
Parallel Two-Dimensional Unstructured Anisotropic
Delaunay Mesh Generation of Complex Domains for

Aerospace Applications

Juliette Pardue and Andrey Chernikov
Department of Computer Science

Old Dominion University
Norfolk, VA, USA

{jpardue, achernik}@cs.odu.edu  

Abstract—In this paper, we present a bottom-up approach to
parallel anisotropic mesh generation by building a mesh
generator from principles. Applications focusing on high-lift
design or dynamic stall, or numerical methods and modeling test
cases still focus on the two-dimensions. Our push-button parallel
mesh generation approach can generate high-fidelity
unstructured meshes with anisotropic boundary layers for use in
the computational fluid dynamics field. The anisotropy
requirement adds a level of complexity to a parallel meshing
algorithm by making computation depend on the local alignment
of elements, which in turn is dictated by geometric boundaries
and the density functions. Our experimental results show 70%
parallel efficiency over the fastest sequential isotropic mesh
generator on 256 distributed memory nodes.

Keywords—mesh generation; parallel algorithms; anisotropic;
Delaunay;

I. INTRODUCTION
Mesh generation is a step in the iterative pipeline for

designing aerospace structures as shown in Figure 1. After an
analysis of the partial differential equations (PDE) solution on
the mesh, the mesh is refined to yield a more favorable error
estimation, which is typically a faster operation than generating
an entirely new mesh. This is because the PDE solution
identifies, for a mesh that possesses at least some degree of
accuracy with respect to the PDE, a subset of mesh regions for
refinement. The refinement process aims to gradually and
incrementally add more resolution to the identified areas, as
opposed to over-refining the mesh, which causes the PDE
solver to waste computation time due to the excessive
computations. After a PDE solution for a mesh is computed
and analyzed, then the mesh may be refined to provide a more
accurate solution. Assuming proper care for the refinement
steps, this new mesh will be more accurate in the desired
regions with respect to the PDE solution. This means that with
each refinement step, the next iteration of the mesh will have a
smaller error estimate than the previous mesh. So at each
iteration, the overall refinement work required to reach a highly
accurate solution decreases since the mesh’s accuracy always
improves. When executing any pipeline of tasks, it is critical to
consider Amdahl’s law which states that the speedup of a
program is limited by the sequential fraction of the program.

Figure 1. Development Pipeline

Since the end goal is to generate a mesh which accurately
and efficiently fits the PDE, the time to achieve this goal is
dependent on the number of iterations through the pipeline of
mesh generation to PDE solver to analysis. Clearly, this
iterative process needs an initial mesh to begin the process. If
the initial mesh closely represents the PDE, then fewer
iterations through the pipeline are required to achieve a suitable
solution. However, if the initial mesh is highly inaccurate with
respect to the PDE, then the first iterations through the pipeline
will present numerous areas which require refinement.
Eventually, after so many iterations through the pipeline that
began with an unsuitable initial mesh, the current mesh will
have similar error estimates as an initial mesh which was well-
suited and closely represented the PDE. So the initial mesh sets
the pace for the remainder of the iterations through the pipeline
as well as the amount of refinement work. Clearly we need an
initial mesh that has a high degree of accuracy with respect to
the PDE while simultaneously being an efficient discretization
of the domain in order to provide the most CPU savings to the
PDE solver and to also generate the final mesh with the fewest
number of iterations through the pipeline, thus yielding the
fastest overall execution time.

A. Related Work
Current parallel mesh generators exist which handle the

isotropic cases [5, 10, 11, 13, 14, 15, 16, 19, 20, 23, 24] do not
perform well for parallel anisotropic mesh generation. Isotropic
mesh generators which focus on solution-based adaptation
create many unnecessary elements where there is a high degree

of gradation in the flow velocities in a direction. These
anisotropic gradations in the flow velocities require anisotropic
elements, typically with a 10,000:1 aspect ratio, so representing
these regions with isotropic elements incurs a multiple orders
of magnitude fold increase in the number of elements. Using
isotropic mesh generators to model anisotropic PDE has a
negative effect for two reasons: the mesh generation time is
increased significantly because more elements need to be
created and refined, and the time for the flow solver is
increased due to the increase in the number of elements in the
mesh. Isotropic mesh generators are faced with the choice to
prescribe either a high-density region to capture the anisotropic
gradations in flow velocities while introducing wasted
computations, or to settle for a low-resolution region to save
computations while sacrificing the ability to capture the
anisotropic gradients.

With the fast developing field of computational fluid
dynamics (CFD), a new mesh type has been introduced, graded
anisotropic meshes. As stated before, these graded anisotropic
meshes aim to decrease the computational efforts of the PDE
solvers as well as to decrease the number of elements in the
mesh. Others, sequentially, [8, 12] have begun developing
anisotropic mesh generation paradigms to facilitate these CFD
simulations. Serial two-dimensional tools for aerospace
application development exist, such as XFOIL [17] and MSES
[18], which also cater towards airfoil development. In this
paper, we present an algorithm which:

• generates a high-fidelity, anisotropic boundary layer
mesh in parallel based on a user-defined growth
function

• generates a globally Delaunay, graded, isotropic
inviscid region mesh in parallel

• resolves potential interpolation errors in the boundary
layer caused by the local density of the mesh

• resolves self intersections and multi-element
intersections in the anisotropic boundary layer

• is a push-button mesh generator, meaning the user only
needs to provide the input configuration and wait for
the output without any human intervention

• is scalable and efficient

II. ALGORITHM
Since efficient meshes for aerospace applications are

comprised of two different mesh types, a pseudo-structured
anisotropic boundary layer and an unstructured isotropic
inviscid region, two separate paradigms are needed to generate
high-fidelity initial meshes that are computationally efficient
for PDE solvers. The pseudo-structured anisotropic boundary
layer is generated through an extrusion-based advancing-front
method, as presented by Aubry et al. [9], while the unstructured
isotropic inviscid region is generated using a graded decoupled
approach along with Delaunay refinement.
A. Anisotropic Boundary Layer

Physical phenomena such as boundary layers in fluid
mechanics are anisotropic in nature. There is a high degree of
gradation in the flow velocities normal to the surface, thus it is
beneficial to discretize the mesh in a way that efficiently
captures these anisotropic flow velocities in order to yield

substantial CPU savings without compromising accuracy. This
dictates that the mesh should be refined in the direction normal
to the surface, as shown in Figure 2, where these strong
gradients exist. These characteristics allow for the extrusion-
based point insertion along the normal of the surface at each
vertex on the planar straight-line graph (PSLG). Essentially,
each vertex is treated as an endpoint for a ray while the normal
at the vertex is treated as the direction of the ray. New points
are then inserted along the ray according to a growth function.
There are multiple functions, as presented by Garimella and
Shephard [1], which can be used to space the prospective
points. Certain growth functions may yield a more accurate
discretization of the domain depending on the PDE that is
being solved. Two common growth functions are polynomial
and geometric, which offer a uniform growth along the normal
of the PSLG. However, other more sophisticated, adaptive
growth functions [1], may be necessary for more complex
geometries.

Figure 2. NACA 0012 airfoil with surface normals

Clearly, larger angles will naturally occur where the slope
changes rapidly, such as the leading edge shown in Figure 2,
and where the slope has discontinuities, such as the trailing
edge in Figure 2 which causes these extremely large angles
around cusps. The regions where these large angles occur are
the areas of the mesh that need refinement to satisfy the
resolution constraints of the mesh’s boundary layer region.
This is due to two factors: the governing PDE and the implicit
geometrical representation which has larger angles between
surface normals in these regions. The trailing edge is a highly
discussed matter in the CFD field due to the Kutta condition
and the presence of the stagnation points near the trailing edge
and the trailing edge wake. The leading edge region is a high-
gradient region with a stagnation point, so quality is critical as
this is the first part of the airfoil that contacts the fluid, so if the
leading edge region is not accurately discretized then this
inaccuracy has a negative effect on the accuracy of the PDE
solution.

B. Anisotropic Boundary Layer Refinement
Since the boundary conditions are calculated first and are

propagated through and affect the entire solution over the
mesh, it is critical that the boundary layer be properly
discretized. This means avoiding the case of intersecting rays.
Additionally, if the angle between two rays is too large, then
the distance between vertices of neighboring rays will grow at
excessively rapid rates, affecting the density of the mesh in the
corresponding area, causing interpolation errors when the PDE
solution is computed. To treat these cases, new points are
created and uniformly spaced between the two points that have
a large angle between their normals. Linear interpolation
between the two original normals is used to compute the
direction of the new normals. Cusps that typically exist at the

trailing edge are handled similarly. Instead of creating new
vertices near the cusp point, a fan of rays is emitted at the cusp
point where all of the rays of the fan have the cusp point as the
origin. The direction of the rays is determined using linear
interpolation. The fan of rays will curve inward towards the
cusp point, as the physics dictate for these regions. This
process is done in parallel where each process has a portion of
the surface vertices (with the first and last vertex of a process’
subset of the surface duplicated) and computes the normal at
the vertex to create the corresponding ray. After the rays have
been computed for each of the vertices of the PSLG, the angle
between the current ray and the forward neighboring vertex’s
ray is computed. If the angle is too large or there a cusp at the
location, then the aforementioned approach of creating refining
rays is implored. Figure 3 shows two large angles easily visible
at the trailing edge of the leading slat of the 30p30n airfoil after
the ray-based point insertion, while Figure 4 includes the fan of
augmented points determined by the large angle detection. The
rays of the fan curve towards the wake along with the rays
before and after the fan.

Figure 3. Poorly sized triangles at the trailing edge of the leading slat of the
30p30n airfoil caused by a discontinuity in the slope of the surface

Figure 4. Properly sized elements at the trailing edge of the leading slat of the
30p30n airfoil after a fan of curved rays is added

Once the new rays have been determined, each element of
the airfoil needs to be checked for self intersections of the rays;
and in the case of a multi-element airfoil, each element’s rays
need to be checked for intersections with the outer border of
the boundary layer for all other elements. A hierarchical
approach to intersection checks is performed for multi-element
intersections where candidate rays are pruned by whether or
not they intersect the axis-aligned bounding box (AABB) of
another element’s boundary layer. A modified version of the
Cohen-Sutherland algorithm for polygon clipping [6] is used to
check for AABB intersections. These candidate rays are further
pruned using an alternating digital tree (ADT) [21]. In two-
dimensions, the ADT is used with a searching algorithm that
determines if a four-dimensional point lies within a particular
four-dimensional space subregion. By projecting line
segments’ extent boxes to four-dimensional points, a line
segment’s extent box (as a four-dimensional point) can be
tested to see if it intersects with any of the n line segments’
extent boxes (as four-dimensional points) in log(n) time. The
candidate rays that intersect the AABB then have their extent
boxes projected to four-dimensional points. The extent boxes
of the enclosing border segments of the airfoil component’s
boundary layer are also projected to four-dimensional points
and then stored in an ADT. Each candidate ray’s extent box is
queried against the ADT to determine if a ray’s extent box
intersects an extent box of the boundary layer’s outer border.
The identified extent box intersections do not guarantee that a
ray will intersect another element’s boundary layer, but it
significantly and efficiently reduces the search space.
Intersection checks using computational geometry are then
performed for each identified ray and border segment pair. If
there is an intersection, then the ray will only have points
inserted up to the intersection point.

Self-intersections for each element are handled similarly.
Instead of checking for intersections between rays and the
outer border, intersections are checked between rays of the
same element. For each airfoil element, each ray’s extent box is
projected to a four-dimensional point and added to an ADT.
The ADT is queried against each ray’s extent box to see which
other rays have a potential intersection. Computational
geometry is used to determine if the rays actually intersect, and
in the case of an intersection, points are inserted up to the
insertion point. Checking for intersections between n rays’
extent boxes using the ADT can be performed in n*log(n) time.
C. Anisotropic Boundary Layer Point Insertion

Once the intersections have been resolved, each process
will compute the points along their set of rays with respect to
the user-defined growth function. Points are inserted until the
intersection point, if it exists, or until the resulting triangles
will be isotropic, to provide a smooth transition to the graded
inviscid region. Figure 5 shows the smooth transition to the
isotropic inviscid region. The points are then gathered at the
root process in order to create the boundary layer subdomains.
Since the points are locally stored contiguously and the
ordering is implicitly known by each process due to the
structured configuration, only the coordinates need to be
communicated to the root, which significantly reduces the
communication costs and alleviates a potential bottleneck.

Figure 5. Main slat of the 30p30n airfoil showing different heights for the
boundary layer in order to provide a smooth transition to the unstructured
isotropic triangles

D. Parallel Triangulation of Anisotropic Boundary Layer
After the point insertion step is complete, the vertices in the

boundary layer need to be triangulated. The algorithm
presented by Blelloch et al. [2] is used, which utilizes the
duality between the two-dimensional Delaunay Triangulation
and the three-dimensional lower convex hull of a paraboloid,
see Figure 6(a). The algorithm works by dividing a set of
vertices into two subdomains with a median line and dividing
path of Delaunay edges. The path of Delaunay edges divides
Delaunay triangles based on if their circumcenter is to one side
of the median line or to the opposite side of the median line.
Kadow [16] provides a more in-depth proof regarding the
mathematics concerning the relationship between the two-
dimensional Delaunay triangulation, three-dimensional lower
convex hull of a paraboloid, and two-dimensional lower
convex hull of a paraboloid flattened onto a vertical plane. This
approach was chosen because the dividing path created
between subdomains corresponds to constraining edges which
would be present in the final triangulation if the domain were
triangulated sequentially without being decomposed. Other
algorithms [7] which use user-defined dividing paths to
arbitrarily partition the domain are undesirable as these user-
defined dividing paths may not have been present in the final
triangulation and will disturb the alignment and orthogonality
of the anisotropic elements. The median line, for efficiency and
simplicity of the algorithm, is parallel to the x-axis or y-axis,
known as the cut axis. These Delaunay edges are edges of
Delaunay triangles in the final triangulation, which allows for
each subdomain to be triangulated independently by a state-of-
the-art Delaunay triangulator, Triangle [3]. Using this approach
as a coarse-partitioner, each subdomain only needs to be
recursively divided until there are enough subdomains to yield
an acceptable degree of load balancing for the concurrent
triangulation of the subdomains.

Figure 6. (a) Paraboloid and lower convex hull of paraboloid with
corresponding 2D Delaunay triangulation for a sample point set; (b) Flattened
paraboloid projection of the point set and lower convex hull with
corresponding 2D point set and dividing Delaunay path for a sample point set

Our algorithm starts by creating an initial subdomain which
stores vertices in x-sorted order and a copy in y-sorted order.
This allows for the bounding box to be computed in constant
time using the first and last vertex of the x-sorted and y-sorted
vertices. The cut axis is set to be the axis parallel to the shortest
edge of the bounding box to avoid the creation of long, skinny
subdomains which are more expensive to triangulate with
Triangle due to the merge step of Triangle’s divide-and-
conquer approach. Maintaining the sorted vertices also allows
for the median vertex along the cut axis to be located in
constant time. Using this median vertex, the vertices along the
cut axis are projected onto a paraboloid centered at the median
vertex and then flattened onto the vertical plane perpendicular
to the cut axis, see Figure 6(b). The vertices that have been
flattened onto the vertical plane are then used to compute the
lower convex hull in worst case linear time using the
Monotone Chain algorithm [4], see Figure 7 showing the steps
of the algorithm. The algorithm works by incrementally
constructing the lower convex hull from a coordinate-sorted set
of points by adding one point at a time and removing a point if
it makes a right-hand turn. Since the vertices were in sorted
order before the projection, then the vertices will be in sorted
order after the projection and flattening. The original vertices
that correspond to the points on the lower convex hull are then
used to create new edges.

Two new subdomains are then created and the original
subdomain’s vertices are then partitioned into the two new
subdomains’s vertices. For simplicity and without loss of
generality, assume the cut axis is the y-axis. All vertices in the
original subdomain which have an x-coordinate less than the
median vertex’s x-coordinate are added to the left subdomain
while vertices with x-coordinates greater than the median
vertex’s x-coordinate are added to the right subdomain.
Additionally, vertices that comprise the lower convex hull are
added to both the left and right Subdomain object’s vertices.
This partitioning step is done by iterating over the original
subdomain’s x-sorted and y-sorted vertices to maintain the
sorted vertices in linear time. These new subdomains are then
sent to another process for further decomposing until all
processes have sufficient work to facilitate good load
balancing.

Figure 7. Steps of the Monotone Chain Algorithm. The vertical grey line
sweeps from lowest x-coordinate vertex to highest x-coordinate vertex. (a)
The current lower convex hull; (b) The previous lower convex hull with the
next vertex added; (c) The next to last point of the lower convex hull makes a
right-hand turn, so the next to last point must be removed as it is not part of
the lower convex hull; (d) The current lower convex hull after the non-hull
point is removed

Once a subdomain has been sufficiently decomposed, the
enclosing border of edges is determined and then triangulated
with Triangle. The criteria for if a subdomain is sufficiently
decomposed stays true to the original algorithm, whereas if
there are no internal vertices (vertices not marked as being on
the subdomain boundary), then the subdomain’s decomposition
is halted. We have added two more variable constraints as we
are utilizing this approach as a coarse-partitioner: if the number
of vertices is less than a given tolerance or if the
decomposition’s recursive level of a particular subdomain
reaches a given tolerance, then decomposition ceases for this
subdomain. The decomposition recursive level is dependent on
the number of processes. Figure 8 shows the boundary layer
decomposed into 128 Delaunay subdomains, which can all be
triangulated independently.

Figure 8. The boundary layer of the 30p30n airfoil decomposed into 128
Delaunay independent subdomains

E. Graded Isotropic Inviscid Region
For generating the isotropic inviscid region, we use a sizing

function along with Triangle’s ability to use a user-defined area
constraint for Delaunay refinement to provide a smooth
gradation of triangle size based on distance from the initial
geometry towards the far-field. Since the size of the inviscid
region is typically a factor of 30 to 50 chord lengths, the length
of the airfoil, from the initial geometry in the x and y
directions, the time to refine the inviscid region is extremely
high, due to the exponential growing area. Thus, we need to
generate the inviscid region in parallel. To facilitate the parallel
refinement, we follow the approach of generating graded
Delaunay decoupling paths as presented in [5], in order to
distribute the refinement work among processes by creating
subdomains which can be concurrently refined. The decoupling
aims to discretize the borders between subdomains in such a

way that the Delaunay property is maintained when the
subdomains are independently refined. Each segment of the
shared border needs to be bound by the circumradius-to-
shortest-edge ratio of √2, dictated by Ruppert’s algorithm for
Delaunay refinement [22], and bound by the sizing function for
the location. The decoupling method is a conservative
approach that refines the shared border to account for the
worst-shaped elements that may be created. In order to
generate subdomains that can be efficiently triangulated and
refined by Triangle, it is essential to create subdomains that are
convex and do not contain any holes since Triangle first creates
an initial triangulation and then removes elements inside
concavities and holes from the initial triangulation. The
inviscid region is initially decoupled into four quadrants shown
in Figure 9, where the solid region is the near-body subdomain
which contains the airfoil.

Figure 9. Initial four quadrants for decoupling

 In order to generate the graded Delaunay decoupling path
of the four initial subdomains, for each subdomain we compute
a value k, an edge length size based on the termination
conditions of Delaunay refinement that will be used for the
decoupling procedure, from (1), where A is the area of the
desired element at the given vertex, found by evaluating the
sizing function, for the corner vertex that is shared with the
near-body subdomain. We march along the shared borders
between subdomains towards the farfield and then around the
outer border to insert new vertices.

(1)

Using the initial k value, kcurrent, at the corner vertex, vcurrent,
a new point, vnext, can be created 2kcurrent/√3 ≤ D < 2kcurrent units
from the current vertex. Assume kcurrent ≤ knext for the k values
at vcurrent and vnext respectively. The following must hold true, D
< 2knext, to ensure that the Delaunay property be maintained. If
this inequality is not true, then vnext needs to moved closer to
satisfy the inequality. Then vcurrent becomes vnext and the
iteration continues. Four processes receive one of the initial
quadrants for further decoupling.

The decoupling process remains the same after the initial
decoupling, only the decoupling path is altered for future
subdomains. Further decoupling paths are in the form of a ‘+’
shape where a new point is inserted at the center of a
subdomain and a path is created from the center point to each
of the four midpoints along the sides of the subdomain. This
creates four new subdomains to replace the old subdomain.
New points are not added to the outer border of the subdomain;
instead, the decoupling path connects to an already existing
point that is closest to the midpoint of the outer border. This
eliminates the need for communication between processes
since new points are only inserted within the interior of a

subdomain, thus the shared borders between other subdomains
are undisturbed. The decoupling process is recursive and
subdomains are repeatedly decoupled and sent to other
processes until all processes have sufficient work to facilitate
good load balancing. Once a subdomain is ready to be refined,
the border is constructed. The vertices are stored in counter-
clockwise order, so constructing the border is done by iterating
over the vertices in order. The same sizing function used for the
decoupling is also used for Triangle’s Delaunay refinement
area bound. Figure 10 shows the decoupled Delaunay
subdomains. Each subdomain can be independently refined.
Subdomains were decoupled based on the estimated number of
triangles for the subdomain. Each subdomain has roughly the
same number of triangles, so subdomains near the airfoil at the
center have a smaller area because the triangles have a smaller
area.

Figure 10. Decoupled Delaunay subdomains

F. Load Balancing
Each process starts with a subset of the domain,

decomposed or decoupled into subdomains. The borders of
each subdomain are fixed and consistent between neighboring
subdomains. To ensure that no process idles too long, when a
process has a small amount of work left, it will request work
from another process. A process’ work load is based on the
total cost of all of the subdomains it has left to triangulate or
refine. A subdomain’s cost is computed as an estimate of the
number of triangles that will be in the subdomain. A global
memory window, detailed in the Implementation section, is
allocated on the root process as an array that will hold the work
load estimates for each process. Each process will periodically
update it’s work load estimate. Whenever a process’ work load
falls below a threshold, it will fetch the global memory window
and compute which process has the most work so that it can
request work from this process.

III. IMPLEMENTATION
The software standard used for our implementation is the

Message Passing Interface (MPI), implemented as MPICH
v3.0. We also use the POSIX Threads model because each
process has two threads, a meshing thread and a
communicating thread. While meshing thread is decomposing,
decoupling, triangulating, or refining subdomains, the
communicating thread takes care of updating the process’ work
units count on the global memory window, evaluating the
process’ current work load and requesting work from other
processes, and fulfilling work requests from other processes.

The global memory window on the root is an MPI window
object, which are used to facilitate remote memory accesses
(RMA). RMA is advantageous because it is a direct memory
transfer from the memory of one process to the memory of
another process. These direct memory accesses bypass the
operating system by using the network adapter to yield zero-
copy, high-throughput, and low-latency transfers. However, the
hardware needs to support this type of communication to reap
the benefits of RMA. The cluster used for our evaluations
supports RMA through Infiniband. The communicator thread
on each process will periodically update how much work the
process has by using RMA via the MPI put operation, which
puts the current work load estimate on the global memory
window on the root process. When a process needs work, the
communicator thread will fetch the values in the global
memory window using RMA via the MPI get operation, which
stores the values of the global memory window into a variable
on the current process’ memory. From there, the communicator
thread determines who it should request work from. The actual
transfer of work is done through MPI send and receive
operations, not RMA operations.

Practical data structure and algorithm designs must be
utilized in order to achieve a scalable and cache-friendly
distributed memory, parallel application. A contiguous memory
container is used for storing the Vertex objects in order to take
advantage of spatial locality in the cache during the boundary
layer decomposition since the Vertex objects are iterated over
in order for projecting and flattening the vertices and for
computing the lower convex hull. For the task of projecting the
points onto the paraboloid and flattening them onto the vertical
plane, we made the decision to include the projected
coordinates in the class definition for Vertex objects, instead of
creating a separate array to store the projected coordinates.
This allows us to take advantage of spatial locality when we
are storing or accessing the projected coordinates and it also
avoids the repetitive allocation and deallocation of the
projected coordinates since the data is allocated once at the
creation of a Vertex object.

During the boundary layer decomposition, for the task of
partitioning the vertices after the lower convex hull is
computed, the primary-axis-sorted vertices can be split at the
median vertex. For simplicity and without loss of generality,
assume that the cut axis is the y-axis, so the primary axis is
then the x-axis. This allows for all of the vertices before the
median vertex to be placed in the left subdomain, and all of the
vertices after and including the median vertex to be placed in
the right subdomain. The benefit of this is that no comparisons,
and thus no branch operations need to be performed, and low-
level memory copies can be used for the primary-axis-sorted
vertices, or the x-sorted vertices in this case. However, the

vertices of the lower convex hull are not represented
completely in the left and right subdomains. In order to include
the vertices in the lower convex hull, the vertices with an x-
coordinate less than the median vertex’s x-coordinate are
placed at the front of the right subdomain’s x-sorted vertices
while the vertices with an x-coordinate greater than or equal to
the median vertex’s x-coordinate are placed at the end of the
left subdomain’s x-sorted vertices. These lower convex hull
vertices are actually added to the right subdomain’s x-sorted
vertices before the original subdomain’s x-sorted vertices to
avoid the cost of reshuffling the vertices since we are using
contiguous storage. Additionally, the data for the original
subdomain is reused for the left subdomain. Not only does this
eliminate the cost of deallocation for the original subdomain
and allocation for the left subdomain, but for the task of
partitioning the primary-axis-sorted vertices, the vertices
before the median vertex are already in the proper location,
which eliminates half of the data moving costs.

Upon examining the source code for Triangle, we noticed
that the input vertices are sorted by their x-coordinate upon
invocation. This allowed us to remove the sorting step from
Triangle since we maintain the x-sorted vertices upon each
decomposition step and use the x-sorted vertices to populate
the input data used to call Triangle. Since we over decompose
the boundary layer and inviscid region, which yields
subdomains with a small number of vertices, we also specify
that Triangle should only use vertical cuts for the divide-and-
conquer algorithm which improves the performance for small
vertex sets.

IV. RESULTS & EVALUATION
We executed our application on a cluster with 32 nodes

with a 4X FDR Infiniband interconnect with RMA support
(approximately 56 Gbit/sec) dual socket 8 core 2.60 GHz Intel
E5-2670 Sandybridge (2 x 20MB cache) with 32 GB RAM per
node. Each MPI rank was assigned to a core. We measured the
speed up, the ratio of the execution time of the fastest
sequential algorithm (Triangle in the two-dimensional case) to
the execution time of the parallel algorithm; and efficiency, the
ratio of speedup to the number of processes used. We evaluated
the strong scalability, the speedup when the amount of work, or
mesh size in this case, is kept fixed. The execution times that
we measured do not take input and output times into
consideration. Figure 11 shows good strong scalability up to
256 processes with a speedup of approximately 180 while 128
processes can achieve a speedup of approximately 102. Figure
12 shows the efficiency is roughly 70% for 256 processes and
80% for 128 processes. Since our application uses Triangle for
the boundary layer triangulation and inviscid region
refinement, our application’s running time using one process is
almost equivalent to the execution time of Triangle. The
sequential meshing time of Triangle was 192 seconds while the
sequential meshing time of our application was 196 seconds,
yielding an efficiency of approximately 98% for the sequential
case. The increase in meshing time for our application is due to
the additional triangles created by the inviscid decoupling
method. The time to read the input file is under 1 second for
1,500 surface vertices. The sequential time to write an ASCII
file for the mesh with 172,768,355 triangles is 9 minutes. The
requirements of the output file are dependent upon the flow
solver being used. If a flow solver can handle a distributed
mesh or read from a binary file, the writing time will be less.

Figure 11. Strong scalability up to 256 processes with a fixed mesh size of
172,768,335 triangles

Figure 12. Efficiency of the strong scalability measurement up to 256
processes with a fixed mesh size of 172,768,335 triangles

Our algorithm is efficient in terms of communication and
algorithmic performance. For the decoupled inviscid region,
we store the points in counter-clockwise order so the edges do
not need to be created until the subdomain is ready to be
refined with Triangle. This reduces the communication costs
since there is less data to be transmitted. This also saves CPU
cycles during successive decoupling steps for the same
subdomain because constructing the edges after each
decoupling step would require us to determine which edges of
the original subdomain belong to which newly decoupled
subdomain. We would also waste CPU cycles due to data
moving costs and the repetitive allocations and deallocations of
the edges. When a boundary layer subdomain is sent to another
process for decomposition, the projected coordinates are not
communicated since they are dependent on the median vertex,
which changes between each decomposition step. During the
decomposition step, after the dividing path has been
determined by the lower convex hull, but before the vertices
are partitioned, we determine if either of the two new
subdomains will be sufficiently decomposed. For each of the
new subdomains that are sufficiently decomposed, we only
maintain the x-sorted vertices since these are the points that are
needed by Triangle. This also reduces communication costs for
transferring a boundary layer subdomain that has already been
sufficiently decomposed.

Figure 13. (a) 30p30n airfoil with highlighted regions; (b) Resolved self intersection at a concavity and curved fan of rays at the trailing edge on the leading slat;
(c) Resolved self intersection at a 90 degree concave corner on the main slat; (d) Resolved multi-element intersection at the curved fans of rays at the trailing edge
of the main slat and leading edge of the trailing slat; (e) Blunt trailing edge with new rays added around the two discontinuities of the trailing slat

(b) (c)

(d) (e)

(a)

For the load balancing, subdomains are stored in a priority
queue where the subdomain at the front of the queue is
estimated to need the most time to mesh. Meshing the largest
subdomains first, when all processes have work, allows us to
save the smaller subdomains for more aggressive load
balancing when there is little total work left and the application
is close to terminating. This helps us minimize process idle
time during the final moments of execution. If a process has a
boundary layer subdomain, then these subdomains are at the
front of the queue since they contain the most points, compared
to the inviscid subdomains which only have points on their
border, thus the boundary layer subdomains take longer to
transfer to another process. Since we have a mesher thread and
a communicator thread for each process, the communication
times only cause a slowdown when the mesher thread runs out
of work and has to wait on a large subdomain to be received by
the communicator thread. The communicator thread requests
additional work before the mesher thread runs out of work.

Figure 14. Flow solution for pressure for the 30p30n airfoil

The 30p30n multi-element airfoil in Figure 13 shows the
different regions of interest and the resulting meshes for: self
intersections, multi-element intersections, sharp trailing edge,
and blunt trailing edge. Figure 14 shows the output of FUN3D
[25], the flow solver used for our simulations, for pressure
while Figure 15 shows the output for mach speed for the same
simulation. The simulation was run with a mach number of 0.3,
Reynolds number of 1 million, and angle of attack of 5
degrees. For Figure 14 we have a high pressure underneath and
low pressure on top resulting in high lift. For Figure 15 the
streamtraces show vortices at the leading slat cavity, the main
slat cavity, and where the fluid separates at the trailing slat. The
streamtraces also show the stagnation points on the underside
of each slat of the airfoil at areas with low mach speeds which
causes the fluid to split due to the angle of attack. There is also
a region with a high mach number towards the upper side of
the leading edge of the main slat due to the stagnation points
on the leading and main slat which cause the fluid to accelerate
through the small gap between the leading and main slat.

Figure 16 shows the convergence of the solution using
FUN3D for the conservation of mass equation. We ran one
simulation using a mesh for the 30p30n airfoil generated with

our parallel anisotropic algorithm, denoted with the red square
markers and “Anisotropic” label. The mesh with anisotropic
boundary layers contained 360,241 triangles. The other
simulation was run using a mesh for the 30p30n airfoil
generated with Triangle using isotropic triangles, denoted with
the green circle markers and “Isotropic” label. The isotropic
mesh contains 5,314,372 triangles and was generated with
Triangle using the quality switch so that all angles were above
20.7 degrees. The isotropic mesh contains over 14 times more
elements and still took longer for its solution to converge. Both
simulations were run using the same parameters. Both meshes
were generated using the same sizing function for gradation
and the same initial surface distribution of points. The
anisotropic mesh solution converges by reaching a stopping
tolerance of 10-12 around 5,000 iterations while the isotropic
mesh solution takes around 10,000 iterations to converge.

Figure 15. Flow solution for mach speed for the 30p30n airfoil

Figure 16. Convergence of the solution for the conservation of mass equation
for the 30p30n airfoil using anisotropic triangles and isotropic triangles

V. CONCLUSION
We have developed the framework and a practical

implementation to generate high-quality, two-dimensional
unstructured initial meshes for complex domains in parallel for
use in CFD simulations on distributed-memory machines. We
showed that our anisotropic meshes contained fewer elements
and reached solution convergence in fewer iterations than their
corresponding isotropic meshes. The application is a push-
button application, meaning that the user only needs to specify
the input geometry and boundary layer parameters to start the
program, then momentarily wait for the resulting mesh without
having to further interact with the application. Additionally, the
application has three dependencies, the software Triangle,
POSIX Threads, and MPICH v3.0, making the application as a
whole, a lightweight and portable parallel mesh generator for
aerospace applications with viscous flows. Using a high-
fidelity mesh to begin the iterative CFD pipeline will yield a
final, acceptable mesh in fewer iterations than an ill-suited
initial mesh. Constructing this initial mesh in parallel also
eliminates an expensive and sequential bottleneck in the
development process, yielding a pipeline better suited to
consider Amdahl’s law. The evaluation of our approach on
larger clusters is still a work in progress. Since observing that
our approach is feasible for two-dimensional meshes, we plan
to extend our approach to generate high-quality three-
dimensional meshes in parallel. However, our approach is
beneficial even in two-dimensional cases by providing a fast
parallel, push-button application to facilitate aerospace
development with rapid turnaround time.

ACKNOWLEDGMENT
This work was supported (in part) by the National Institute

of Aerospace (http://www.nianet.org) and NSF grant
CCF-1439079. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the NIA or the NSF. We thank Mike Park for his discussions
and comments.

REFERENCES
[1] R.V. Garimella and M.S. Shephard, “Boundary Layer Mesh

Generation for Viscous Flow Simulations,” International Journal
for Numerical Methods in Engineering, vol. 49, 2000, pp.
193-218.

[2] G.E. Blelloch, G.L. Miller, and D. Talmor, “Developing a
Practical Projection-Based Parallel Delaunay Algorithm,” Proc.
12th Annual Symposium on Computational Geometry, 1996, pp.
186-195.

[3] J.R. Shewchuk, “Triangle: Engineering a 2D Quality Mesh
Generator and Delaunay Triangulator,” Applied Computational
Geometry: Towards Geometric Engineering vol. 1148, 1996, pp.
203-222.

[4] A.M. Andrew, “Another Efficient Algorithm for Convex Hulls
in Two Dimensions,” Information Processing Letters, vol. 9,
1979, pp. 216-219.

[5] L. Linardakis and N. Chrisochoides, “Graded Delaunay
Decoupling Method for Parallel Guaranteed Quality Planar
Mesh Generation,” SIAM Journal on Scientific Computing, vol.
30, 2008, pp. 1875-1891.

[6] A. Van Dam, S. K. Feiner, J. F. Hughes, and R. L. Phillips,
Introduction to Computer Graphics, vol. 55, 1994, pp 113.

[7] L.P. Chew, N. Chrisochoides, and F. Sukup, “Parallel
Constrained Delaunay Meshing,” Proc. Symposium on Trends
in Unstructured Mesh Generation, 1997, pp. 89-96.

[8] A. Loseille, D. Marcum, and F. Alauzet, “Alignement and
Orthogonality in Anisotropic Metric-Based Mesh Adaption,”
Proc. 53rd AIAA Computational Fluid Dynamics Conference,
2015.

[9] R. Aubry, K. Karamete, E. Mestreau, D. Gayman, and S. Dey,
“Ensuring a Smooth Transition from Semi-Structured Surface
Boundary Layer Mesh to Fully Unstructured Anisotropic
Surface Mesh,” Proc. 53rd AIAA Computational Fluid
Dynamics Conference, 2015.

[10] A. Chernikov and N. Chrisochoides, “Algorithm 872: Parallel
2D Constrained Delaunay Mesh Generation,” ACM
Transactions on Mathematical Software, vol. 34, 2008, pp. 6-25.

[11] A. Chernikov and N. Chrisochoides, “Parallel Guaranteed
Quality Delaunay Uniform Mesh Refinement,” SIAM Journal
on Scientific Computing, vol. 28, 2006, pp. 1907-1926.

[12] R. Zhang, K.P. Lam, and Y. Zhang, “Conformal and Adaptive
Hexahedral-Dominant Mesh Generation for CFD Simulation of
Architecture Applications,” Proc. Winter Simulation
Conference, 2011.

[13] Y. Ito, A. Shih, A. Erukala, B. Soni, A. Chernikov, N.
Chrisochoides, and K. Nakahashi, “Parallel Unstructured Mesh
Generation Using an Advancing Front Method,” Mathematics
and Computers in Simulation, vol. 75, 2007, pp. 200-209.

[14] G. Globisch, “PARMESH – A Parallel Mesh Generator,”
Parallel Computing, vol. 21, 1995, pp. 509-524.

[15] N. Chrisochoides and D. Nave, “Parallel Delaunay Mesh
Generation Kernel,” International Journal for Numerical
Methods in Engineering, vol. 58, 2003, pp. 161-176.

[16] C. Kadow, “Parallel Delaunay Refinement Mesh Generation,”
Ph.D. thesis, Carnegie Mellon University, 2004.

[17] XFOIL, Subsonic Airfoil Development System, http://
web.mit.edu/drela/Public/web/xfoil.

[18] MSES, Multielement Airfoil Design/Analysis System, http://
raphael.mit.edu/drela/msessum.ps.

[19] L. Lammera and M. Burghardt, “Parallel Generation of
Triangular and Quadrilateral Meshes,” Advances in Engineering
Software, vol. 31, 2000, pp. 929-936.

[20] A.I. Khan and B.H.V. Topping, “Parallel Adaptive Mesh
Generation,” Computing Systems in Engineering, vol. 2, 1991,
pp. 75-101.

[21] J. Bonet and J. Peraire, “An Alternating Digital Tree (ADT)
Algorithm for 3D Geometric Searching and Intersection
Problems,” International Journal for Numerical Methods in
Engineering, vol. 31, 1991, pp. 1–17.

[22] J. Ruppert, “A Delaunay Refinement Algorithm for Quality 2-
Dimensional Mesh Generation,” Journal of Algorithms, vol. 18,
1995, pp. 548-585.

[23] A. Chernikov and N. Chrisochoides, “Three-Dimensional
Delaunay Refinement for Multi-Core Processors,” Proc. ACM
International Conference on Supercomputing, 2008, pp.
214-224.

[24] P. Foteinos, “High Quality Real-Time Image-to-Mesh
Conversion for Finite Element Simulations,” Journal on Parallel
and Distributed Computing, vol. 74, 2014, pp. 2123-2140.

[25] R. Biedron, J. Carlson, J. Derlaga, P. Gnoffo, D. Hammond, W.
Jones, W. Kleb, E. Lee-Rausch, E. Nielsen, M. Park, C. Rumsey,
J. Thomas, and W. Wood, “FUN3D Manual: 12.8,” 2015,
NASA/TM-2015-218807.

http://www.nianet.org
http://web.mit.edu/drela/Public/web/xfoil
http://raphael.mit.edu/drela/msessum.ps

