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Abstract
In this paper we present an adaptive deformable registra-

tion method for Deep Brain Stimulation. The method relies

on hexahedral mesh generation to compensate for the noise

of CT scans. An adaptive approach is utilized to improve

the accuracy of a well known non-rigid registration method

used extensively for registration of MRI data. Finally paral-

lel computing is used to reduce the execution time introduced

due to adaptivity. Our evaluation on three DBS cases indi-

cates that the proposed scheme satisfies the real-time con-

straints of DBS surgery and recovers the deep-brain defor-

mation with high fidelity. Understanding brain shift in this

context is an important task to improve the patient outcomes

in DBS surgery.

1. INTRODUCTION
Deep brain stimulation (DBS) is an effective palliative ther-

apy for patients suffering from Essential Tremor, Parkinson’s

disease, and other neurological movement disorders. As an

adjunct to medical intervention, DBS therapy can reduce the

morbidity associated with these disorders significantly [11].

DBS surgery involves the placement of electrical leads into

precise locations in the deep structures of the brain, with-

out direct intra-operative visualization of the target structures

or of the electrode lead. Modern DBS surgery makes use of

stereotactic systems and image guidance to accurately place

electrode leads, as well as intra-operative imaging to surveil

the location of the lead and guide the surgery. The effective-

ness of DBS is directly correlated with the accuracy of DBS

electrode lead placement, with more accurate electrode place-

ment leading to better clinical outcomes. Rarely, re-operation

is necessary to correct the placement of a DBS lead (1% to

12.7%)[1, 4, 9, 8]. The targets of the DBS surgery are located

in the basal ganglia, a structure that helps regulate movement

and is central to the pathology of Parkinson’s disease. The

basal ganglia itself includes the subthalamic nucleus (STN)

and globus pallidus internus (GPi), two of the targets of DBS

surgery [12, 13].

Compounding the relatively small size and deep location

of these nuclei is the fact that they are often moving targets

during surgery. The phenomenon of brain shift is well docu-

mented during DBS and other procedures that result in CSF

leakage. Previous studies have shown a brain shift during

DBS surgery of up to 4mm in deep brain structures, 13mm

in cortical structures, and development of a pneumocephalus

in early post-surgery of up to 20mm. In addition to intra-

operative shift, there is evidence that as subdural air collec-

tions resolve in the weeks after surgery, these leads may con-

tinue to shift [12, 13]. This shift complicates the placement of

the DBS electrode leads, because the target nuclei are not vis-

ible on intra-operative CT, the modality commonly available

in community and academic medical centers. The accurate

modeling and correction for intra-operative brain shift during

DBS surgery is essential for the improvement of surgical out-

comes.

In this paper we propose a method to detect and quan-

tify brain shift during DBS surgery using pre-operative (CT,

MRI) and intra-operative (O-arm CT) imaging as inputs to a

patient-specific biomechanical adaptive deformable (or non-

rigid) registration algorithm [7]. In essence, this approach

compares pre-operative and intra-operative images, detecting

their movement, and inferring the unknown position of the

surgical targets after brain shift using the deformation recov-

ered from these landmarks.

In this work we describe a method to detect the brain shift

that occurs during DBS surgery both qualitatively and quan-

titatively. The average brain shift of 2mm in the area of in-

terest is at the boundary of resolution for this biomechani-

cal deformable registration method, however, the presence of

a highly radiolucent flexible intracranial fiducial (the stimu-

lating electrode) improves the accuracy of this method. This

effect is greatest precisely where it is most needed; near

the deep-brain targets of DBS surgery. We use this fidu-

cial as a gross landmark in the registration process that al-

lows us to recover the detailed deformation of the electrode

and the surrounding solid tissues. Finally, we employ re-

cent advancements in computational power and the avail-

ability of powerful multi-processing GPU hardware to make

the intra-operative use of these algorithms feasible and cost-

effective. This high-performance computing architecture is

widely available and a good candidate for intra-operative use.



2. PATIENTS AND METHODS
Three patients were included in this study. All patients

had Parkinson’s disease that was refractory to medical man-

agement and were treated with DBS surgery. All patients

were treated at VCUHS Medical Center hospital or the VA

McGuire Medical Center in Richmond. Patients were se-

lected for this retrospective study based on several criteria: (i)

amount of intracranial postoperative air, (ii) presence of bilat-

eral air, (iii) amount of brain shift, and (iv) availability of pre-

operative images (MRI, CT), intra-operative images (O-arm

CT) at appropriate procedural intervals, and post-operative

images (CT). The image size and spacing of the acquired

clinical O-arm CT data is: 512� 512� 192 (voxels3
), and

0:415�0:415�0:833 (mm3
), respectively.

2.1. Procedural Methods
Pre-operative images for all patients were obtained, includ-

ing fine-cut cone-beam CT, volumetric T1, T2, and FLAIR

MRI protocols. Additionally, the placement of six bony fidu-

cials in the patient’s scalp assists in later rigid registrations.

A stereotactic plan was created using these images. The

NexFrame stereotactic system by Medtronic, Inc. was used

for all cases. Next, the stereotactic space was registered to

the image space using the previously placed bony fiducials

while optimizing registration accuracy. The patient’s skull

was trepanned and the dura opened to allow visualization of

the brain. The stereotactic tower was aligned to target and

then the rigid cannulas were inserted into the brain along the

planned track trajectory. The patient was awoken and Micro-

electrode recording (MER) was then carried out to physiolog-

ically identify the target nucleus with the intent of correcting

any targeting inaccuracy. An O-arm image was then obtained

with the cannula and microelectrode at the target. Additional

parallel tracks were made if necessary. Once the ideal track

was determined, the microelectrode was then withdrawn, and

the DBS lead inserted.

The same procedure is then repeated on the contralateral side.

O-arm CT images are taken after insertion of the microcan-

nula on the second side, and then again after final place-

ment of both DBS leads. Following closure, the fiducials

are removed and the patient is then taken for a second post-

operative fine-cut CT scan.

2.2. Computational Methods
We use a physics-based real-time adaptive deformable reg-

istration method [6] customized to register 3D pre-operative

and intra-operative images for DBS (Figure 1). Given pre-

operative MRI and CT, and intra-operative MR (iMR) or CT

(iCT), we aim to find a deformation field between them and

then deform the pre-operative MRI according to this field.

The main idea of the physics-based non-rigid registration

method [5] is to use the known displacement vector associ-

ated with sparse feature points in the brain to estimate the

entire brain deformation using a regularization term based

on a brain biomechanical model [3]. This method includes

four critical components: (i) Segmentation and Mesh Gener-

ation; generate a patient-specific model, (ii) Feature point de-

tection; identify small image blocks that have rich structural

information in the pre-operative MRI, and (iii) Block match-

ing; calculate displacement for each image block to generate

a sparse deformation field, and the main computational step

the (iv) Finite Element Solver which is used to estimate en-

tire brain deformation based on the sparse deformation field

computed at the block matching step (Figure 1). The pre-

processing steps i.e., the segmentation, mesh generation of

the brain images, feature point selection and block matching

are described in [6, 7].

However, in this paper instead of using a tetrahedral mesh we

use a hexaderal mesh which is more robust for CT images

with higher noise than MRI. Given the noise in CT scans and

the fact that the relevance of a displacement estimated with a

block matching algorithm depends on the existence of highly

discriminative structures within a block, we briefly focus on

the feature selection and block matching. We use the vari-

ance of the image intensity within the block region to mea-

sure its relevance and only select a fraction of all potential

blocks based on a predefined parameter of the algorithm. To

avoid redundancy by the overlapping of blocks (i.e., eliminate

blocks which are too close to each other), a parameter of pro-

hibited connectivity is used. There are three options for the

connectivity: vertex, edge and face connectivity (Figure 2).

In addition to various connectivity patterns are supported in

the ITK implementation, in this paper we use the face con-

nectivity since it allows us to leverage the high confidence

landmarks from the lead. Block matching is a well-known

technique widely used in motion coding, image processing

and compression. It is based on the assumption that a com-

plex non-rigid transformation can be approximated by point-

wise translations of small image regions. Considering an im-

age block in a floating image and a predefined search window

in a reference image, the block matching algorithm searches

for a position in the reference image that maximizes a sim-

ilarity measure M. Similarity measures in this task include

mean square difference of intensity (MSD), mutual informa-

tion (MI), and normalized cross correlation (NCC) [2]. By as-

sembling the individual displacement vectors, one can create

a sparse displacement field D, which the finite element solver

will use to approximate the unknown displacement vector as-

sociated with the mesh vertices.

2.2.1. Parallel Finite Element Solver

The Parallel Finite Element Solver (PFEMS) estimates

the mesh deformations from an approximation to an

interpolation-based formulation while it rejecting the feature



Figure 1. Software architecture of the Parallel Adaptive Physics-Based Non-Rigid Registration method (PAPBNR). The red

boxes indicate that the computation is utilizing multiple cores and the gray boxes the existing ITK modules. The red arrows

show the execution order of the different modules. The loop breaks when the desired number of iterations Niter has reached.

Figure 2. The distribution of the selected blocks in a brain

CT scan, using different connectivity patterns. The results are

depicted on six consecutive slices. From top to bottom row:

sagittal CT slice (left) and volumetric rendering (right), se-

lected blocks with “vertex” connectivity, selected blocks with

“edge” connectivity, selected blocks with “face” connectiv-

ity. The “vertex” pattern results in a more uniform distribu-

tion, while the “face” pattern results in a higher block density

nearby the lead and the tissue boundaries.

outliers (blocks with a large error between the computed

mesh deformations and the block matching displacements).

Figure 3 depicts PFEMS. Kb, Km are the N �N stiffness ma-

trices of the blocks and the mesh, respectively. Kg = Kb +Km

is the N �N stiffness matrix of the biomechanical model. F

is the block displacement vector of size N, with N = 3 �Nn

and Nn is the number of the mesh vertices. The parallel out-

lier rejection loop depicted in Figure 3, for each iteration j, it

removes (Nb �Fr)=Nappr blocks with the largest error between

the computed mesh deformations and the block matching dis-

placements. Nb is the number of selected image blocks, Nappr

is the number of outlier rejection steps, and Fr controls the

fraction of the rejected blocks. The PFEMS and all its param-

eters are described in detail at [6].

2.2.2. Analysis

The patient specific biomechanical non-rigid registration

algorithm described above estimates the deformation that

occurs between any two images. In particular, the registra-

tion algorithm accurately tracks highly radiopaque structures,

such as the flexible electrode lead. Our hypothesis is that

the deformation in the flexible electrode approximates the

deformation in the deformable soft tissue (which is radiolu-

cent). The deformations produced between successive intra-

operative images is first visualized, and qualitatively evalu-

ated. We describe the deformation in the region of interest

near to the deep basal ganglia nuclei, or in a diameter of 1cm

around the flexible electrode lead. Next, the recovered defor-

mation fields are then used to deform the pre-operative scan.

Using this newly updated image, we measure the locations

of the relevant nuclei and characterize the brain shift that ac-

counts for this movement.



Figure 3. The Parallel FEM Solver (PFEMS) [6]. Green rep-

resents the input, gray represents the main steps (i.e., initial-

izations, assembly, outlier rejection, and interpolation), cyan

represents the components of each step, and yellow represents

the output (i.e., mesh deformations U).

3. RESULTS

For each patient, we performed a deformable registration

between O-arm CT1, and O-arm CT2 images. Table 1 lists the

parameters of the registration. We identified the pre-operative

and intra-operative positions of the relevant nuclei, and the

deformation at the tip of the flexible lead from the deformed

registered O-arm CT1. For the initialization of the non-rigid

registration we performed a rigid alignment using Slicer’s

4.4.0 BRAINSFit module [10]. Table 2 presents some quan-

titative results of the deformable registration. In all cases, the

deformation is for the first side lead. In cases 1-2, the tip of

the lead shifted primarily posteriorly and toward the side of

the lead. In case 3, the lead shifted anteriorly and toward the

side of the lead. In our future work we will include additional

quantitative data regarding the shift in clinically important

nuclei like the STN and the GPi in the MRIs, as well as ad-

ditional measures of registration accuracy like the Hausdorff

Distance. Figure 4 presents the qualitative evaluation results

for case 1. The image discrepancies after our non-rigid regis-

tration are smaller compared to the rigid registration, particu-

larly near the flexible electrode lead. Figure 5 depicts in more

detail the recovered deformations for case 2. Figure 6 depicts

qualitative evaluation results for case 3.

Table 1. The input parameters for the deformable registra-

tion (x: axial; y: coronal; z: sagittal).

Parameter Units Value Description

Element type - 8-node Hex -

Similarity metric - NCC Normalized Cross Correlation

Fs - 5% % selected image blocks

Connectivity pattern - “face” -

Bs;x �Bs;y�Bs;z voxels 3�3�3 Block size

Ws;x �Ws;y�Ws;z voxels 9�9�9 Window size

Hs;x �Hs;y�Hs;z - 18�18�13 Num Hexahedrons

Eb Pa 2:1�103 Brain’s Young modulus

νb - 0.45 Brain’s Poisson ratio

Fr - 25% % of rejected block outliers

Nappr - 5 Num of outlier rejection steps

Nint - 5 Num of interpolation steps

Niter - 1 Num of adaptive iterations

Table 2. Deformation (mm) at the tip of the flexible lead,

end-to-end non-rigid registration time (including I/O) (sec-

onds), and speed-up for the three clinical cases. The experi-

ments conducted in a Linux workstation with 8 Intel i7-2600

@3.400 GHz CPU cores, and 16GB of RAM.

Case
Deformation (mm) Time (sec) Speed-Up

Lead tip Lead max 1 thread 8 threads (T1=T8)

1 1.05 2.21 233.07 100.70 2.31

2 1.26 2.08 212.76 90.10 2.36

3 1.57 3.18 219.99 94.01 2.34

4. CONCLUSIONS
In this study we measured the brain shift that occurs during

deep brain stimulation surgery by using flexible DBS leads as

a radiopaque landmark in a biomechanical deformable reg-

istration method. We show how it is possible to recover the

deformations that affect two clinically important nuclei of the

basal ganglia. This technique can be applied intra-operatively

to improve the targeting of DBS leads, and post-operatively

to understand the nature of shift during DBS surgery. Future

work includes characterizing how the brain shift occurs over

time using multiple intra-operative images acquired during

a single surgery. In addition, using pre- and post-operative



Figure 4. Qualitative results for case 1. Top row: intra-op O-

arm CT2 (left) and its volume rendering (right). Middle row:

Rigid registered O-arm CT1 subtracted from CT2. Bottom

row: Deformable registered O-arm CT1 subtracted from CT2.

Figure 5. Deformable registered O-arm CT1 for patient 2.

The shift is larger nearby the cortical structures and smaller

in deep brain structures (tip of the lead). Top: cut section of a

volume rendering. Bottom: axial, sagittal, and coronal slices.

MRI, it becomes possible to recover the entire time course of

shift, including any that occurs before the first intra-operative

image is captured. A better understanding of this shift, and

the intra-operative correction of the same can, with future en-

hancements of this method, improve targeting accuracy and

patient outcomes in DBS surgery.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Qualitative evaluation results for case 3. (a)-(f) de-

pict the same sagittal slice of the volumetric CT scan. (a): O-

arm CT1; (b): O-arm CT2; (c): rigid registered O-arm CT1;

(d): non-rigid registered O-arm CT1; (e): rigid registered O-

arm CT1 subtracted from O-arm CT2; (f): non-rigid regis-

tered O-arm CT1 subtracted from O-arm CT2.

ACKNOWLEDGEMENTS
Research reported in this publication was supported in part

by the Modeling and Simulation Fellowship at Old Domin-

ion University, the Office of The Director, National Institutes

Of Health under Award Number R44OD018334 the NSF

grants: CCF-1139864 and CCF-1439079 and by the Richard

T.Cheng Endowment. The content is solely the responsibility

of the authors and does not necessarily represent the official

views of the NIH and NSF.

REFERENCES
[1] P. Blomstedt and I. M. Hariz. Hardware-related compli-

cations of deep brain stimulation: a ten year experience.

Acta Neurochirurgica, 147(10):1061–1064, 2005.

[2] L. G. Brown. A survey of image registration techniques.

ACM Comput. Surv., 24(4):325–376, Dec. 1992.

[3] O. Clatz, H. Delingette, I. F. Talos, A. J. Golby, R. Kiki-

nis, F. A. Jolesz, N. Ayache, and S. K. Warfield. Robust



nonrigid registration to capture brain shift from intra-

operative mri. IEEE Transactions on Medical Imaging,

24(11):1417–1427, Nov 2005.

[4] K. Doshi P. Long-term surgical and hardware-related

complications of deep brain stimulation. Stereotact

Funct Neurosurg, 89(2):89–95, 2011.

[5] F. Drakopoulos and N. P. Chrisochoides. Computa-

tional Modeling of Objects Presented in Images. Fun-

damentals, Methods, and Applications: 4th Interna-

tional Conference, CompIMAGE 2014, Pittsburgh, PA,

USA, September 3-5, 2014, chapter A Parallel Adap-

tive Physics-Based Non-rigid Registration Framework

for Brain Tumor Resection, pages 57–68. Springer In-

ternational Publishing, Cham, 2014.

[6] F. Drakopoulos and N. P. Chrisochoides. Accurate and

fast deformable medical image registration for brain tu-

mor resection using image-guided neurosurgery. Com-

puter Methods in Biomechanics and Biomedical Engi-

neering: Imaging & Visualization, 4(2):112–126, 2016.

[7] F. Drakopoulos, Y. Liu, P. Foteinos, and N. P. Chriso-

choides. Towards a real time multi-tissue adaptive

physics based non-rigid registration framework for

brain tumor resection. Frontiers in Neuroinformatics,

8(11), 2014.

[8] C. Hamani and A. M. Lozano. Hardware-related com-

plications of deep brain stimulation: A review of the

published literature. Stereotact Funct Neurosurg, 84(5-

6):248–251, 2006.

[9] X. Hu, X. Jiang, X. Zhou, J. Liang, L. Wang, Y. Cao,

J. Liu, A. Jin, and P. Yang. Avoidance and manage-

ment of surgical and hardware-related complications of

deep brain stimulation. Stereotact Funct Neurosurg,

88(5):296–303, 2010.

[10] H. Johnson, G. Harris, and K. Williams. Brainsfit: Mu-

tual information registrations of whole-brain 3d images,

using the insight toolkit, 10 2007.

[11] M. F. Khan, K. Mewes, R. E. Gross, and O. Skrinjar.

Assessment of brain shift related to deep brain stimu-

lation surgery. Stereotact Funct Neurosurg, 86:44–53,

2008.

[12] P. Van den Munckhof, M. F. Contarino, L. J. Bour, J. D.

Speelman, R. M. A. de Bie, and P. R. Schuurman. The

first evaluation of brain shift during functional neuro-

surgery by deformation field analysis. Neurosurgery,

67:49–54, 2010.

[13] D. Winkler, M. Tittgemeyer, J. Schwarz, C. Preul,

K. Strecker, and J. Meixensberger. The first evalua-

tion of brain shift during functional neurosurgery by de-

formation field analysis. Journal of Neurology, Neuro-

surgery, and Psychiatry, 76(8):1161–1163, 2005.


	Introduction
	Patients and Methods
	Procedural Methods
	Computational Methods
	Parallel Finite Element Solver
	Analysis


	Results
	Conclusions

