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Abstract. Mesh generation is a useful tool for obtaining discrete de-
scriptors of biological objects represented by images. The generation of
meshes with straight sided elements has been fairly well understood.
However, in order to match curved shapes that are ubiquitous in na-
ture, meshes with high-order elements are required. Moreover, for the
processing of large data sets, automatic meshing procedures are needed.
In this work we present a new technique that allows for the automatic
construction of high-order curvilinear meshes. This technique allows for
a transformation of straight-sided meshes to curvilinear meshes with C2

smooth boundaries while keeping all elements valid as measured by their
Jacobians. The technique is demonstrated with examples.
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1 Introduction

Discretization of complex shapes into simple elements are widely used in various
computing areas that require a quantitative analysis of spatially dependent at-
tributes. One, traditional, area is the finite element analysis [12] which is used to
numerically solve partial differential equations derived using solid mechanics and
computational fluid dynamics approaches. With this approach one starts with
the knowledge of the constitutive physical laws and initial (boundary) conditions
and obtains a prediction of the properties of objects of interest. Another, emerg-
ing, area is the use of discretization for delineating homogeneous spatial zones
within objects that can be represented as units for an overall object description.
With this approach one starts with the knowledge of object properties and uses
statistical methods to infer the processes that govern the formation of the object.
Therefore, the second approach can be viewed as a reversal of the first approach,
that still relies on a similar discretization technique. This second approach is a
useful tool for bioinformatics applications, for example gene expression pattern
analysis [10, 11, 4].

Said discretizations of objects are usually called meshes, and the simple ele-
ments that they consist of are either triangles and tetrahedra (in two and three
dimensions, respectively), or quadrilaterals and hexahedra. Furthermore, ele-
ments can have either straight or curved sides. In our previous work [10, 11] we



used triangular meshes with straight sides to discretize images of fruit fly em-
bryos. However, the embryos, like most biological objects, have curved shapes,
and their discretizations with straight-sided elements have limited accuracy. To
obtain much higher accuracy one needs to use curved-sided elements that match
the curves of object boundaries.

In this paper we build the methodology for automatically generating valid
high-order meshes to represent curvilinear domains with smooth global mesh
boundaries. Cubic Bézier polynomial basis is selected for the geometric repre-
sentation of the elements because it provides a convenient framework supporting
the smooth operation and mesh validity verification. We highlight the three con-
tributions of this paper:

1. Curved mesh boundary is globally smooth. It satisfies the C2 smoothness
requirement, i.e., the first and second derivatives are continuous.

2. A new procedure was developed to efficiently verify the validity. It is formu-
lated to work in an arbitrary polynomial order.

3. Our proposed approach is robust in the sense that all the invalid elements
are guaranteed to be eliminated.

The procedure starts with the automatic construction of a linear mesh that
simultaneously satisfies the quality (elements do not have arbitrarily small an-
gles) and the fidelity (a reasonably close representation) requirements. The edges
of those linear elements which are classified on the boundary are then curved us-
ing cubic Bézier polynomials such that these boundary edges constitute a cubic
spline curve. Once our validity verification procedure detects invalid elements,
the meshing procedure next curves the interior elements by iteratively solving
for the equilibrium configuration of an elasticity problem until all the invalid
elements are eliminated.

Various procedures have been developed and implemented to accomplish the
generation of a curvilinear mesh. Sherwin and Peiro [8] adopted three strategies
to alleviate the problem of invalidity: generating boundary conforming surface
meshes that account for curvature; the use of a hybrid mesh with prismatic and
tetrahedral elements near the domain boundaries; refining the surface meshes
according to the curvature. However, these strategies are intuitive solutions that
are not guaranteed to generate valid high-order meshes. The mesh spacing is
decided by a user defined tolerance ε related to the curvature and a threshold
to stop excessive refinement. Persson and Peraire [6] proposed a node relocation
strategy for constructing well-shaped curved meshes. Compared to our method
which iteratively solves for the equilibrium configuration of a linear elasticity
problem, they use a nonlinear elasticity analogy, and by solving for the equi-
librium configuration, vertices located in the interior are relocated as a result
of a prescribed boundary displacement. Luo et al. [5] isolate singular reentrant
model entities, then generate linear elements around those features, and curve
them while maintaining the gradation. Local mesh modifications such as mini-
mizing the deformation, edge or facet deletion, splitting, collapsing, swapping as
well as shape manipulation are applied to eliminate invalid elements whenever
they are introduced instead of our global node relocation strategy. George and



Borouchaki [7] proposed a method for constructing tetrahedral meshes of de-
gree two from a polynomial surface mesh of degree two. Jacobian is introduced
for guiding the correction of the invalid curved elements. When the polynomial
degree is higher, it is complicated to calculate the Jacobian, so we develop a
procedure suitable for a polynomial of any degree. Furthermore, none of the
above algorithms generates C1 and C2 smooth mesh boundaries.

The rest of the paper is organized as follows. in Section 2, we review some
basic definitions. Section 3 gives a description of the automatic construction of a
graded linear mesh and the transformation of the linear mesh into a valid high-
order mesh. We present meshing results in Section 4 and conclude in Section 5.

2 Bézier curves and Bézier triangles

2.1 Bézier curves

We express Bézier curves in terms of Bernstein polynomials. A nth order Bern-
stein polynomial is defined explicitly by

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, i = 0, ..., n, t ∈ [0, 1],

where the binomial coefficients are given by(
n

i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n
0 else.

One of the important properties of the Bernstein polynomials is that they satisfy
the following recurrence:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

with

B0
0(t) ≡ 1, Bn

j (t) ≡ 0 for j ∈ 0, ..., n.

Then the Bézier curve of degree n in terms of Bernstein polynomial can be
defined recursively as a point-to-point linear combination (linear interpolation)
of a pair of corresponding points in two Bézier curves of degree n − 1. Given a
set of points P0, P1, ..., Pn ∈ E2, where E2 is a two-dimensional Euclidean space,
and t ∈ [0, 1], set

bri (t) = (1− t)br−1i (t) + tbr−1i+1 (t)

{
r = 1, ..., n
i = 0, ..., n− r

and b0i (t) = Pi. Then bn0 (t) is the point with parameter value t on the Bézier curve
bn. The set of points P0, P1, ..., Pn are called control points, and the polygon P
formed by points P0, P1, ..., Pn is called control polygon of the curve bn.
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Fig. 1: (a) An example of the cubic Bézier curve with its control polygon formed
by four control points. (b) An example of the cubic Bézier triangle with its
control net formed by ten control points.

An explicit form of a n-th order Bézier curve can be defined as

bn(t) =

n∑
i=0

Bn
i (t)Pi.

The barycentric form of Bézier curves demonstrates its symmetry property
nicely. Let u and v be the barycentric coordinates, u ∈ [0, 1] and v ∈ [0, 1],
u+ v = 1, then

bn(u, v) =
∑

i+j=n

Bn
ij(u, v)Pij ,

where Bn
ij(u, v) = n!

i!j!u
ivj , Pij ∈ E2 are the control points, and i+ j = n.

Specifically, the cubic Bézier curve can be written in terms of the barycentric
coordinates,

b3(u, v) =
∑

i+j=3

B3
ij(u, v)Pij = u3P03 + 3u2vP12 + 3uv2P21 + v3P30,

Fig. 1a gives an example of the cubic Bézier curve with its control polygon.

2.2 Bézier triangles

Univariate Bernstein polynomials are the terms of the binomial expansion of
[t+ (1− t)]n. In the bivariate case, a n-th order Bernstein polynomial is defined
by

Bn
i (u) =

(
n

i

)
uivjwk,

where
i = {i, j, k}, |i|= n, u = {u, v, w},

u ∈ [0, 1], v ∈ [0, 1] and w ∈ [0, 1] are the barycentric coordinates and u+v+w =
1. It follows the standard convention for the trinomial coefficients

(
n
i

)
= n!

i!j!k! .



This leads to a simple definition of a Bézier triangle of degree n

T n(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)Pijk,

where Pijk is a control point. Specifically, the Bézier triangle of degree three can
be written as

T 3(u, v, w) =
∑

i+j+k=3

B3
ijk(u, v, w)Pijk

= P300u
3 + P030v

3 + P003w
3 + 3P201u

2w + 3P210u
2v

+ 3P120uv
2 + 3P102uw

2 + 3P021v
2w + 3P012vw

2 + 6P111uvw.

(1)

Fig. 1b gives an example of the cubic triangular patch with its control net formed
by its ten control points.

3 Mesh generation for curvilinear domains

Given a bounded curved domain Ω ⊂ R2, the algorithm outputs a curvilinear
mesh of the interior of Ω with global smooth boundary. Fig. 2 illustrates the
main steps performed by our algorithm. The details are elaborated below.

The mesh has to provide a close approximation of the object shape, and we
measure the closeness by the fidelity tolerance, the two-sided Hausdorff distance
from the mesh to the image and the image to the mesh. For image boundary I
and mesh boundary M , the one-sided distance from I to M is given by

H(I →M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided distance from M
to I is given similarly by

H(M → I) = max
m∈M

min
i∈I

d(m, i).

The two-sided distance is:

H(I ↔M) = max{H(I →M), H(M → I)}.

To generate the initial linear mesh, we adopt the image-to-mesh conversion
algorithm [3], for four reasons: (1) it allows for a guaranteed angle bound (qual-
ity), (2) it allows for a guaranteed bound on the distance between the boundaries
of the mesh and the boundaries of the object (fidelity), (3) it coarsens the mesh
to a much lower number of elements with gradation in the interior, (4) it is
formulated to work in both two and three dimensions.

We transform the linear boundary edges followed by curving the interior
edges to eliminate the invalid elements. Bézier curve basis is selected because
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Fig. 2: An illustration of the main steps performed by our algorithm. (a) The
input two-dimensional image. It shows a curvilinear domain to be meshed. (b) A
linear mesh which satisfies the user specified quality and fidelity tolerances. The
shaded region represents the fidelity tolerance. (c) Those edges that are classified
on the mesh boundary are curved such that the C2 smoothness requirement is
satisfied. (d) When there are curved edges on the boundary and linear edges
in the interior, the mesh validity need to be verified. (e) The red triangles are
invalid elements detected by our verifying procedure. (f) To fix these invalid
triangles, the interior edges are curved by iteratively solving for the equilibrium
configuration of an elasticity problem, and a valid mesh is obtained.

its mathematical descriptions are compact, intuitive, and elegant. It is easy to
compute, easy to use in higher dimensions (3D and up), and can be stitched
together to represent any shape.

Smoothness of the resulting curve is assured by imposing one of the continuity
requirements. A curve or surface can be described as having Cn continuity, n
being the measure of smoothness. Consider the segments on either side of a point
on a curve:

C0: The curves touch at the joint point;
C1: First derivatives are continuous;
C2: First and second derivatives are continuous.

A cubic polynomial is the lowest degree polynomial that can guarantee a C1

or a C2 curve. Biomedical objects usually have naturally smooth boundaries,
and can be approximated by either a C1 or a C2 curve. In our previous work [9],
we present how to construct a C1 Bézier curve; in the following we will address
how to generate a C2 Bézier curve. By counting incorrectly classified pixels (i.e.,
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Fig. 3: An illustration of the construction of the cubic spline curve. (a) An ex-
ample of a cubic spline curve, formed by two Bézier curves with control points
P0, P1, P2, S and S, Q1, Q2, Q3. (b) An A-frame is a structure in which P2

is the midpoint of AP1, Q1 is the midpoint of AQ2 and S is the midpoint of
P2Q1. (c) The cubic spline curve constructed with the help of the B-spline points
shown in green. The black points are S points, which are the endpoints of the
boundary edges of the linear mesh. The red points are the control points need
to be calculated to form the cubic spline curve.

inside vs. outside the shape) in the final mesh, the most suitable curve can be
determined.

We aim to find a cubic spline curve passing through all the mesh boundary
points given in order. It is a piecewise cubic curve that is composed of pieces of
different cubic curves glued together, and it is so smooth that it has a second
derivative everywhere and the derivative is continuous. Fig. 3a gives an example
of a cubic spline curve.

If two Bézier curves with control points P0, P1, P2, S and S, Q1, Q2, Q3 are
touched at point S, both their first and second derivatives match at S if and
only if their control polygons fit an A-frame, which is a structure in which P2 is
the midpoint of AP1, Q1 is the midpoint of AQ2 and S is the midpoint of P2Q1

as Fig. 3b shows.
To fit the A-frame in the set of cubic curves, one easy approach is to use

B-spline as an intermediate step. In Fig. 3c, the S points (shown in black) are
known, they are the endpoints of the boundary edges of the linear mesh. What
still needs to be calculated are the red control points. If the B-spline points (the
apexes of the A-frames, shown in green) are known, the control points (shown
in red) can be easily calculated by computing the one third and two thirds
positions between the connection of every two adjacent B-spline points. The
B-spline points can be computed by the relationship between S points:

6Si = Bi−1 + 4Bi +Bi+1.

By solving a linear system of equations, the coordinates of B-spline points can
be obtained.

The naive high-order mesh generation does not ensure that all the elements
of the final curved mesh are valid. Fig. 4a gives an example of this critical
issue: some of the curvilinear triangular patches have tangled edges. Thus, it is
necessary to verify the validity and eliminate all the invalid elements as a post-
processing step once the curved mesh has been constructed. When elements of
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Fig. 4: (a) An example of invalid mesh. The red line is the curved mesh boundary,
and the blue lines are straight mesh edges in the interior. The curved triangles
that are tangled are highlighted in gray. (b) An illustration of the local u, v,
w coordinates are distorted into a new, curvilinear set when plotted in global
Cartesian x, y space. A general principle for the transformation: an one-to-one
correspondence between Cartesian and curvilinear coordinates.

the basic types will be ‘mapped’ into distorted forms, a general principle is that
an one-to-one correspondence between Cartesian and curvilinear coordinates can
be established (illustrated in Fig. 4b).

The Jacobian matrix carries important information about the local behavior
of the transformation from linear elements to curved elements. A violation of the
condition that the determinant of the Jacobian Matrix is strictly positive every-
where means the violation of the bijection general principle. One way to detect
the element validity is evaluating the sign of the determinant of the Jacobian
matrix throughout the element. In our previous work [9], we took advantage of
the properties of Bézier triangle, formulated the Jacobian expression and calcu-
lated the tight lower bound of the Jacobian value at the element level. However,
although we used the third order polynomial, it is computationally and geomet-
rically complicated. To get the tight bound, we recursively refined the convex
hull of the Jacobian (it is a forth order Bézier triangle) using the Bézier subdivi-
sion algorithm. In this paper, an efficient element validity verification procedure
is developed for polynomials of arbitrary order. An element is invalid if and only
if the control net of the Bézier triangle is twisted, meaning that at least one of
the control triangles (shadowed triangles in Fig. 5) of the control net is inverted.

It is usually not enough to curve only the mesh boundary because some
control points may be located such that element distortions occur in the interior
of the mesh. In such case, interior mesh edges should also be curved to eliminate
the invalidity or improve the curved element quality.

We move the control points of the interior mesh edges using a finite element
method [12]. The geometry of the domain to be meshed is represented as an
elastic solid. For each linear mesh edge, the positions of the two points which
are located in the one third and two thirds ratio of each edge are computed.
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Fig. 5: (a) A valid control net with the uninverted control triangles. (b) A twisted
control net with one inverted control triangle 4P012P102P003.
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Fig. 6: (a) The control nets of the linear mesh elements is the undeformed geom-
etry. (b) The red control points of the smooth curved boundary edges are the
external loadings.

These positions are the original positions of the control points of the interior
edges before deformation. These points form the control nets of the linear mesh
elements. The control nets sticking together as a whole is the undeformed geom-
etry (shown in Fig. 6a). The external loadings are the control points (red points
in Fig. 6b) of the smooth curved boundary edges. The control nets are deformed
such that the control points of the boundary edges of the linear mesh move to
the corresponding control points of the curved boundary edge. By solving for
the equilibrium configuration of an elasticity problem, the finial configuration
is determined and the new positions of the control points of the interior mesh
edges after deformation are obtained. Fig. 6 illustrates these steps.

In most cases, the one step finite element method can handle this problem
successfully. However, in the case that the curvature of the boundary edge is
very large, the interior edges may not be able to be curved enough to correct the
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Fig. 7: An illustration of the iterative finite element method. (a) In this example
there is only one element in the mesh, the black border line represents the mesh
boundary, the position of the blue point represents the original position of one
control point of the linear mesh. (b) The position of the red point is the new po-
sition of the blue point after deformation. The green point is one of the endpoints
of the boundary edge, thus it has to maintain its position. The control net is
invalid because there exists an inverted triangle. (c) The one step FEM method
was applied, the blue point was directly moved to the position of the red point.
After solving for the equilibrium configuration, the control net is still twisted.
(d) The iterative way: make the position of the yellow point as the intermediate
target, first move the blue point to the position of the yellow point, then move to
the position of the red point. The two step FEM method successfully corrected
the twisted control net.

invalidity. The iterative finite element method executes the validity check before
each round. When it is reported that an invalid element exists, the procedure
divides the segment formed by the original position and the new position into
two subsegments. The procedure takes the positions of the endpoints of the
subsegments one by one as the intermediate targets, and takes the solution of
the current target as the input of the next target. The algorithm terminates
when all the invalid elements are corrected. Fig. 6 shows an example.

4 Mesh examples

The input data to our algorithm is a two-dimensional image. The procedure for
mesh untangling and quality improvement was implemented in MATLAB. All
the other steps were implemented in C++ for efficiency.

We meshed a region of a slice of mouse brain atlas [1] and a region of a
fruit fly embryo [2]. The size of the first input is 2550 ∗ 2050 pixels, the size of
the second input is 1900 ∗ 950 pixels. Each pixel has side lengths of 1 unit in x
and y dimensions, respectively. In each example, we show the linear mesh result
and the high-order mesh result (see Fig. 8 and Fig. 9). For both examples, the
fidelity tolerance for the linear mesh was specified by two pixels and the angle
quality bound was specified by 20◦. In the first example, after boundary edges
were curved, there were two invalid elements in the mesh interior. In the second
example, the number of invalid elements is one. After the mesh untangling pro-
cedure, all the invalid elements were corrected in both examples. The incorrectly
classified pixels (include both background pixels in the mesh elements and tissue
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Fig. 8: Meshing results for a slice of mouse atlas [1]. (a) Linear mesh with two
pixels fidelity tolerance and 19◦ angle bound. (b) Final curvilinear mesh in which
all the elements are valid.

(a) (b)

Fig. 9: Meshing results for a fruit fly embryo [2]. (a) Linear mesh with two pixels
fidelity tolerance and 19◦ angle bound. (b) Final curvilinear mesh in which all
the elements are valid.

pixels outside the mesh) of the high-order mesh in both examples were improved
about 10 percent compared to that of the linear mesh.

5 Conclusion

We presented a new approach for automatically constructing a guaranteed qual-
ity curvilinear mesh to represent geometry with smooth boundaries.

Our future work will include the run time improvement. Compared to the
linear mesh generation we present in Section 3, the construction of the high-order
mesh is slow. One reason of the inefficiency is the hybrid code we implemented
both in MATLAB and C++. The most critical reason is that, in the procedure
of invalid mesh correction, we can not anticipate how many iterations we need
to eliminate all the invalid elements. As a result, we repeat this procedure until
the suitable number of iteration is found. Parallelization may also be used later
to enhance the efficiency.



The other concern is further improving the accuracy. Our next step is design-
ing a more suitable linear mesh generation algorithm for curvilinear discretiza-
tion. For example, besides the two-sided Hausdorff fidelity requirement, if we
warp all the mesh boundary vertices to the image boundary, after smoothing,
the high-order mesh boundary will be naturally approaching to the boundary of
the biomedical objects.
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