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Abstract
We present an Image-To-Mesh Conversion method for build-

ing a realistic biomechanical model particularly targeted for

surgical simulations. Our implementation generates tetrahe-

dral meshes that conform to the physical boundaries of multi-

label segmented images. Our approach, initially creates a

Body-Centered Cubic (BCC) lattice that is a coarse approx-

imation of the object boundaries, and then subdivides the

lattice using a red-green refinement strategy that guarantees

the high quality of the new elements. In a later step, our

method deforms the lattice surfaces to their corresponding tis-

sue boundaries using a point-based registration scheme. As a

result, the final mesh is smooth and accurately represents the

object boundaries allowing a faithful response of the biome-

chanical properties of the tissues involved in a surgical sim-

ulation. Besides, the generated mesh is adaptive with smaller

elements in areas where more detail is desired and larger

elements in the remainder of the image regions. We evalu-

ate our method qualitatively and quantitatively on isotropic

and anisotropic segmented volumetric images. The described

implementation will be available within two popular open

source software: the 3D Slicer for visualization and image

analysis, and the SOFA framework for real-time medical sim-

ulations.

1. INTRODUCTION

Mesh generation of medical images is necessary for biome-

chanical surgical simulation of the brain tissue deformation

[10, 15, 14], and other applications like intra-operative non-

rigid registration [8, 9, 7]. Although numerous mesh gen-

eration methods have been described to date, there are few

which can deal with medical data input [5, 2]. Even fewer

algorithms have been implemented and evaluated. Software

packages that can produce high quality meshes are usually

commercial [3, 1].

Mesh generation for medical imaging applications is com-

plicated by the absence of the precise description of the ob-

ject geometry, which is required by most of the traditional ap-

proaches to mesh generation. A robust Image-To-Mesh Con-

version method has to satisfy the following requirements: (1)

it should work directly with medical data (segmentations or

greyscale images); (2) meshes must conform to the region of

interest and have good quality (e.g., we can use the minimal

dihedral angle of a tetrahedron to evaluate its quality); (3) the

algorithm should be capable of producing adaptive meshes;

(4) simulation procedures require the algorithm to be very

fast.

Some groups [4, 12] presented multi-tissue mesh genera-

tion methods based on a Delaunay refinement. However, el-

ements with small dihedral angles (slivers) are likely to oc-

cur in Delaunay meshes because elements are removed only

when the radius-edge ratio is large. Their dihedral angle qual-

ity is completely ignored.

Others [16] presented an octree-based method to generate

tetrahedral and hexahedral meshes. This method first identi-

fies the interface between two or more different tissues and

non-manifold vertices on the boundary. Then, all tissue re-

gions are meshed with conforming boundaries simultane-

ously. Finally, edge contraction and geometric flow schemes

are used to improve the quality of the tetrahedral mesh.

In this paper we present an Image-To-Mesh Conversion

method based on [13, 11], suitable for surgical simulation

of highly deformable bodies and anatomical modeling of

complex structures like brain Arteriovenous Malformations

(AVM).

Our implementation covers a suitable bounding box of the

object with a uniform Body-Centered Cubic (BCC) lattice.

Next, it subdivides the lattice using a red-green refinement

scheme to regularly (red) split any tetrahedra where more

resolution is required, and then irregularly (green) split any

tetrahedra in such a way to restore the mesh to the state of

being a valid simplicial complex. Once the refinement pro-

cedure is complete, the topology of the candidate mesh is fi-

nalized, and the tetrahedra which are completely outside of

the object are discarded. The obtained BCC mesh has a guar-

anteed quality (minimum dihedral angle equal to 30Æ), how-

ever, it is not an accurate approximation of the image bound-

aries, and it is not smooth. For those reasons, the surfaces of

the BCC mesh are iteratively deformed to their corresponding

image boundaries using a customized point-based registration

scheme. The mesh after the deformation: (1) accurately con-

forms to the image boundaries, (2) is non-uniform (adaptive),

and (3) is smooth allowing a certain degree of visual reality

during a surgical simulation. Next, we will describe the basic
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steps of the method and present evaluation results from volu-

metric isotropic and anisotropic multi-label segmented data.

2. METHOD
Our approach requires a multi-label segmented image as

input, in which label zero denotes the background, and pos-

itive integers indicate different tissues. The image can have

uniform (isotropic) or non-uniform (anisotropic) spacing. Our

implementation consists of two steps: (1) BCC mesh genera-

tion and refinement, and (2) Mesh deformation.

2.1. BCC mesh generation and refinement
This step initially creates a homogeneous BCC lattice and

then refines the tetrahedra that cross the physical boundaries

of the image. The lattice is refined until the desired fidelity

(Table 2) is reached. The higher the fidelity, the larger the

mesh.

The BCC lattice is an actual crystal structure ubiquitous

in nature. It is highly structured and easily refined before or

during the simulation [13]. The vertices of the BCC grid are

points of two interlaced grids like the blue and the green in

Figure 1(a). The edges of BCC lattice consist of edges of the

grid and additional edges between a vertex and its eight near-

est neighbors in the other grid. The parameter BCCsize (Table

2) determines the distance between the vertices of the BBC

grid.

The BCC refinement is performed by a red-green strat-

egy. Initially, all BCC lattice tetrahedra are labeled with a red

color. A red tetrahedron can be subdivided into eight children

(1:8 regular refinement), and each child is labeled with a red

color, as shown in Figure 1(b). There are three choices for

the internal edge of the tetrahedron. If the shortest one is se-

lected, the resulting eight child tetrahedra are exactly the BCC

tetrahedra except the size is one half of the original BCC. So,

the quality of the refined mesh can be guaranteed using this

red (regular) subdivision. The red subdivision will lead to T-

junctions at the newly-created edge midpoints where neigh-

boring tetrahedra are not refined to the same level. To remove

the T-junctions, a green (irregular) subdivision, including the

three cases depicted in Figure 1(b), is performed.

In a multi-label image, a tissue is defined by a set of voxels

with the same intensity. Heuristically, the closer the surface

of a sub-mesh is to the boundary of a tissue, the more vox-

els of the tissue are located in the sub-mesh, and the more

voxels with the same label this sub-mesh has. To quantita-

tively evaluate the similarity between the sub-mesh and the

tissue region, we define the voxel set S1: all voxels in the sub-

mesh, and S2: all voxels in the tissue region. S1\ S2 defines

the point set shared by the sub-mesh and the tissue region. We

expect the common region to be similar with the sub-mesh

and the tissue region. We use the ratio F1 =
S1\S2
jS1j

to measure

the similarity between the common region and the sub-mesh,

and F2 =
S1\S2
jS2j

to measure the similarity between the com-

mon region and the tissue region. So, the refinement criterion

can be defined as:

Refine the mesh if: F1 < F or F2 < F (1)

where F 2 (0;1℄ is the input fidelity listed in Table 2. In the

case where the resolution of the input image is very low or the

size of the element is very small compared to the voxel size,

the number of the voxels inside an element might be zero.

For this reason, up-sampling is performed automatically if no

voxels are detected in a tetrahedron. To improve the perfor-

mance, we do not perform up-sampling in the whole image,

but restrict it to the bounding box of the tetrahedron.

(a) An example of a BCC lattice. The blue and green

edges illustrate the two interlaced grids. The eight red

edges lace the two grids together.

(b) Red-Green refinement.

Figure 1. BCC lattice generation and refinement. The fig-

ures come from [13].

2.2. Mesh deformation
The produced BCC mesh consists of nicely shaped ele-

ments. However, it does not provide a certain degree of vi-

sual reality during a surgical simulation, because first, it is

not an accurate approximation of the image boundaries, and

second, it is not smooth. This step overcome those problems

by deforming the surfaces of the mesh to their corresponding

physical image boundaries.

The mesh deformation is facilitated by a point-based regis-

tration algorithm performed between two point sets: a source

and a target point set. The source points are the surface

verices of the BCC mesh. The target points are the edge points

in the multi-label image. We obtain the target points using a

Canny edge detection filter [6]. The non-connectivity param-

eter (Table 2) avoids the selection of target points that are too

close to each other and determines the density of the point

set. Four patterns are available: vertex, edge, face, and no



non-connectivity (Figure 2). The vertex pattern extracts fewer

target points from the image while the no non-connectivity

pattern extracts the maximum possible number of points. The

larger the number of target points, the more computationally

intensive the registration.

The mesh deformation is iterative. The larger the number

of iterations, the smoother the mesh. The number of iterations

is determined by the user (Table 2). Our experimental evalu-

ation shows that typically, up to ten iterations are adequate to

make the mesh look visually appealing. Figure 3 depicts an

example of a nidus mesh during deformation.

At iteration i of the mesh deformation step, for each source

point, its potential correspondence target point is located in

the neighborhood of the source point. Then a biomechanical

model is built from mesh i, the computed matching displace-

ments are applied to the model, and a linear system of equa-

tions is solved to compute the displacements on the vertices

of the mesh i. In the next iteration, the coordinates of the de-

formed source points at iteration i+ 1 are used to compute

the correspondence between the source and the target point

set. The biomechanical model is built from mesh i+1, and a

new linear system of equations is solved. The registration al-

gorithm that drives the mesh deformation is developed within

the ITK1 framework. A non-ITK version of this method was

previously described at [11].

(a) Image (b) Vertex (c) Edge (d) Face (e) No

Figure 2. Non-connectivity patterns (vertex, edge, face, and

no non-connectivity) for the extraction of the target points

from the multi-label image.

3. SOFTWARE INTEGRATION
The described implementation will also be available within

the open source SOFA2 and Slicer3 software.

3.1. SOFA Plugin
SOFA is an open source framework primarily targeted at

real-time medical simulations. Our Image-To-Mesh Conver-

sion plugin is actually a shared library, loaded at runtime by

SOFA. The purpose of the plugin architecture is to allow the

developers to add their own components into SOFA, without

having to integrate them into the heart of SOFA directories.

1http://www.itk.org/
2http://www.sofa-framework.org/
3http://www.slicer.org/

(a) i= 0 (b) i= 3

(c) i= 7 (d) i= 10

Figure 3. A nidus mesh during the deformation step. Itera-

tion i = 0 corresponds to the un-deformed BCC mesh.

Figure 4 illustrates the scene graph of a SOFA simulation;

our plugin (CBC3D) generates a tetrahedral mesh and a visual

model of the mesh is created by mapping the output tetrahe-

dral topology to the surface triangles topology. Figure 5 de-

picts the output tetrahedral visual model in SOFA’s viewer.

Currently, our CBC3D plugin is used for the develop-

ment of an interactive simulator4 for neurosurgical proce-

dures in SOFA, involving vasculature Arteriovenous Mal-

formation (AVM). The development consists of anatomi-

cal modeling and volumetric meshing of vascular structures,

combining a FEM biomechanical modeling with fluid sim-

ulation; coupling collision detection and response with hap-

tic feedback; and integrating GPU-based implementations for

real-time simulation. Figure 6 depicts some steps of the inter-

active simulator.
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Figure 4. Scene graph of a SOFA simulation that uses the

Image-To-Mesh Conversion plugin (CBC3D).

3.2. 3D Slicer Extension
The 3D Slicer is an open source software package for vi-

sualization and image analysis. The Slicer software supports

4Partnership between Kitware Inc.; the Center for Modeling, Simula-

tion and Imaging in Medicine (CeMSIM) at Rensselaer Polytechnic Institute

(RPI); the Departments of Computer Science and Neurosugery at the Uni-

versity of North Carolina (UNC); and Old Dominion University (ODU).



Figure 5. Visual model of the output of the CBC3D plugin,

visualized in SOFA.

(a) AVM Pathology (b) AVM model

(c) Cautery tool (d) Collision detection

Figure 6. Interactive simulator for neurosurgical proce-

dures in SOFA involving a brain Arteriovenous Malformation

(AVM). The simulator uses the CBC3D plugin to generate

the volumetric meshing of the vascular structures. Courtesy

of Kitware Inc.

different types of extensions which can be built outside of

the source tree and bundle together one or more modules.

Currently, a single-tissue Image-To-Mesh Converion exten-

sion5 is available in Slicer. We are planning to integrate the

presented multi-tissue version soon. All of the available ex-

tensions can be downloaded from the Slicer server using the

Extension Manager6.

4. RESULTS
We evaluated our method on three volumetric multi-label

segmented images:

5http://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/

Extensions/CBC 3D I2MConversion
6https://www.slicer.org/slicerWiki/index.php/Documentation/Nightly/

SlicerApplication/ExtensionsManager

� Case 1: A brain with a tumor (nidus).

� Case 2: A brain with a set of ventricles.

� Case 3: A brain with an Arteriovenous Malformation

(AVM).

Table 1 lists some of the image properties. Case 1 is

anisotropic and cases 2-3 are isotropic. Table 2 lists the input

parameters for the experiments. We chose a BCC lattice spac-

ing that is approximately 8-10 times the image spacing. The

mesh fidelity 2 (0;1℄ is set equal to 0:95 for a more accurate

representation of the tissue boundaries. The non-connectivity

and the number of iterations are set equal to the face pattern

and ten, respectively, for smoothing the mesh within a reason-

able amount of time. Figures 7(a)-7(b), 8(a)-8(b) and 9(a)-

Table 1. The volumetric labeled image data of this study. x:

axial; y: coronal; z: sagittal.

Case
Image spacing Image size

spx� spy� spz (mm) sx� sy� sz (voxels)

1 0:86�0:86�0:73 256�256�185

2 1:00�1:00�1:00 240�240�134

3 0:88�0:88�0:88 256�256�104

Table 2. The input mesh parameters for all the experiments.
Parameter Value Description

BCCsize 8 grid spacing in mm

Fidelity 0.95 fidelity to tissue boundaries

Non-connectivity face pattern for the target points extraction

NumIterations 10 iterations for the mesh deformation

9(b) depict cross sections of the generated tetrahedral meshes

for cases 1, 2, and 3, respectively. In the cross sections, we

show the conformity between the brain sub-mesh (green) and

the other sub-mesh (red) by visualizing them simultaneously.

Generally, our method guarantees the conformity between an

arbitrary number of sub-meshes.

Figures 7(c), 8(c), and 9(c), depict the conformity of the

mesh surfaces to the physical boundaries of the image. White

and gray represent the different image labels. The green line

represents the intersection between the brain sub-mesh and

the image slice. The red line represents the intersection be-

tween the other sub-mesh and the image slice. We depict the

Image-To-Mesh conformity on three different image slices:

axial, sagittal, and coronal. According to Figures 7(c), 8(c),

and 9(c), the multi-tissue meshes are an accurate representa-

tion of the multi-label image boundaries.

Table 3 presents some quantitative results of this study. The

complex brain-AVM geometry requires a larger number of el-

ements (about 1.2 million) to satisfy the input fidelity (0:95),

compared to the other two cases. Currently, our implementa-

tion guarantees a minimum and a maximum dihedral angle



only for the BCC mesh generation-refinement step. Because

of the nature of the BCC lattice and its specific red-green re-

finement procedure, the generated BCC mesh has a superior

quality, with a minimum and a maximum dihedral angle equal

to 30 and 116.5 degrees, respectively. On the other hand, our

method does not provide any angle guarantees for the mesh

deformation, thus it deforms the tetrahedra located nearby the

image boundaries in favor of a better Image-To-Mesh confor-

mity and a smoother mesh surface. We are planning to bound

the angles of the mesh deformation step in the future.

Table 4 presents some performance results. Our sequential

implementation can generate and refine a BCC mesh consist-

ing up to about 1.2 million tetrahedra in less than 3 minutes.

The mesh deformation step is the most computationally in-

tensive and a smaller number of iterations or a different non-

connectivity pattern can drastically reduce the execution time.

In the future we will parallelize both steps of our method in

order to provide suitable, realistic tetrahedral meshes appro-

priate for surgical simulations, in real-time.

Table 3. Quantitative evaluation results.
Case # Tetrahedra # Vertices Min dihedral angle Max dihedral angle

1 497928 88907 0:22Æ 179:66Æ

2 541943 95801 11:19Æ 166:18Æ

3 1222551 257570 0:20Æ 179:68Æ

Table 4. Performance results (in seconds). The experiments

conducted in a workstation with 8 Intel i7-2600@3.40 GHz

CPU cores and 16 GB of memory.
Case BCC generation-refinement Mesh deformation Total

1 42.53 236.77 283.63

2 20.49 173.79 198.82

3 157.01 838.55 1006.47

5. SUMMARY AND CONCLUSION

We presented an Image-To-Mesh Conversion method for

realistic anatomical modeling of complex brain structures and

surgical simulations. Our method is a heuristic, which is using

implicit representation of the object as input, and produces a

tetrahedral mesh specifically suited for applications that ex-

hibit high deformation. Our approach, initially generates a

structured BCC mesh from a multi-label segmented image.

Then it refines the mesh using a red-green subdivision strat-

egy that guarantees the high quality of the produced elements.

In a later step, it deforms the surfaces of the BCC mesh to

their corresponding physical image boundaries.

The produced mesh: (1) is adaptive, with smaller ele-

ments in areas where more detail is desired (tissue bound-

aries/interfaces) and larger elements in the remainder of the

image regions, (2) it accurately approximates any complex

image boundaries, allowing a faithful, realistic response of

(a) Sagittal cross section.

(b) Axial cross section.

(c) Image-To-Mesh (brain-nidus) conformity, shown in axial (left),

sagittal (middle), and coronal (right) slices. The green line repre-

sents the intersection between the brain surface mesh and the brain

boundary in the image slice. The red line represents the intersection

between the nidus (interior) surface mesh and the nidus boundary in

the image slice.

Figure 7. Brain-nidus mesh (case 1). Number of tetrahedra:

497928.

the biomechanical properties of the tissues involved in a sim-

ulation, and (3) is smooth, providing a certain degree of visual

reality during a surgical simulation.

In the future, we will incorporate multiple fidelities in the



(a) Sagittal cross section.

(b) Coronal cross section.

(c) Image-To-Mesh (brain-ventricles) conformity, shown in axial

(left), sagittal (middle), and coronal (right) slices. The green line

represents the intersection between the brain surface mesh and the

brain boundary in the image slice. The red line represents the inter-

section between the ventricles (interior) surface mesh and the ven-

tricles boundary in the image slice.

Figure 8. Brain-ventricles mesh (case 2). Number of tetra-

hedra: 541943.

mesh refinement step (e.g. different fidelity value for each tis-

sue), and we will provide bounds for the minimum and maxi-

mum dihedral angles after the mesh deformation. Aditionally,

(a) Sagittal cross section.

(b) Axial cross section.

(c) Image-To-Mesh (brain-AVM) conformity, shown in axial (left),

sagittal (middle), and coronal (right) slices. The green line repre-

sents the intersection between the brain surface mesh and the brain

boundary in the image slice. The red line represents the intersection

between the AVM (interior) surface mesh of the AVM boundary in

the image slice.

Figure 9. Brain-AVM mesh (case 3). Number of tetrahedra:

1222551.

we will parallelize our method to generate suitable tetrahedral

meshes appropriate for surgical simulations in real-time.
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