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Abstract
Mesh generation is a useful tool for obtaining discrete de-
scriptors of medical objects represented by images. Differ-
ent from the conventional meshes with all straight-sided ele-
ments, the curvilinear meshes match curved shapes of med-
ical objects that are ubiquitous in nature very well. How-
ever, the fidelity (accuracy of the representation) of the
mesh boundaries and the quality (measured by Jacobians) of
the mesh elements could be deteriorated when transforming
straight-sided meshes to curvilinear meshes. In this work we
present a technique that allows for the automatic construc-
tion of high-order curvilinear meshes with C1 or C2 smooth
boundaries. By carefully designing the linear mesh genera-
tor, the fidelity is improved compared to the corresponding
linear mesh. The paper also provides a technique as a post-
processing step that corrects all the invalid elements and im-
proves the mesh quality as measured by their Jacobians. The
technique is illustrated with examples and data analysis.

1. INTRODUCTION
The use of discretizations for delineating homogeneous

spatial zones within objects that can be represented as units
for an overall object description is an emerging computing
area that requires a quantitative analysis of spatially depen-
dent attributes. With this approach one starts with the knowl-
edge of observable object properties and uses statistical meth-
ods to infer the processes that govern the formation of the
object. It is a useful tool for biomedical applications, for ex-
ample gene expression pattern analysis [11, 12, 4, 5].

In our previous work [11, 12] we used triangular meshes
with straight sides to discretize images of fruit fly embryos.
However, the embryos, like most biomedical objects, have
curved shapes, and their discretizations with straight-sided
elements have limited accuracy. To obtain much higher ac-
curacy one needs to use curved-sided elements that match the
curves of object boundaries.

Various procedures have also been developed and imple-

mented by other authors to accomplish the generation of a
curvilinear mesh. Sherwin and Peiro [9] adopted three strate-
gies to alleviate the problem of invalidity: generating bound-
ary conforming surface meshes that account for curvature; the
use of a hybrid mesh with prismatic and tetrahedral elements
near the domain boundaries; refining the surface meshes ac-
cording to the curvature. The mesh spacing is decided by a
user defined tolerance ε related to the curvature and a thresh-
old to stop excessive refinement. In the present work we de-
velop a method that allows for an all triangle mesh which
simplifies and unifies both meshing and analysis. Persson and
Peraire [7] proposed a node relocation strategy for construct-
ing well-shaped curved meshes. Compared to our method
which iteratively solves for the equilibrium configuration of a
linear elasticity problem, they use a nonlinear elasticity anal-
ogy, and by solving for the equilibrium configuration, ver-
tices located in the interior are relocated as a result of a pre-
scribed boundary displacement. Luo et al. [6] isolate singular
reentrant model entities, then generate linear elements around
those features, and curve them while maintaining the grada-
tion. Local mesh modifications such as minimizing the de-
formation, edge or facet deletion, splitting, collapsing, swap-
ping as well as shape manipulation are applied to eliminate
invalid elements whenever they are introduced instead of our
global node relocation strategy. George and Borouchaki [8]
proposed a method for constructing tetrahedral meshes of
degree two from a polynomial surface mesh of degree two.
Jacobian is introduced for guiding the correction of the in-
valid curved elements. In contrast, our method does not re-
quire a starting curved boundary mesh, as well as produces
more flexible cubic elements.

In this paper we build the methodology for automati-
cally generating high quality curvilinear meshes with smooth
global mesh boundaries to represent curvilinear domains with
higher accuracy. Cubic Bézier polynomial basis is selected
for the geometric representation of the elements because it
provides a convenient framework supporting the smooth op-
eration and mesh validity verification. We highlight the two
contributions of this paper:

1. The proposed approach is robust in the sense that all the
invalid elements are eliminated, and the mesh quality is



much enforced.

2. The method provides higher accuracy compared to the
linear discretization.

The rest of the paper is organized as follows. in Section 2.,
we review some basic definitions. Section 3. gives a descrip-
tion of the automatic construction of a linear mesh and the
transformation of the linear mesh into a valid high-order
mesh. We present meshing results in Section 4. and conclude
in Section 5..

2. PRELIMINARIES
2.1. Bézier curves
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Figure 1. An example of the cubic Bézier curve with its con-
trol polygon formed by four control points.

We express Bézier curves in terms of Bernstein polynomi-
als. Let u and v be the barycentric coordinates, u ∈ [0,1] and
v ∈ [0,1], u+ v = 1, the n-th order Bernstein polynomial is
defined explicitly by

Bn
i j(u,v) =

(
n
i

)
uiv j, i = 0, ...,n, j = n− i,

where the binomial coefficients are given by(
n
i

)
=

{ n!
i!(n−i)! if 0≤ i≤ n
0 else.

Now the Bézier curve of degree n can be defined in terms of
Bernstein polynomials as

bn(u,v) = ∑
i+ j=n

Bn
i j(u,v)Pi j,

where the set of points Pi j ∈R 2 are called control points, and
the polygon P formed by points Pi j is called control polygon
of the curve bn. Note that this and the following equations are
in fact two equations corresponding to the two spatial coordi-
nates.

Specifically, the cubic Bézier curve can be written in terms
of the barycentric coordinates:

b3(u,v) = ∑
i+ j=3

B3
i j(u,v)Pi j

= u3P03 +3u2vP12 +3uv2P21 + v3P30.

Fig. 1 gives an example of the cubic Bézier curve with its
control polygon.

2.2. Bézier triangles
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Figure 2. An example of the cubic Bézier triangle with its
control net formed by ten control points.

A Bézier triangle of degree n can be defined similarly:

T n(~u) = ∑
i+ j+k=n

Bn
~i (~u)P~i,

where Bn
~i
(~u) is a n-th order Bernstein polynomial in the bi-

variate case and

Bn
~i (~u) =

(
n
~i

)
uiv jwk,

where
~i = {i, j,k}, |~i|= n, ~u = {u,v,w},

u ∈ [0,1], v ∈ [0,1] and w ∈ [0,1] are the barycentric coordi-
nates and u+ v+w = 1. It follows the standard convention
for the trinomial coefficients

(n
~i

)
= n!

i! j!k! . The set of points P~i
are control points, and the net N formed by points P~i is called
control net of the Bézier triangle T n.

Specifically, the Bézier triangle of degree three can be writ-
ten as

T 3(~u) = P300u3 +P030v3 +P003w3

+3P201u2w+3P210u2v+3P120uv2

+3P102uw2 +3P021v2w+3P012vw2

+6P111uvw.

Fig. 2 gives an example of the cubic triangular patch with its
control net formed by its ten control points.

2.3. The Jacobian
We explore the concept of a derivative of a coordinate

transformation, which is known as the Jacobian of the trans-
formation.

Jacobian is the determinant of the Jacobian matrix J which
is defined by all first-order partial derivatives of the transfor-
mation:

J =

[
∂T n

x
∂x̂

∂T n
x

∂ŷ
∂T n

y
∂x̂

∂T n
y

∂ŷ

]
.



The transformation should be bijective, because there should
not be overlapped regions inside the element. This implies
that the sign of the Jacobian of the transformation has to be
strictly positive everywhere on this element.

3. MESH GENERATION FOR CURVILIN-
EAR DOMAINS

Given a bounded curved domain Ω ⊂ R 2, the algorithm
outputs a curvilinear mesh of the interior of Ω with globally
smooth boundary. The algorithm starts with the automatic
construction of a linear mesh with several specified proper-
ties. The boundary edges of those linear elements are then
curved using cubic Bézier polynomials such that these bound-
ary edges constitute a smooth closed curve. The procedure
next curves the interior elements by iteratively solving for the
equilibrium configuration of an elasticity problem until all the
invalid elements are eliminated and the mesh quality is dra-
matically improved.

3.1. Linear mesh construction
The linear mesh has to provide an approximation of the

object shape, and we measure the closeness by the two-sided
Hausdorff distance from the mesh to the image and the image
to the mesh. For image boundary I and mesh boundary M, the
one-sided distance from I to M is given by

h(I,M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided
distance from M to I is given similarly by

h(M, I) = max
m∈M

min
i∈I

d(m, i).

The two-sided distance is:

H(I,M) = max{h(I,M),h(M, I)}.

The initial linear mesh is generated by the modified quad-
tree based image-to-mesh conversion algorithm [3], which
satisfies the following requirements:

1. The mesh maintains the topology of the original image.

2. The two-sided Hausdorff distance from the mesh to
the image and the image to the mesh is within a user-
specified tolerance.

3. The vertices that are on the mesh boundary are all lo-
cated on the image boundary.

4. It can either generate a mesh with almost equal-sized el-
ements inside (except the boundary elements) or coarsen
the mesh to a much lower number of elements with gra-
dation in the interior, decided by the application.

3.2. Smooth boundary construction
A curve can be described as having Cn continuity, n being

the measure of smoothness. Consider the segments on either
side of a point on a curve: (1) C0: The segments touch at the
joint point; (2) C1: First derivatives are continuous at the joint
point; (3) C2: First and second derivatives are continuous at
the joint point.

A smooth C1 piecewise cubic curve has a first derivative
everywhere and the derivative is continuous. A Bézier path
is C1 smooth provided that two Bézier curves share a com-
mon tangent direction at the joint point. The cubic Bézier
form provides enough degrees of freedom to construct a cubic
spline curve that satisfies C2 smoothness requirement. Since
the curvature of a point on a curve is a function with respect
to the first and second derivative of this point, and if the first
and the second derivative are continuous, then the curvature
at this point is continuous. We prefer C2 smooth curve to C1

smooth curve because the boundary of the biomedical objects
usually have continuous curvatures. For how to construct C1

and C2 Bézier curves, please see our previous work [10].

3.3. Mesh untangling
It is usually not enough to curve only the mesh boundary

because some control points may be located such that invalid
elements occur. In such case, edges in the interior of the mesh
should also be curved to eliminate the invalidity or to improve
the curved element quality.

(a) (b)

(c) (d)
Figure 3. (a) Invalid mesh with red invalid elements. (b) The
control nets of the linear mesh elements is the undeformed
geometry. (c) The red control points of the smooth curved
boundary edges are the external loads. (d) The final configu-
ration is determined by solving for the equilibrium configura-
tion of an elasticity problem.



We relocate the control points of the interior mesh edges
using a finite element method [13]. The geometry of the do-
main to be meshed is represented as an elastic solid. For each
linear mesh edge, the two points which are located in the one
third and two thirds ratio of each edge are computed. These
points together with the mesh vertices are the original posi-
tions of the control points of the mesh edges before defor-
mation. These points form the control nets of the linear mesh
elements. The control nets together as a whole is the unde-
formed geometry (shown in Fig. 3b). The external loads are
the displacements of the control points (red points in Fig. 3c)
of the smooth curved boundary edges. The control nets are
deformed such that when the control points of the boundary
edges of the linear mesh moved to the corresponding con-
trol points of the curved boundary edge, the new positions of
the control points of the interior mesh edges are determined
by solving for the equilibrium configuration of an elasticity
problem. Fig. 3 illustrates these steps.

(a) (b)

(c) (d)
Figure 4. An illustration of the iterative finite element
method. (a) The mesh composed of one element. (b) The
invalid mesh with twisted control net. (c) The one-step FE
method was applied, but the control net is still twisted. (d)
The iterative FE method successfully corrected the twisted
control net.

In some cases, the one step finite element method can han-
dle this problem successfully. However, in the case that the
curvature of the boundary edge is very large, the interior
edges may not be able to be curved enough to correct the inva-
lidity. The iterative finite element method successfully solves
this problem. Fig. 4 illustrates the iterative FE method. In this
example there is only one element in the mesh, the black bor-
der line represents the mesh boundary, the blue point repre-
sents one control point of the linear boundary edge. The red
point represents the corresponding control point of the curved
boundary edge. The green point is one of the mesh vertices on
the mesh boundary, thus it has to maintain its position. The
control net is invalid because there exists an inverted triangle.

When one step FE method was applied, the blue point was
directly moved to the red point. After solving for the equilib-
rium configuration, the control net is still twisted. However,
when the yellow point was made the intermediate displace-
ment, the blue point was first moved to the yellow point, then
moved to the red point, the two iteration FE method success-
fully corrected the twisted control net.

The iterative FE method executes the validity check before
each round [10]. When it is reported that an invalid element
exists, the procedure divides the segments formed by the con-
trol points of the linear boundary edges and the correspond-
ing control points of the curved edges. The procedure takes
the endpoints of the subsegments one by one as the interme-
diate external loadings, and takes the solution of the current
external loadings as the undeformed geometry of the next ex-
ternal loadings. The algorithm terminates when all the invalid
elements are corrected. Fig. 5 shows an example of the com-
parison of the result of one-step FE method and the result of
the iterative FE method.

(a) (b)
Figure 5. A comparison of the result of one-step FE method
and the result of the iterative FE method. (a) After one-step
FE method, the two red edges are still tangled together. (b)
After eight iterations, the edges are untangled, all the ele-
ments are valid.

4. MESH EXAMPLES

The input data to our algorithm is a two-dimensional im-
age. The procedure for mesh untangling and quality improve-
ment was implemented in MATLAB. All the other steps were
implemented in C++ for efficiency.

In the following mesh examples, we meshed the mouse
brain image [2], two slices of the human brain image [2], and
the fly embryo image [1]. The mouse brain image (MB) has
the size 198∗169 pixels; the first slice of the human brain im-
age (HB I) has the size 239 ∗ 233 pixels; the second slice of
the human brain image (HB II) has the size 235∗283 pixels;
the fly embryo image (FE) has the size 182∗130 pixels. Each
pixel has side lengths of 1 unit in both x, y directions. The
original images are listed in Fig. 6.



(a) (b)

(c) (d)
Figure 6. The original images. (a) The mouse brain image.
(b) The fly embryo image. (c) The first slice of the human
brain image. (d) The second slice of the human brain image.

We show the linear mesh results for the original images
with different requirements (in Fig. 7). For the mouse brain
image, the fidelity tolerance was specified by 3 pixels; for
the fly embryo image, the fidelity tolerance was specified by
2 pixels; for the first slice of the human brain image, the fi-
delity tolerance was specified by 4 pixels; for the second slice
of the mouse brain image, the fidelity tolerance was specified
by 3 pixels. For all the linear mesh results, the mesh vertices
that are classified on the mesh boundary were required to be
located on the boundary between the background and the tis-
sue of the image. This requirement results in different angle
bounds for the linear mesh results: the minimum angle bound
of the mouse brain image is 3.6◦; the minimum angle bound
of the fly embryo image is 2.8◦, the minimum angle bound of
the first slice of the human brain image is 3.2◦, of the second
slice is 5.4◦. The minimum angle bound is an important mea-
sure to the quality of the linear mesh (the higher the better),
and it also directly contributes to the quality of the curvilinear
mesh. For the curved meshes, the quality can not be measured
just simply by calculating the planar angles, however, it can
be measured by scaled Jacobian [13]. The lower minimum
angle bound for the linear mesh could lead to worse scaled
Jacobian after curving the linear mesh boundary to a smooth
closed path, however, the scaled Jacobian can be improved
by the iterative FE method. For all the linear mesh results, the
elements were not coarsened.

For each of the above linear meshes, we show the linear
mesh boundaries and the curved boundaries with both C1 and
C2 smoothness requirements. In Fig. 8, from left to right for
each image, the boundaries are linear boundaries, C1 bound-
aries and C2 boundaries.

(a) (b)

(c) (d)
Figure 7. The linear meshes. (a) The linear mesh result for
the mouse brain image. (b) The linear mesh result for the fly
embryo image. (c) The linear mesh result for the first slice
of the human brain image. (d) The linear mesh result for the
second slice of the human brain image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 8. The linear mesh boundaries and curved mesh
boundaries with C1 and C2 smoothness requirements for the
original images.



Table 1. Accuracy of the mesh boundaries
Mouse Brain

Example NBPIM NTPOM NMP PNMP (%) PIA (%)
Linear 73 308 381 1.139 N/A

C2 128 166 294 0.879 22.835
C1 95 205 300 0.897 21.260

Fly Embryo
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear 39 101 140 0.592 N/A
C2 59 83 120 0.507 14.286
C1 52 89 123 0.520 12.143

Human Brain I
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear 70 376 446 0.800 N/A
C2 138 229 307 0.659 31.166
C1 111 268 319 0.681 28.475

Human Brain II
Example NBPIM NTPOM NMP PNMP (%) PIA (%)

Linear 147 314 461 0.693 N/A
C2 215 216 431 0.648 6.508
C1 206 201 407 0.648 11.714

The accuracy was specified by the number of misclassified
pixels that composed of background pixels that are inside the
mesh and tissue pixels that are outside the mesh. The accu-
racy of the linear mesh results and the corresponding curvi-
linear meshes with C1 and C2 smoothness requirements are
listed in Table 1.

For each of the original image with linear meshing result
and the corresponding C1 and C2 smooth boundaries, we list
the number of background pixels inside the mesh (NBPIM),
the number of tissue pixels outside the mesh (NTPOM), the
total number of misclassified pixels (NMP), the percentage
for misclassified pixels out of all pixels (PNMP) and the im-
proved accuracy in percentage for both C1 and C2 smooth
boundaries compared to the linear mesh boundary (PIA).
Compare the improved accuracy in percentage (PIA) in Ta-
ble 1, both C1 and C2 smooth boundaries improved the ac-
curacy of the representation. The improved accuracy also re-
lates to the size of the dataset, usually the larger the image,
the more improvement its curvilinear mesh obtained. How-
ever, if the linear mesh is a very close representation of the
image object, after smoothing the mesh boundary, the accu-
racy can not improve much. Compare the improved accuracy
of the meshes that have C1 smooth boundaries with those of
the meshes that have C2 smooth boundaries, the C2 smooth
boundaries usually have higher accuracy than the C1 smooth
boundaries, but the differences are not large. We chose the re-
sults that have better accuracy to construct the final valid high
quality meshes.

When the linear mesh boundaries were curved to closed
smooth paths, and the interior mesh edges remained straight,
the invalid elements were created. The number of invalid ele-
ments for the mouse brain image is 6, for the first slice of the
human brain image is 3, for the second is 1. The invalid ele-
ments are shown in red in Fig. 10a, Fig. 12a and Fig. 12c. The
iterative FE method was applied to the invalid meshes. After
6, 5, 5 iterations, all the invalid elements were eliminated for

these invalid meshes. For the fly embryo image, there is no
invalid element (Fig. 11a). We executed 10 iterations to im-
prove the quality of the elements. The final meshes are shown
in Fig. 10b, Fig. 12b, Fig. 12d, and Fig. 11b.
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Figure 9. The comparison of the scaled Jacobian. (a) The
scaled Jacobian before iterative FE method (the negative
scaled Jacobian were set to be 0 for representation conve-
nience). (b) The scaled Jacobian after iterative FE method.

The quality of the curvilinear meshes was also improved
by the iterative FE method. The measure scaled Jacobian is
defined by:

I =
min|J|
max|J|

,

where |J| is the Jacobian of the mapping from the reference
coordinates to the physical coordinates. For a straight-sided
element, since its Jacobian is a constant, I = 1; for a curved
element, I ≤ 1. When the curved element is invalid, I is nega-
tive; when it gets degenerated, I approaches to 0. From Fig. 9,
the iterative FE method produced more elements with larger
scaled Jacobian, thus the bad shaped elements were improved
largely.



(a) (b)
Figure 10. Invalid meshes and corresponding corrected
meshes for the mouse brain image. (a) Invalid curvilinear
mesh for the mouse brain image. (b) Valid final curvilinear
mesh with quality improvement for the mouse brain image.

(a) (b)
Figure 11. Bad quality curvilinear mesh for the fly embryo
image and corresponding mesh with quality improvement. (a)
Bad quality curvilinear mesh for the fly embryo image. (b)
Improved quality curvilinear mesh for the fly embryo image.

(a) (b)

(c) (d)
Figure 12. Invalid meshes and corresponding corrected
meshes for the two slices of the human brain image. (a) In-
valid curvilinear mesh for the first slice of the human brain
image. (b) Valid final curvilinear mesh with quality improve-
ment for the first slice of the human brain image. (c) Invalid
curvilinear mesh for the second slice of the human brain im-
age. (d) Valid final curvilinear mesh with quality improve-
ment for the second slice of the human brain image.

(a) (b)

(c) (d)
Figure 13. curvilinear meshes with coarsened elements for
the original images.

The algorithm can also construct curved meshes with
coarsened elements inside that have fewer elements. Fig. 13
shows the coarsened curvilinear meshes for the original im-
ages.

Table 2. Run time (s) for the eight examples
Example TNE NIE ITRS RTL (s) TFE (s) TRT (s)
MB (fine) 528 6 6 0.169 88.457 89.703
HB I (fine) 251 3 5 0.239 23.890 24.785
HB II (fine) 235 1 5 0.262 23.212 25.691
FE (fine) 213 0 10 0.111 42.373 44.357
MB (coarse) 39 4 10 0.164 10.199 13.122
HB I (coarse) 27 3 12 0.238 16.860 19.079
HB II (coarse) 39 1 80 0.266 40.500 42.391
FE (coarse) 21 3 8 0.119 10.685 14.366

In Table 2, we list the total number of elements inside the
mesh (TNE), the number of invalid elements (NIE), the it-
erations needed to improve the quality of the mesh (ITRS),
the run time of the linear mesh (RTL), the time spent on FE
method (TFE) and the total run time (TRT). The high-order
mesh generator is slower, and most of the time was spent on
the FEM iterations. The run time is not only decided by the
number of elements inside the mesh, but also determined by
how many iterations it needs, because when there are highly
distorted invalid elements, more iterations are needed to cor-
rect them.

5. CONCLUSION
We presented a new approach for automatically construct-

ing a quality curvilinear mesh to represent geometry with
smooth boundaries. The algorithm we presented is sequential.



Our future work includes the multi-tissue triangular curvilin-
ear mesh construction, the development of the corresponding
parallel algorithm and the extension to the three-dimensional
high-order mesh generation.
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