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Abstract—In this paper, we present a bottom-up approach to 
parallel anisotropic mesh generation by building a mesh 
generator from principles. Applications focusing on high-lift 
design or dynamic stall, or numerical methods and modeling test 
cases still focus on the two-dimensions. Our push-button parallel 
mesh generation approach can generate high-fidelity 
unstructured meshes with anisotropic boundary layers for use in 
the computational fluid dynamics field. The anisotropy 
requirement adds a level of complexity to a parallel meshing 
algorithm by making computation depend on the local alignment 
of elements, which in turn is dictated by geometric boundaries 
and the density functions. Our experimental results show 70% 
parallel efficiency over the fastest sequential isotropic mesh 
generator on 256 distributed memory nodes. 
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I. INTRODUCTION 
Mesh generation is a step in the iterative pipeline for 

designing aerospace structures as shown in Figure 1. After an 
analysis of the partial differential equations (PDE) solution on 
the mesh, the mesh is refined to yield a more favorable error 
estimation, which is typically a faster operation than generating 
an entirely new mesh. This is because the PDE solution 
identifies, for a mesh that possesses at least some degree of 
accuracy with respect to the PDE, a subset of mesh regions for 
refinement. The refinement process aims to gradually and 
incrementally add more resolution to the identified areas, as 
opposed to over-refining the mesh, which causes the PDE 
solver to waste computation time due to the excessive 
computations. After a PDE solution for a mesh is computed 
and analyzed, then the mesh may be refined to provide a more 
accurate solution. Assuming proper care for the refinement 
steps, this new mesh will be more accurate in the desired 
regions with respect to the PDE solution. This means that with 
each refinement step, the next iteration of the mesh will have a 
smaller error estimate than the previous mesh. So at each 
iteration, the overall refinement work required to reach a highly 
accurate solution decreases since the mesh’s accuracy always 
improves. When executing any pipeline of tasks, it is critical to 
consider Amdahl’s law which states that the speedup of a 
program is limited by the sequential fraction of the program. 

Figure 1. Development Pipeline 

Since the end goal is to generate a mesh which accurately 
and efficiently fits the PDE, the time to achieve this goal is 
dependent on the number of iterations through the pipeline of 
mesh generation to PDE solver to analysis. Clearly, this 
iterative process needs an initial mesh to begin the process. If 
the initial mesh closely represents the PDE, then fewer 
iterations through the pipeline are required to achieve a suitable 
solution. However, if the initial mesh is highly inaccurate with 
respect to the PDE, then the first iterations through the pipeline 
will present numerous areas which require refinement. 
Eventually, after so many iterations through the pipeline that 
began with an unsuitable initial mesh, the current mesh will 
have similar error estimates as an initial mesh which was well-
suited and closely represented the PDE. So the initial mesh sets 
the pace for the remainder of the iterations through the pipeline 
as well as the amount of refinement work. Clearly we need an 
initial mesh that has a high degree of accuracy with respect to 
the PDE while simultaneously being an efficient discretization 
of the domain in order to provide the most CPU savings to the 
PDE solver and to also generate the final mesh with the fewest 
number of iterations through the pipeline, thus yielding the 
fastest overall execution time. 

A. Related Work 
Current parallel mesh generators exist which handle the 

isotropic cases [5, 10, 11, 13, 14, 15, 16, 19, 20, 23, 24] do not 
perform well for parallel anisotropic mesh generation. Isotropic 
mesh generators which focus on solution-based adaptation 
create many unnecessary elements where there is a high degree 



of gradation in the flow velocities in a direction. These 
anisotropic gradations in the flow velocities require anisotropic 
elements, typically with a 10,000:1 aspect ratio, so representing 
these regions with isotropic elements incurs a multiple orders 
of magnitude fold increase in the number of elements. Using 
isotropic mesh generators to model anisotropic PDE has a 
negative effect for two reasons: the mesh generation time is 
increased significantly because more elements need to be 
created and refined, and the time for the flow solver is 
increased due to the increase in the number of elements in the 
mesh. Isotropic mesh generators are faced with the choice to 
prescribe either a high-density region to capture the anisotropic 
gradations in flow velocities while introducing wasted 
computations, or to settle for a low-resolution region to save 
computations while sacrificing the ability to capture the 
anisotropic gradients.  

With the fast developing field of computational fluid 
dynamics (CFD), a new mesh type has been introduced, graded 
anisotropic meshes. As stated before, these graded anisotropic 
meshes aim to decrease the computational efforts of the PDE 
solvers as well as to decrease the number of elements in the 
mesh. Others, sequentially, [8, 12] have begun developing 
anisotropic mesh generation paradigms to facilitate these CFD 
simulations. Serial two-dimensional tools for aerospace 
application development exist, such as XFOIL [17] and MSES 
[18], which also cater towards airfoil development. In this 
paper, we present an algorithm which: 

• generates a high-fidelity, anisotropic boundary layer 
mesh in parallel based on a user-defined growth 
function 

• generates a globally Delaunay, graded, isotropic 
inviscid region mesh in parallel 

• resolves potential interpolation errors in the boundary 
layer caused by the local density of the mesh 

• resolves self intersections and multi-element 
intersections in the anisotropic boundary layer 

• is a push-button mesh generator, meaning the user only 
needs to provide the input configuration and wait for 
the output without any human intervention 

• is scalable and efficient 

II. ALGORITHM 
Since efficient meshes for aerospace applications are 

comprised of two different mesh types, a pseudo-structured 
anisotropic boundary layer and an unstructured isotropic 
inviscid region, two separate paradigms are needed to generate 
high-fidelity initial meshes that are computationally efficient 
for PDE solvers. The pseudo-structured anisotropic boundary 
layer is generated through an extrusion-based advancing-front 
method, as presented by Aubry et al. [9], while the unstructured 
isotropic inviscid region is generated using a graded decoupled 
approach along with Delaunay refinement. 
A. Anisotropic Boundary Layer 

Physical phenomena such as boundary layers in fluid 
mechanics are anisotropic in nature. There is a high degree of 
gradation in the flow velocities normal to the surface, thus it is 
beneficial to discretize the mesh in a way that efficiently 
captures these anisotropic flow velocities in order to yield 

substantial CPU savings without compromising accuracy. This 
dictates that the mesh should be refined in the direction normal 
to the surface, as shown in Figure 2, where these strong 
gradients exist. These characteristics allow for the extrusion-
based point insertion along the normal of the surface at each 
vertex on the planar straight-line graph (PSLG). Essentially, 
each vertex is treated as an endpoint for a ray while the normal 
at the vertex is treated as the direction of the ray. New points 
are then inserted along the ray according to a growth function. 
There are multiple functions, as presented by Garimella and 
Shephard [1], which can be used to space the prospective 
points. Certain growth functions may yield a more accurate 
discretization of the domain depending on the PDE that is 
being solved. Two common growth functions are polynomial 
and geometric, which offer a uniform growth along the normal 
of the PSLG. However, other more sophisticated, adaptive 
growth functions [1], may be necessary for more complex 
geometries.  

Figure 2. NACA 0012 airfoil with surface normals 

Clearly, larger angles will naturally occur where the slope 
changes rapidly, such as the leading edge shown in Figure 2, 
and where the slope has discontinuities, such as the trailing 
edge in Figure 2 which causes these extremely large angles 
around cusps. The regions where these large angles occur are 
the areas of the mesh that need refinement to satisfy the 
resolution constraints of the mesh’s boundary layer region. 
This is due to two factors: the governing PDE and the implicit 
geometrical representation which has larger angles between 
surface normals in these regions. The trailing edge is a highly 
discussed matter in the CFD field due to the Kutta condition 
and the presence of the stagnation points near the trailing edge 
and the trailing edge wake. The leading edge region is a high-
gradient region with a stagnation point, so quality is critical as 
this is the first part of the airfoil that contacts the fluid, so if the 
leading edge region is not accurately discretized then this 
inaccuracy has a negative effect on the accuracy of the PDE 
solution. 

B. Anisotropic Boundary Layer Refinement 
Since the boundary conditions are calculated first and are 

propagated through and affect the entire solution over the 
mesh, it is critical that the boundary layer be properly 
discretized. This means avoiding the case of intersecting rays. 
Additionally, if the angle between two rays is too large, then 
the distance between vertices of neighboring rays will grow at 
excessively rapid rates, affecting the density of the mesh in the 
corresponding area, causing interpolation errors when the PDE 
solution is computed. To treat these cases, new points are 
created and uniformly spaced between the two points that have 
a large angle between their normals. Linear interpolation 
between the two original normals is used  to compute the 
direction of the new normals. Cusps that typically exist at the 



trailing edge are handled similarly. Instead of creating new 
vertices near the cusp point, a fan of rays is emitted at the cusp 
point where all of the rays of the fan have the cusp point as the 
origin. The direction of the rays is determined using linear 
interpolation. The fan of rays will curve inward towards the 
cusp point, as the physics dictate for these regions. This 
process is done in parallel where each process has a portion of 
the surface vertices (with the first and last vertex of a process’ 
subset of the surface duplicated) and computes the normal at 
the vertex to create the corresponding ray. After the rays have 
been computed for each of the vertices of the PSLG, the angle 
between the current ray and the forward neighboring vertex’s 
ray is computed. If the angle is too large or there a cusp at the 
location, then the aforementioned approach of creating refining 
rays is implored. Figure 3 shows two large angles easily visible 
at the trailing edge of the leading slat of the 30p30n airfoil after 
the ray-based point insertion, while Figure 4 includes the fan of 
augmented points determined by the large angle detection. The 
rays of the fan curve towards the wake along with the rays 
before and after the fan. 

Figure 3. Poorly sized triangles at the trailing edge of the leading slat of the 
30p30n airfoil caused by a discontinuity in the slope of the surface 

Figure 4. Properly sized elements at the trailing edge of the  leading slat of the 
30p30n airfoil after a fan of curved rays is added 

Once the new rays have been determined, each element of 
the airfoil needs to be checked for self intersections of the rays; 
and in the case of a multi-element airfoil, each element’s rays 
need to be checked for intersections with the outer border of 
the boundary layer for all other elements. A hierarchical 
approach to intersection checks is performed for multi-element 
intersections where candidate rays are pruned by whether or 
not they intersect the axis-aligned bounding box (AABB) of 
another element’s boundary layer. A modified version of the 
Cohen-Sutherland algorithm for polygon clipping [6] is used to 
check for AABB intersections. These candidate rays are further 
pruned using an alternating digital tree (ADT) [21]. In two-
dimensions, the ADT is used with a searching algorithm that 
determines if a four-dimensional point lies within a particular 
four-dimensional space subregion. By projecting line 
segments’ extent boxes to four-dimensional points, a line 
segment’s extent box (as a four-dimensional point) can be 
tested to see if it intersects with any of the n line segments’ 
extent boxes (as four-dimensional points) in log(n) time. The 
candidate rays that intersect the AABB then have their extent 
boxes projected to four-dimensional points. The extent boxes 
of the enclosing border segments of the airfoil component’s 
boundary layer are also projected to four-dimensional points 
and then stored in an ADT. Each candidate ray’s extent box is 
queried against the ADT to determine if a ray’s extent box 
intersects an extent box of the boundary layer’s outer border. 
The identified extent box intersections do not guarantee that a 
ray will intersect another element’s boundary layer, but it 
significantly and efficiently reduces the search space. 
Intersection checks using computational geometry are then 
performed for each identified ray and border segment pair. If 
there is an intersection, then the ray will only have points 
inserted up to the intersection point. 

Self-intersections for each element are handled similarly. 
Instead of checking for intersections between rays and the 
outer border, intersections are checked between rays of the 
same element. For each airfoil element, each ray’s extent box is 
projected to a four-dimensional point and added to an ADT. 
The ADT is queried against each ray’s extent box to see which 
other rays have a potential intersection. Computational 
geometry is used to determine if the rays actually intersect, and 
in the case of an intersection, points are inserted up to the 
insertion point. Checking for intersections between n rays’ 
extent boxes using the ADT can be performed in n*log(n) time. 
C. Anisotropic Boundary Layer Point Insertion 

Once the intersections have been resolved, each process 
will compute the points along their set of rays with respect to 
the user-defined growth function. Points are inserted until the 
intersection point, if it exists, or until the resulting triangles 
will be isotropic, to provide a smooth transition to the graded 
inviscid region. Figure 5 shows the smooth transition to the 
isotropic inviscid region. The points are then gathered at the 
root process in order to create the boundary layer subdomains. 
Since the points are locally stored contiguously and the 
ordering is implicitly known by each process due to the 
structured configuration, only the coordinates need to be 
communicated to the root, which significantly reduces the 
communication costs and alleviates a potential bottleneck. 



Figure 5. Main slat of the 30p30n airfoil showing different heights for the 
boundary layer in order to provide a smooth transition to the unstructured 
isotropic triangles 

D. Parallel Triangulation of Anisotropic Boundary Layer 
After the point insertion step is complete, the vertices in the 

boundary layer need to be triangulated. The algorithm 
presented by Blelloch et al. [2] is used, which utilizes the 
duality between the two-dimensional Delaunay Triangulation 
and the three-dimensional lower convex hull of a paraboloid, 
see Figure 6(a). The algorithm works by dividing a set of 
vertices into two subdomains with a median line and dividing 
path of Delaunay edges. The path of Delaunay edges divides 
Delaunay triangles based on if their circumcenter is to one side 
of the median line or to the opposite side of the median line. 
Kadow [16] provides a more in-depth proof regarding the 
mathematics concerning the relationship between the two-
dimensional Delaunay triangulation, three-dimensional lower 
convex hull of a paraboloid, and two-dimensional lower 
convex hull of a paraboloid flattened onto a vertical plane. This 
approach was chosen because the dividing path created 
between subdomains corresponds to constraining edges which 
would be present in the final triangulation if the domain were 
triangulated sequentially without being decomposed. Other 
algorithms [7] which use user-defined dividing paths to 
arbitrarily partition the domain are undesirable as these user-
defined dividing paths may not have been present in the final 
triangulation and will disturb the alignment and orthogonality 
of the anisotropic elements. The median line, for efficiency and 
simplicity of the algorithm, is parallel to the x-axis or y-axis, 
known as the cut axis. These Delaunay edges are edges of 
Delaunay triangles in the final triangulation, which allows for 
each subdomain to be triangulated independently by a state-of-
the-art Delaunay triangulator, Triangle [3]. Using this approach 
as a coarse-partitioner, each subdomain only needs to be 
recursively divided until there are enough subdomains to yield 
an acceptable degree of load balancing for the concurrent 
triangulation of the subdomains. 

Figure 6. (a) Paraboloid and lower convex hull of paraboloid with 
corresponding 2D Delaunay triangulation for a sample point set; (b) Flattened 
paraboloid projection of the point set and lower convex hull with 
corresponding 2D point set and dividing Delaunay path for a sample point set 

Our algorithm starts by creating an initial subdomain which 
stores vertices in x-sorted order and a copy in y-sorted order. 
This allows for the bounding box to be computed in constant 
time using the first and last vertex of the x-sorted and y-sorted 
vertices. The cut axis is set to be the axis parallel to the shortest 
edge of the bounding box to avoid the creation of long, skinny 
subdomains which are more expensive to triangulate with 
Triangle due to the merge step of Triangle’s divide-and-
conquer approach. Maintaining the sorted vertices also allows 
for the median vertex along the cut axis to be located in 
constant time. Using this median vertex, the vertices along the 
cut axis are projected onto a paraboloid centered at the median 
vertex and then flattened onto the vertical plane perpendicular 
to the cut axis, see Figure 6(b). The vertices that have been 
flattened onto the vertical plane are then used to compute the 
lower convex hull in worst case linear time using the 
Monotone Chain algorithm [4], see Figure 7 showing the steps 
of the algorithm. The algorithm works by incrementally 
constructing the lower convex hull from a coordinate-sorted set 
of points by adding one point at a time and removing a point if 
it makes a right-hand turn. Since the vertices were in sorted 
order before the projection, then the vertices will be in sorted 
order after the projection and flattening. The original vertices 
that correspond to the points on the lower convex hull are then 
used to create new edges. 

Two new subdomains are then created and the original 
subdomain’s vertices are then partitioned into the two new 
subdomains’s vertices. For simplicity and without loss of 
generality, assume the cut axis is the y-axis. All vertices in the 
original subdomain which have an x-coordinate less than the 
median vertex’s x-coordinate are added to the left subdomain 
while vertices with x-coordinates greater than the median 
vertex’s x-coordinate are added to the right subdomain. 
Additionally, vertices that comprise the lower convex hull are 
added to both the left and right Subdomain object’s vertices. 
This partitioning step is done by iterating over the original 
subdomain’s x-sorted and y-sorted vertices to maintain the 
sorted vertices in linear time. These new subdomains are then  
sent to another process for further decomposing until all 
processes have sufficient work to facilitate good load 
balancing.  



Figure 7. Steps of the Monotone Chain Algorithm. The vertical grey line 
sweeps from lowest x-coordinate vertex to highest x-coordinate vertex. (a) 
The current lower convex hull; (b) The previous lower convex hull with the 
next vertex added; (c) The next to last point of the lower convex hull makes a 
right-hand turn, so the next to last point must be removed as it is not part of 
the lower convex hull; (d) The current lower convex hull after the non-hull 
point is removed 

Once a subdomain has been sufficiently decomposed, the 
enclosing border of edges is determined and then triangulated 
with Triangle. The criteria for if a subdomain is sufficiently 
decomposed stays true to the original algorithm, whereas if 
there are no internal vertices (vertices not marked as being on 
the subdomain boundary), then the subdomain’s decomposition 
is halted. We have added two more variable constraints as we 
are utilizing this approach as a coarse-partitioner: if the number 
of vertices is less than a given tolerance or if the 
decomposition’s recursive level of a particular subdomain 
reaches a given tolerance, then decomposition ceases for this 
subdomain. The decomposition recursive level is dependent on 
the number of processes. Figure 8 shows the boundary layer 
decomposed into 128 Delaunay subdomains, which can all be 
triangulated independently. 

Figure 8. The boundary layer of the 30p30n airfoil decomposed into 128 
Delaunay independent subdomains 

E. Graded Isotropic Inviscid Region 
For generating the isotropic inviscid region, we use a sizing 

function along with Triangle’s ability to use a user-defined area 
constraint for Delaunay refinement to provide a smooth 
gradation of triangle size based on distance from the initial 
geometry towards the far-field. Since the size of the inviscid 
region is typically a factor of 30 to 50 chord lengths, the length 
of the airfoil, from the initial geometry in the x and y 
directions, the time to refine the inviscid region is extremely 
high, due to the exponential growing area. Thus, we need to 
generate the inviscid region in parallel. To facilitate the parallel 
refinement, we follow the approach of generating graded 
Delaunay decoupling paths as presented in [5], in order to 
distribute the refinement work among processes by creating 
subdomains which can be concurrently refined. The decoupling 
aims to discretize the borders between subdomains in such a 

way that the Delaunay property is maintained when the 
subdomains are independently refined. Each segment of the 
shared border needs to be bound by the circumradius-to-
shortest-edge ratio of √2, dictated by Ruppert’s algorithm for 
Delaunay refinement [22], and bound by the sizing function for 
the location. The decoupling method is a conservative 
approach that refines the shared border to account for the 
worst-shaped elements that may be created. In order to 
generate subdomains that can be efficiently triangulated and 
refined by Triangle, it is essential to create subdomains that are 
convex and do not contain any holes since Triangle first creates 
an initial triangulation and then removes elements inside 
concavities and holes from the initial triangulation. The 
inviscid region is initially decoupled into four quadrants shown 
in Figure 9, where the solid region is the near-body subdomain 
which contains the airfoil. 

Figure 9. Initial four quadrants for decoupling 

 In order to generate the graded Delaunay decoupling path 
of the four initial subdomains, for each subdomain we compute 
a value k, an edge length size based on the termination 
conditions of Delaunay refinement that will be used for the 
decoupling procedure, from (1), where A is the area of the 
desired element at the given vertex, found by evaluating the 
sizing function, for the corner vertex that is shared with the 
near-body subdomain. We march along the shared borders 
between subdomains towards the farfield and  then around the 
outer border to insert new vertices.  

                                   
(1)

                             

                                 

Using the initial k value, kcurrent, at the corner vertex, vcurrent, 
a new point, vnext, can be created 2kcurrent/√3 ≤ D < 2kcurrent units 
from the current vertex. Assume kcurrent ≤ knext for the k values 
at vcurrent and vnext respectively. The following must hold true, D 
< 2knext, to ensure that the Delaunay property be maintained. If 
this inequality is not true, then vnext needs to moved closer to 
satisfy the inequality. Then vcurrent becomes vnext and the 
iteration continues. Four processes receive one of the initial 
quadrants for further decoupling.  

The decoupling process remains the same after the initial 
decoupling, only the decoupling path is altered for future 
subdomains. Further decoupling paths are in the form of a ‘+’ 
shape where a new point is inserted at the center of a 
subdomain and a path is created from the center point to each 
of the four midpoints along the sides of the subdomain. This 
creates four new subdomains to replace the old subdomain. 
New points are not added to the outer border of the subdomain; 
instead, the decoupling path connects to an already existing 
point that is closest to the midpoint of the outer border. This 
eliminates the need for communication between processes 
since new points are only inserted within the interior of a 



subdomain, thus the shared borders between other subdomains 
are undisturbed. The decoupling process is recursive and 
subdomains are repeatedly decoupled and sent to other 
processes until all processes have sufficient work to facilitate 
good load balancing. Once a subdomain is ready to be refined, 
the border is constructed. The vertices are stored in counter-
clockwise order, so constructing the border is done by iterating 
over the vertices in order. The same sizing function used for the 
decoupling is also used for Triangle’s Delaunay refinement 
area bound. Figure 10 shows the decoupled Delaunay 
subdomains. Each subdomain can be independently refined. 
Subdomains were decoupled based on the estimated number of 
triangles for the subdomain. Each subdomain has roughly the 
same number of triangles, so subdomains near the airfoil at the 
center have a smaller area because the triangles have a smaller 
area.  

Figure 10. Decoupled Delaunay subdomains 

F. Load Balancing 
Each process starts with a subset of the domain, 

decomposed or decoupled into subdomains. The borders of 
each subdomain are fixed and consistent between neighboring 
subdomains. To ensure that no process idles too long, when a 
process has a small amount of work left, it will request work 
from another process. A process’ work load is based on the 
total cost of all of the subdomains it has left to triangulate or 
refine. A subdomain’s cost is computed as an estimate of the 
number of triangles that will be in the subdomain. A global 
memory window, detailed in the Implementation section, is 
allocated on the root process as an array that will hold the work 
load estimates for each process. Each process will periodically 
update it’s work load estimate. Whenever a process’ work load 
falls below a threshold, it will fetch the global memory window 
and compute which process has the most work so that it can 
request work from this process. 

III. IMPLEMENTATION 
The software standard used for our implementation is the 

Message Passing Interface (MPI), implemented as MPICH  
v3.0. We also use the POSIX Threads model because each 
process has two threads, a meshing thread and a 
communicating thread. While meshing thread is decomposing, 
decoupling, triangulating, or refining subdomains, the 
communicating thread takes care of updating the process’ work 
units count on the global memory window, evaluating the 
process’ current work load and requesting work from other 
processes, and fulfilling work requests from other processes. 

The global memory window on the root is an MPI window 
object, which are used to facilitate remote memory accesses 
(RMA). RMA is advantageous because it is a direct memory 
transfer from the memory of one process to the memory of 
another process. These direct memory accesses bypass the 
operating system by using the network adapter to yield zero-
copy, high-throughput, and low-latency transfers. However, the 
hardware needs to support this type of communication to reap 
the benefits of RMA. The cluster used for our evaluations 
supports RMA through Infiniband. The communicator thread 
on each process will periodically update how much work the 
process has by using RMA via the MPI put operation, which 
puts the current work load estimate on the global memory 
window on the root process. When a process needs work, the 
communicator thread will fetch the values in the global 
memory window using RMA via the MPI get operation, which 
stores the values of the global memory window into a variable 
on the current process’ memory. From there, the communicator 
thread determines who it should request work from. The actual 
transfer of work is done through MPI send and receive 
operations, not RMA operations. 

Practical data structure and algorithm designs must be 
utilized in order to achieve a scalable and cache-friendly 
distributed memory, parallel application. A contiguous memory 
container is used for storing the Vertex objects in order to take 
advantage of spatial locality in the cache during the boundary 
layer decomposition since the Vertex objects are iterated over 
in order for projecting and flattening the vertices and for 
computing the lower convex hull. For the task of projecting the 
points onto the paraboloid and flattening them onto the vertical 
plane, we made the decision to include the projected 
coordinates in the class definition for Vertex objects, instead of 
creating a separate array to store the projected coordinates. 
This allows us to take advantage of spatial locality when we 
are storing or accessing the projected coordinates and it also 
avoids the repetitive allocation and deallocation of the 
projected coordinates since the data is allocated once at the 
creation of a Vertex object.  

During the boundary layer decomposition, for the task of 
partitioning the vertices after the lower convex hull is 
computed, the primary-axis-sorted vertices can be split at the 
median vertex. For simplicity and without loss of generality, 
assume that the cut axis is the y-axis, so the primary axis is 
then the x-axis. This allows for all of the vertices before the 
median vertex to be placed in the left subdomain, and all of the 
vertices after and including the median vertex to be placed in 
the right subdomain. The benefit of this is that no comparisons, 
and thus no branch operations need to be performed, and low-
level memory copies can be used for the primary-axis-sorted 
vertices, or the x-sorted vertices in this case. However, the 



vertices of the lower convex hull are not represented 
completely in the left and right subdomains. In order to include 
the vertices in the lower convex hull, the vertices with an x-
coordinate less than the median vertex’s x-coordinate are 
placed at the front of the right subdomain’s x-sorted vertices 
while the vertices with an x-coordinate greater than or equal to 
the median vertex’s x-coordinate are placed at the end of the 
left subdomain’s x-sorted vertices.  These lower convex hull 
vertices are actually added to the right subdomain’s x-sorted 
vertices before the original subdomain’s x-sorted vertices to 
avoid the cost of reshuffling the vertices since we are using 
contiguous storage. Additionally, the data for the original 
subdomain is reused for the left subdomain. Not only does this 
eliminate the cost of deallocation for the original subdomain 
and allocation for the left subdomain, but for the task of 
partitioning the primary-axis-sorted vertices, the vertices 
before the median vertex are already in the proper location, 
which eliminates half of the data moving costs. 

Upon examining the source code for Triangle, we noticed 
that the input vertices are sorted by their x-coordinate upon 
invocation. This allowed us to remove the sorting step from 
Triangle since we maintain the x-sorted vertices upon each 
decomposition step and use the x-sorted vertices to populate 
the input data used to call Triangle. Since we over decompose 
the boundary layer and inviscid region, which yields 
subdomains with a small number of vertices, we also specify 
that Triangle should only use vertical cuts for the divide-and-
conquer algorithm which improves the performance for small 
vertex sets.  

IV. RESULTS & EVALUATION 
We executed our application on a cluster with 32 nodes 

with a 4X FDR Infiniband interconnect with RMA support 
(approximately 56 Gbit/sec) dual socket 8 core 2.60 GHz Intel 
E5-2670 Sandybridge (2 x 20MB cache) with 32 GB RAM per 
node. Each MPI rank was assigned to a core. We measured the 
speed up, the ratio of the execution time of the fastest 
sequential algorithm (Triangle in the two-dimensional case) to 
the execution time of the parallel algorithm; and efficiency, the 
ratio of speedup to the number of processes used. We evaluated 
the strong scalability, the speedup when the amount of work, or 
mesh size in this case, is kept fixed. The execution times that 
we measured do not take input and output times into 
consideration. Figure 11 shows good strong scalability up to 
256 processes with a speedup of approximately 180 while 128 
processes can achieve a speedup of approximately 102. Figure 
12 shows the efficiency is roughly 70% for 256 processes and 
80% for 128 processes. Since our application uses Triangle for 
the boundary layer triangulation and inviscid region 
refinement, our application’s running time using one process is 
almost equivalent to the execution time of Triangle. The 
sequential meshing time of Triangle was 192 seconds while the 
sequential meshing time of our application was 196 seconds, 
yielding an efficiency of approximately 98% for the sequential 
case. The increase in meshing time for our application is due to 
the additional triangles created by the inviscid decoupling 
method. The time to read the input file is under 1 second for 
1,500 surface vertices. The sequential time to write an ASCII 
file for the mesh with 172,768,355 triangles is 9 minutes. The 
requirements of the output file are dependent upon the flow 
solver being used. If a flow solver can handle a distributed 
mesh or read from a binary file, the writing time will be less.  

Figure 11. Strong scalability up to 256 processes with a fixed mesh size of 
172,768,335 triangles 

Figure 12. Efficiency of the strong scalability measurement up to 256 
processes with a fixed mesh size of 172,768,335 triangles 

Our algorithm is efficient in terms of communication and 
algorithmic performance. For the decoupled inviscid region, 
we store the points in counter-clockwise order so the edges do 
not need to be created until the subdomain is ready to be 
refined with Triangle. This reduces the communication costs 
since there is less data to be transmitted. This also saves CPU 
cycles during successive decoupling steps for the same 
subdomain because constructing the edges after each 
decoupling step would require us to determine which edges of 
the original subdomain belong to which newly decoupled 
subdomain. We would also waste CPU cycles due to data 
moving costs and the repetitive allocations and deallocations of 
the edges. When a boundary layer subdomain is sent to another 
process for decomposition, the projected coordinates are not 
communicated since they are dependent on the median vertex, 
which changes between each decomposition step. During the 
decomposition step, after the dividing path has been 
determined by the lower convex hull, but before the vertices 
are partitioned, we determine if either of the two new 
subdomains will be sufficiently decomposed. For each of the 
new subdomains that are sufficiently decomposed, we only 
maintain the x-sorted vertices since these are the points that are 
needed by Triangle. This also reduces communication costs for 
transferring a boundary layer subdomain that has already been 
sufficiently decomposed. 



Figure 13. (a) 30p30n airfoil with highlighted regions; (b) Resolved self intersection at a concavity and curved fan of rays at the trailing edge on the leading slat; 
(c) Resolved self intersection at a 90 degree concave corner on the main slat; (d) Resolved multi-element intersection at the curved fans of rays at the trailing edge 
of the main slat and leading edge of the trailing slat; (e) Blunt trailing edge with new rays added around the two discontinuities of the trailing slat

(b) (c)

(d) (e)

(a)



For the load balancing, subdomains are stored in a priority 
queue where the subdomain at the front of the queue is 
estimated to need the most time to mesh. Meshing the largest 
subdomains first, when all processes have work, allows us to 
save the smaller subdomains for more aggressive load 
balancing when there is little total work left and the application 
is close to terminating. This helps us minimize process idle 
time during the final moments of execution. If a process has a 
boundary layer subdomain, then these subdomains are at the 
front of the queue since they contain the most points, compared 
to the inviscid subdomains which only have points on their 
border, thus the boundary layer subdomains take longer to 
transfer to another process. Since we have a mesher thread and 
a communicator thread for each process, the communication 
times only cause a slowdown when the mesher thread runs out 
of work and has to wait on a large subdomain to be received by 
the communicator thread. The communicator thread requests 
additional work before the mesher thread runs out of work. 

Figure 14. Flow solution for pressure for the 30p30n airfoil 

The 30p30n multi-element airfoil in Figure 13 shows the 
different regions of interest and the resulting meshes for: self 
intersections, multi-element intersections, sharp trailing edge, 
and blunt trailing edge. Figure 14 shows the output of FUN3D 
[25], the flow solver used for our simulations, for pressure 
while Figure 15 shows the output for mach speed for the same 
simulation. The simulation was run with a mach number of 0.3, 
Reynolds number of 1 million, and angle of attack of 5 
degrees. For Figure 14 we have a high pressure underneath and 
low pressure on top resulting in high lift. For Figure 15 the 
streamtraces show vortices at the leading slat cavity, the main 
slat cavity, and where the fluid separates at the trailing slat. The 
streamtraces also show the stagnation points  on the underside 
of each slat of the airfoil at areas with low mach speeds which 
causes the fluid to split due to the angle of attack. There is also 
a region with a high mach number towards the upper side of 
the leading edge of the main slat due to the stagnation points 
on the leading and main slat which cause the fluid to accelerate 
through the small gap between the leading and main slat. 

Figure 16 shows the convergence of the solution using 
FUN3D for the conservation of mass equation. We ran one 
simulation using a mesh for the 30p30n airfoil generated with 

our parallel anisotropic algorithm, denoted with the red square 
markers and “Anisotropic” label. The mesh with anisotropic 
boundary layers contained 360,241 triangles. The other 
simulation was run using a mesh for the 30p30n airfoil 
generated with Triangle using isotropic triangles, denoted with 
the green circle markers and “Isotropic” label. The isotropic 
mesh contains 5,314,372 triangles and was generated with 
Triangle using the quality switch so that all angles were above 
20.7 degrees. The isotropic mesh contains over 14 times more 
elements and still took longer for its solution to converge. Both 
simulations were run using the same parameters. Both meshes 
were generated using the same sizing function for gradation 
and the same initial surface distribution of points. The 
anisotropic mesh solution converges by reaching a stopping 
tolerance of 10-12 around 5,000 iterations while the isotropic 
mesh solution takes around 10,000 iterations to converge. 

Figure 15. Flow solution for mach speed for the 30p30n airfoil 

Figure 16. Convergence of the solution for the conservation of mass equation 
for the 30p30n airfoil using anisotropic triangles and isotropic triangles 



V. CONCLUSION 
We have developed the framework and a practical 

implementation to generate high-quality, two-dimensional 
unstructured initial meshes for complex domains in parallel for 
use in CFD simulations on distributed-memory machines. We 
showed that our anisotropic meshes contained fewer elements 
and reached solution convergence in fewer iterations than their 
corresponding isotropic meshes. The application is a push-
button application, meaning that the user only needs to specify 
the input geometry and boundary layer parameters to start the 
program, then momentarily wait for the resulting mesh without 
having to further interact with the application. Additionally, the 
application has three dependencies, the software Triangle, 
POSIX Threads, and MPICH v3.0, making the application as a 
whole, a lightweight and portable parallel mesh generator for 
aerospace applications with viscous flows. Using a high-
fidelity mesh to begin the iterative CFD pipeline will yield a 
final, acceptable mesh in fewer iterations than an ill-suited 
initial mesh. Constructing this initial mesh in parallel also 
eliminates an expensive and sequential bottleneck in the 
development process, yielding a pipeline better suited to 
consider Amdahl’s law. The evaluation of our approach on 
larger clusters is still a work in progress. Since observing that 
our approach is feasible for two-dimensional meshes, we plan 
to extend our approach to generate high-quality three-
dimensional meshes in parallel. However, our approach is 
beneficial even in two-dimensional cases by providing a fast 
parallel, push-button application to facilitate aerospace 
development with rapid turnaround time. 
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