we used the array 
batch job submission mechanism of Sun Grid Engine 
(SGE) [24]. This mechanism allows to submit several 
jobs at the same time, and resources were assigned to 
jobs as soon as they were available.  

B. Azure-based Cluster  

Azure is Microsoft’s cloud solution, which provides 
several services to run various types of applications in 
the cloud [23]. We use Azure services to i) storage to 
manage the images, and ii) virtual machines (VMs) [25] 
to build a Windows High Performance Computing 
cluster.  

We use the Windows HPC cluster [26] to run the 
speculative execution PBNRR. A Windows HPC cluster 
consists of a Head node, Proxy nodes and Computational 
nodes, as is illustrated in Figure 3. The Head node is an 
Azure VM that hosts a Windows Server and the HPC 
Manager application that manages the jobs submitted to 
the cluster. The Proxy nodes are Azure VM’s instances 
that balance job loads among computational nodes, as 
shown in Figure 3. The computational nodes are the VMs 
that run the job given to them by the Head node. 

In the Windows HPC cluster, individual execution of 
an application- here PBNRR- is called a task, and a group 
of tasks- here, speculative execution of PBNRR with 
various parameters- is called a job.   



Fig. 3 Nodes in a Microsoft HPC cluster on the Cloud. 

TABLE 2 PATIENT INFORMATION FROM EIGHT CASES 

Our Microsoft Azure subscription granted us 32 
cores and 10 TB of storage. We set up a cluster with a 
four cores Head node. The Head node VM location was 
set as EAST US. We used four cores for Proxy nodes. 
The remaining 24 cores were used to create virtual 
machines for computational nodes. We used A1 (1 core, 
1.75GB RAM), A2 (2 core, 3.5GB RAM), A3 (4 core, 
7GB RAM), A4 (8 core, 14GB RAM) VMs for 
computational nodes. This allowed us to have a cluster 
with 3, 6, 12, or 24 computational nodes.  

V. RESULTS OF SPECULATIVE EXECUTION  

In this section, we present our results of the 
speculative execution of PBNNR. We first describe the 
specifications of PBNRR experiments, and then present 
the improvement in the accuracy of registration by 
speculative execution. We also evaluate the overhead 
time of running jobs on the Azure cloud. Finally, we 
provide a cost comparison of running jobs on a private 
versus public cloud.  

A. Experiments  

We performed speculative execution of PBNNR by 
varying the values of several parameters (see Table 1) 
such as block size, window size and block connectivity. 
These variations produced approximately 10,000 jobs.  

TABLE 1 VALUES FOR PARAMETERS IN SPECULATIVE EXECUTION. 

Block Size (X=Y=Z) 3, 5, 7 

Window Size (X,Y,Z) 5, 11, 15 

Block Connectivity vertex, edge, face 

Rejection Steps 5, 10 

Approximation Steps 2, 5, 10 

Delaunay Mesh  σ = 2, 3, 4, 5  

CBC3D Mesh  size = 6, 8, 10, and fidelity = 0.9 

We conducted experiments on the registration 
between pre-operative MRI and intra-operative MRI. 
The image datasets came from public cases from the 
Surgical Planning Laboratory (SPL) at Harvard Medical 
School [27]. Table 2 lists patient information including 
tumor location, and histopathology.    

B. Accuracy Measurements  

As a measure of the registration accuracy, we used 
the one-directional Hausdorff Distance (HD) [22] which 
computes the alignment errors after a rigid and a non-
rigid registration. The smaller the HD value, the better 
the alignment.    

TABLE 3 THE REGISTRATION ERROR EVALUATED BY HD (IN MM) FOR 

8 CASES. THE DEFAULT PARAMETERS FOR PBNRR FOR ALL CASES 

ARE: BLOCK RADIUS: [3,3,3], WINDOW RADIUS: [11,11,11], 
SELECTION FRACTION: 0.05, REJECTION FRACTION: 0.25, OUTLIER 

REJECTION STEPS: 10, APPROXIMATION STEPS: 10, YOUNG MODULUS: 
694 PA, POISSON RATIO: 0.45.  

Case#  RR PBNRR- 

default    

PBNRR 

with 

speculative  

PBNRR 

Improvement 

% (Default to 

Speculative)  

1  25.980  20.099  
5.6569 71.855 

2  9.110  4.690  
2.2361 52.322 

3  9.433  5.385  
2.2361 58.475 

4  9.695  7.000  
2.2361 68.056 

5  6.708  4.123  
2.2361 45.765 

6 8.062 3.605 2.2361 37.972 

7 11.575 7.000 2.8284 59.594 

8 14.352 9.949 3.0000 69.846 

Average 
57.986 

In Table 3, we show the registration accuracy of the 
PBNRR, for the image cases when default parameters are 
used, versus speculative execution, with approximately 
10,000 various input parameter combinations. These 
experiments produced more than 6 TB of images. As 
shown, we found a lower error value in registration for a 
combination of input parameters in speculative execution 
as compared with default parameters. The accuracy 
improvement varies between 37% to 71% for the 8 cases. 
The average improvement is 57.986%. The interesting 
observation is that, aside from image case #1, we 
achieved the error of less than 3 mm for all image 
scenarios, which is very close to the least error possible. 
Indeed, the minimum amount of error in registration 
when there is no brain resection, and deformation is only 
due to the movement of CF inside the brain, is between 
0.75-1 mm. We could not achieve a better accuracy for 
image case #1 due to high distortion in the original 
images, i.e., 25.98 mm in rigid registration.  

We found that block size and the size of mesh has the 
highest impact in the error.  For most images the higher 
the value of block size and mesh size, the lower the error. 
Inspired by these results, we evaluated the results for 
conditions where only block size, window size, size of 
mesh, and type of meshes are varied. This approach 
results in 63 various combinations of input parameters, 
which is way less than our initial 10,000 combinations, 
and also a reasonable number of jobs to be run in the time 
constraint scenario of neurosurgeries. The minimum 
value for image registration for these 63 combinations is 
shown in Table 4.  

 

 

Case#  Tumor location  Histopathology  

1  R occipital  Anaplastic Oligodendroglioma 

WHO III/IV  

2  L posterior 
temporal  

Glioblastoma WHO IV  

3  R frontal  Oligodendroglioma WHO II/IV  

4  R occipital  N/A  

5  R frontal  Oligoastrocytoma WHO II/IV  

6 L frontal      Oligodendroglioma WHO II/IV 

7 R frontal     Oligodendroglioma WHO II/IV 

8 R occipital   N/A 



TABLE 4 THE MINIMUM REGISTRATION ERROR- EVALUATED BY HD. 

Case#  Number of 

Combinations 

Differ

ence 

(%)  

Delaunay 

Mesh 

CBC3D 

Meshes 

10, 000 63 

1  
5.6569 5.6569 0.00 5.6569 6.4031 

2  
2.2361 2.2361 0.00 2.2361 2.4495 

3  
2.2361 2.2361 0.00 2.4494 2.2361 

4  
2.2361 3.0000 34.16 3.6055 3 

5  
2.2361 2.4495 9.54 2.4495 2.4495 

6 
2.2361 2.2361 0.00 2.2361 2.4495 

7 
2.8284 3.000 6.07 3 3 

8 
3.0000 4.5826 52.75 6.4031 4.5826 

Average 
12.8 

 

As can be observed, in four image cases, the results 
of image registration with the 63 combinations are the 
same as the scenario with 10,000 combinations. The 
average difference of results is only about 12%. The 30 
minutes time constraint allows us to run about 300 
instances of PBNRR; therefore, we believe that a smart 
search on the various input parameters combinations can 
produce the same exact results as the full 10,000 
combination scenario. Developing such a smart search 
space methodology is part of our future work.  

C. Speculative Execution in the Azure Cloud  

In Microsoft Azure cluster, in addition to speculative 
execution of PBNRR to improve the accuracy in image 
registration, we are interested in evaluating the overhead 
of running jobs in a HPC cluster built in the cloud. For 
this purpose, we vary the number of computational nodes 
and the number of tasks (while varying the values of 
registration input parameters) when executing the 
speculative execution of PBNRR.  

To compute the overhead time, we collect two 
metrics for each PBNRR run as a task on the Azure 
cloud. PBNRR run time (T1): This time is recorded by 
the PBNRR, which is the execution time of the PBNRR 
application. Cloud run time (T2): The time since the task 
is submitted from the Head node to a Computational 
node until the status of the task is complete at the Head 
node.    

The Microsoft HPC cluster stores T1 and T2 in a 
database, which is connected to the Head node. The 
overhead time, then, is defined as T2 − T1. This overhead 
time includes queuing time to submit the jobs and time 
to collect the results from the Computational nodes to the 
Head node. Figure 4 illustrates the average overhead 
time for various numbers of tasks and various numbers 
of Computational nodes. The average overhead time is 
less than 3.5 seconds in most scenarios, which is not a 
significant overhead when compared with the average 
60-300 seconds runtime for each instance of PBNRR 
itself. Therefore, PBNRR can run on the cloud-based 
cluster for IGNS without any significant overhead time.  

D. Cost Comparison  

In this section, we compare the costs associated with 
running speculative execution on the public cloud- here, 
Microsoft Azure- versus a similar private on-premise 
cluster. The goal is to evaluate whether it is cost efficient 

for a hospital to run speculative execution of PBNRR on  
the cloud. We evaluate a scenario where Computational 
nodes have 8 cores, 14 GB RAM, and 2 TB hard disk. A 
machine with these specifications costs approximately 
$2309. This type of machine costs $0.64/hr (∼$476/mo) 
in Microsoft Azure. We consider a cluster of 30 
Computational nodes for speculative execution of 
PBNRR. With this number of computational nodes, we 
can ensure that enough PBNRR instances will run to 
improve the accuracy of registration during a surgery.  

Fig. 4 Average Overhead Time for Various Number of Tasks  

For the public cloud, we assume that the 
computational nodes are required for only 10 hours each 
day, since surgery occurs during limited hours of the day. 
For a private cluster, in addition to the cost of 
Computational nodes, other costs such as labor, network 
switches, software, electricity, space, and maintenance 
should be included. In our calculations, we considered 
$5000 for labor and a low estimate of $1000 for other 
associated costs each month. The duration of return on 
investment (ROI) for a private cluster is usually 
considered to be 3 to 5 years [28].  

Fig. 5 Cost Comparison of Private vs. Public cloud. 

Figure 5 illustrates the monthly cost for a privately 
owned cluster versus a cluster built in the Microsoft 
Azure cloud. Even in five years ROI, a public cloud 
would cost 2/3 of a private cloud. Therefore, running the 
speculative execution on the cloud is a cost effective 
solution for a hospital. Moreover, the cost per month is 
less than $6000. If 30 cases are performed each month, 
each would cost approximately $200, which is low in 
comparison to the total cost of surgery. For this 
additional cost, the quality of IGNS could be 
significantly improved, as presented in Section V.  

VI. CONCLUSIONS AND FUTURE WORK  

We have evaluated the feasibility of implementing 
speculative execution of the PBNRR method on a private 



and a public cloud. Our work shows that it is possible to 
use a cluster of nodes on the cloud to perform large scale 
data and compute intensive image processing 
applications. In particular, we showed improvement in 
the accuracy of registration in average by 53%. We ran 
several instances of PBNRR with various input 
parameters to find the combination that resulted in 
minimal error. The overhead of running speculative 
execution of PBNRR on a public cloud is negligible, and 
this is a cost efficient approach for a hospital that wants 
to implement IGNS solutions.      

In the future, we plan to expand our experiments in 
several ways. We are interested in evaluating PBNRR 
performance with more image cases. Moreover, a brute-
force speculative execution would not be very useful 
because as input parameters are varied, the number of 
combinations grow exponentially. Therefore, a smarter 
search space algorithm is required to have a scalable 
solution based on the speculative execution results. The 
approach we are investigating is to find a subset of input 
parameters that has a higher probability of producing the 
lowest errors and run the speculative execution only for 
those potential candidates.   
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