CRTC’s BCC-Based Image-To-Mesh (I2M) Conversion Method

Fotis Drakopoulos and Nikos Chrisochoides
CRTC Lab and Computer Science,
Old Dominion University, Norfolk, USA

This is a progress report of a 10 year-long effort in lattice-based, single-tissue [1], multi-tissue [2], and adaptive [3] mesh generator (CBC3D) that converts 3-dimensional segmented image data (e.g. MRI, CT, micro-CT) into good quality tessellations, for physics-based simulations [4,5]. The current state of the software generates tetrahedral or mixed FE meshes (tetrahedral, pentahedral, and hexahedral) of good quality with high geometric and topologic fidelity, and smooth surfaces. A single-tissue version of this software is open-source and available through ITK and 3D Slicer.

Methods: This is a two-step procedure. The first step creates high quality adaptive Body-Centered Cubic (BCC) initial mesh. The second step deforms the BCC mesh to corresponding physical image boundaries taking into account element quality and geometric/topologic fidelity. The mesh is refined according to local feature size of labels in the segmented image, and the resolution of each tissue is automatically adjusted based on user-defined fidelity parameter in (0,1).

Results: The last ten years we used CBC3D method on isotropic/anisotropic segmented volumetric image data that cover a spectrum of different applications. Figure 1 depicts a mesh of a nidus segmentation [3], and a visual assessment of the achieved I2M conformity on 3D Slicer. Figure 2 depicts examples of large tetrahedral/mixed meshes of complex geometries. In all cases a quantitative assessment is based on metrics like the dihedral angles [0°,180°] and the scaled Jacobian [0,1]. Both figures depict I2M conversions with varying degree of complexity and challenges for element quality, gradation, and geometric & topologic fidelity. There are many challenges ahead: (1) use of Structured Adaptive Mesh refinement to improve mesh gradation and (2) parallel implementation to make it real-time.

References:

(©)This work is funded in part by NSF grants CCF-1439079, ODU Modeling and Simulation Fellowship, John Simon Guggenheim Foundation, and the Richard T. Cheng Endowment.