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Abstract 
 Computing the Euclidean Distance Transform 
(EDT) for binary images is an important problem with 
applications involving medical image processing, 
computer vision, computational geometry, and pattern 
recognition. In algorithm development, execution time 
is an important factor. Parallel algorithm development 
also needs to focus on scalability and efficiency. 
Currently, there exists a sequential algorithm of O(n) 
complexity developed by Maurer et al. and a parallel 
implementation of Maurer's algorithm developed by 
Staubs et al. with an asymptotical speedup of 3 times. 
In this paper, we present a parallel implementation of 
Maurer's algorithm with a theoretical complexity of 
O(n/p) for n voxels and p threads and an evaluated 
unprecedented linear speedup for large datasets.  
 
1.  Introduction   
 Computing the EDT of a binary image was originally 
performed through an exhaustive method by first 
iterating through the image and identifying each voxel 
as a background voxel or a feature voxel (FV). After the 
set of FVs have been identified, the image is then 
iterated through again and each background voxel is 
compared to every FV to determine the distance from 
the current background voxel to each of the FVs. The 
shortest distance is then recorded for the background 
voxel. This method requires an initial loop through the 
image and a nested loop to compute the distances for 
each background voxel. This approach has a 
complexity on average of O(n2+n) or just O(n2). In 2003, 
Maurer et. al[1] developed an approach to compute the 
EDT of a binary image in linear time through an 
approach of dimensionality reduction and partial 
Voronoi diagrams. For the approach developed by 
Maurer[1], each row of voxels for each dimension of the 
EDT is iterated through beginning with the lowest 
dimension and the partial Voronoi diagram for each row 
is generated. Using this partial Voronoi diagram, each 
voxel in the row is compared to each candidate Voronoi 
site in the row and the Euclidean distance is calculated. 
This is done by first initializing the EDT by iterating 
through each row of voxels in the binary image for the 
lowest dimension. When a foreground voxel is found, 

the associated voxel in the EDT is set to zero while all 
others are set to infinity. The voxel data of the binary 
image is only used for initialization. The EDT is used for 
the remainder of the computations. After initialization, 
each row of voxels for each dimension in the EDT is 
iterated through beginning with the lowest dimension. 
All voxels that are equal to infinity are disregarded. All 
of the remaining voxels, known as potential candidate 
FVs are compared against the two closest FVs to 
determine if the current potential candidate FV 
intersects the row of voxels that is currently being 
examined. If the current potential candidate FV does not 
intersect the current row, then this potential candidate 
FV is disregarded. After all of the candidate FVs have 
been identified, the row of voxels is iterated through 
comparing the current Euclidean distance for the given 
voxel to the Euclidean distance to each candidate FV. 
The smaller of the two distances is the new Euclidean 
distance for the current voxel. The EDT of the lower 
dimension is used to calculate the EDT of the current 
dimension. The order of processing for a two 
dimensional image is shown in Figure 1. Each row, of 
the first dimension is iterated through, then each row of 
the second dimension is iterated through. 
 

 
Figure 1. Order of Rows to Process 
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 Currently, the approach developed by Maurer[1] is 
determined to be the best sequential approach for 
computing the EDT of a binary image. Using the 
approach developed by Maurer[1], a parallel 
implementation was presented by Staubs et. al[2] 
which featured a maximum speedup of three times. 
This maximum speedup was achieved using eight 
threads. Previously, we[3] developed a parallel 
implementation also using the approach developed by 
Maurer[1]. We[3] obtained a mean speedup of six 
times for eight threads along with a projected 
asymptote of twenty times speedup. In this paper, we 
present a parallel implementation of Maurer’s 
algorithm. Our parallel implementation operates with 
unprecedented speedup and has a complexity of 
O(n/p). 
 
2.  Our Approach 
 Our algorithm follows the same approach 
developed by Maurer[1] and uses the same producer-
consumer paradigm which we[3] previously 
implemented. However, after our experimental 
performance showed a logarithmic drop in efficiency 
with a projected asymptote of a times 20 speedup 
around 40 processes, we began researching the cause 
of the drop in performance. We examined 
communication time between the producer process and 
the consumer processes along with the accumulated 
wait time of the consumer processes as the number of 
consumer processes increased. Additionally, we 
monitored the call stack and system memory to 
determine how resources were being allocated. We 
also studied how long the consumer processes waited 
to access the shared queue of work. Based on these 
examinations, we discovered that the source of the drop 
in performance did not lie within the shared queue of 
work, but in how the system is managing the call stack 
and other resources. Additionally, other optimization 
techniques were utilized to minimize tasks that are 
performed in constant and linear time as the number of 
processes increases.  
 
2.1  Load Balancing 
 We had originally speculated that our algorithm’s 
efficiency dropped as the number of processes 
increased due to access to the shared mutex. Upon 
further experimentation, it was discovered that the 
accumulated wait times associated with accessing the 
shared queue of work through a single mutex increases 
linearly as the number of processes increases, but the 
individual process wait times decrease. This is partially 
due to the inverse relationship between units of work 
per process and number of processes. The important 
evidence to note is that the maximum accumulated wait 
times for each experiment increases linearly as the 
number of processes increases with a fixed amount of 

work, which is acceptable for our algorithm as it 
operates with a complexity of O(n/p). 
 

  
 

Figure 2. Graph of Wait Times for Cube Data 
 
 Results for the accumulated wait times for threads 
for three cubes (1000x1000x1000, 2000x2000x2000, 
3000x3000x3000) are depicted in Figure 2. The 
accumulated wait times for the 4000x4000x4000 and 
5000x5000x5000 cube are not shown for graphical 
scaling reasons as the data plotted from the 
4000x4000x4000 cube would render the data from the 
shown cubes as flat lines and the 5000x5000x5000 
cube would render the data from the 4000x4000x4000 
cube as a flat line. 
 
2.2  Elimination of Recursion 
 The task of creating the shared queue of work was 
originally handled recursively in order to provide an 
algorithm which can compute the EDT of an image 
independent of the number of dimensions and the 
length of rows for each dimension. In programming, 
when a method is invoked, a new stack frame is added 
to the call stack. The call stack contains all of the stack 
frames of the active methods currently executing while 
a stack frame contains all of the data associated with 
the particular stack frame’s method. The stack frame 
data includes input variables, local variables, and a 
reference to where the method will return control after 
the method terminates. Originally most programming 
languages chose not to support recursion because 
each stack frame was identified by the name of the 
method in the call stack. This causes recursion to be 
impossible as there would be no way to distinguish 
between stack frames because the identifiers would be 
identical. For programming languages that support 
recursion, each invocation of a method is identified by 



an address which is independent of the method name. 
This allows for multiple instances of a method to exist 
by allowing the call stack to contain unique stack 
frames for identical method invocations. However, this 
poses a problem for recursive methods because the 
call stack has a limited amount of memory allocated to 
itself by the system. If the call stack exceeds the 
memory size limitation, then the program will crash. 
For recursive methods that generate a large number of 
subsequent recursive calls or are deeply recursive, the 
probability of a crash due to stack overflow is 
increased. 
 The following pseudocode shows the structure of 
a simplified version of the two recursive function 
responsible for generating the shared queue of work. d 
is an integer representing the current dimension that 
work is being defined for, c is a dimension iterator, and 
N is the set of the length of the row size for the given 
dimension. The computeEDT function is originally 
invoked with an input of the number of dimensions 
minus one. The computeEDT_R function is tail 
recursive, meaning that a new stack frame does not 
need to be added to the call stack because most 
modern compilers interpret tail recursive functions as 
GOTO statements. However, the computeEDT 
function is not tail recursive and a new stack frame is 
needed. Additionally, each call to computeEDT where 
d is not zero generates Nd new calls to computeEDT. 
Each call to computeEDT generates a call to 
computeEDT_R. Each call to computeEDT_R where d 
is not equal to c generates Nc new calls to 
computeEDT_R. 
 
computeEDT(d) 

BEGIN 

if(d != 0) 

 for 0..Nd 

 allocate subsections of work queue 

 computeEDT(d-1) 

 end for 

end if 

computeEDT_R(0, d) 

END 

 

computeEDT_R(c, d) 

BEGIN 

if(c == d) 

 create work 

else 

 for i..Nc 

 initialize subsections of work queue 

 computeEDT_R(c+1, d) 

 end for 

end if 

END 

 

Even though the computeEDT_R function is tail 
recursive, the compiler should not be relied on to 
optimize tail recursive approaches. Additionally, not all 
compilers support tail recursion, and not all languages 
support recursion. A switch to iterative methods was 
chosen to improve optimization during the task of 
generating the shared queue of work, eliminate stack 
overflows caused by recursion, and define an 
approach that can be implemented independently of 
programming language.  
 Given the input of a three-dimensional cube with a 
row size of x, the number of additional computeEDT 
calls totals x2+x while the number of additional 
computeEDT_R calls totals 3x2+2x. In developing a 
sustainable and robust algorithm suitable for usage for 
exascale computing, recursion was replaced with an 
iterative approach, utilizing the structure of the tasks. 
Each task involves a process iterating through a row of 
voxels and computing the EDT of the given row based 
on the current values of the in-progress EDT. The term 
row is used generically to refer to a linear set of voxels 
parallel to an axis. Each task has one dimension that 
is iterated over while all other dimensions remain fixed. 
Examining the set of tasks, we notice that each row 
must be iterated over for each dimension. This allows 
us to use combinatorics, a branch of mathematics 
focusing on countable structures, to generate all of the 
tasks in an iterative fashion.  
 
2.3 Inline Methods 
 For methods that are repetitively called in 
immediate succession, a large portion of runtime is 
wasted for creating a new stack frame, pushing the 
stack frame to the call stack, passing the input 
variables, allocating and initializing local variables, 
returning the output variables, releasing control back 
to the calling method, releasing memory space for the 
local variables, and popping the stack frame from the 
call stack. By modifying the algorithm to replace the 
successive method invocations with a while loop 
eliminates the system tasks of allocating, pushing, and 
popping stack frames along with eliminating the 
constant allocation and deallocation of local variables. 
Using an inline approach, local variables are allocated 
outside of the while loop and initialized inside of the 
loop for each iteration of the method. The removeEDT 
method is invoked when there are three FV identified. 
Each of the three FV has its corresponding Voronoi 
area computed to determine which Voronoi areas 
intersect the current row of the image. The 
removeEDT method has six input parameters and 
three local variables. Converting the removeEDT 
method to an inline representation of the method 
eliminates six copy assignments and three allocation 
and deallocation instructions per method invocation. 
Given a row of size x, the maximum number of 



removeEDT calls totals x-2 (at least three FV are 
needed to call removeEDT). This accumulates to 
approximately 6x copy instructions and 3x allocation 
and deallocation instructions eliminated per row. 
 
2.4 Memoization 
 Memoization is an optimization technique which 
involves storing the results of computationally 
expensive calculations so that the result can be reused 
when the inputs are repeated. This allows for the 
computationally expensive calculations to not have to 
be repeated. Our algorithm requires the indices of the 
row to be used twice: once for constructing the partial 
Voronoi diagram and again for computing the EDT. 
Since our algorithm uses dimension generalization, the 
following calculation must be evaluated for each voxel: 
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where i is the index being computed, d is the current 
dimension that the EDT is being calculated in, k is the 
dimension iterator, N is the set of the length of the row 
size for the given dimension, and Dd,w is the set of the 
current dimension indices. The parameter w is fixed for 
the calculation and only represents a single unit of 
work for computing the EDT for a given row. Storing 
the resulting index for each calculation during the 
construction of the partial Voronoi diagram allows for 
the index to be reused during the calculation for the 
EDT for the given row of voxels. Additional 
memoization is implemented by only calculating the 
offset portion of the index calculation once. The offset 
is given by the two summations of the index 
calculation: 
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Note that the reason why this calculation can be 
extracted and stored is that the offset is independent 

of the indices being calculated. The offset is only 
dependent on the set of the current dimension indices, 
Dd,w and the set of the length of the row size for the 
dimensions, N. From the offset, the set of indices can 
be calculated from: 
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For a three-dimensional image, storing the set of 
indices reduces the calculations by 50% and first 
calculating the offset reduces the initial calculation of 
indices by 80% because there are five multiplicative 
summations that must be calculated (four of which are 
used to calculate the offset).Without these two 
methods, ten multiplicative summations must be 
computed. With these methods of memoization, only 
one multiplicative summation needs to be computed, 
reducing the total computation time for index 
calculations by 90%. 
 
2.5 Barriers 
 Our original approach did not utilize barriers 
because the shared queue of work is generated for a 
dimension by the single producer process while the 
lower dimension’s EDT is computed by the consumer 
processes and there is no guarantee that the producer 
process will finish generating the work before the 
consumer processes finish computing the EDT. 
Instead of a barrier, the use of signals, broadcasting, 
and wait statements are utilized. Once a consumer 
process has computed the EDT for all of its rows, it 
increments a global variable and waits for a signal via 
broadcast from the producer process. Each consumer 
process checks the incremented global variable to 
determine if all of the consumer processes are finished 
computing. If all of the consumer processes are 
finished, then the final consumer process sets a flag to 
represent that the consumer processes are finished 
computing and then sends a signal to the producer 
process. A flag must be set in the event that the 
producer process is not finished producing the shared 
queue of work for the next higher dimension so that 
when the producer process is finished generating the 
work, then the flag can be checked because the 
producer process will not be waiting on a signal from 
the final consumer process resulting in the signal from 
the final consumer process to be ignored. If the flag is 
set (showing that the consumer processes are finished 
computing) then the producer immediately broadcasts 
a signal to the consumer processes to start computing 
the EDT of the higher dimension. If the flag is not set, 
then the producer process waits for a signal from the 
final consumer process before the producer process 



broadcasts the signal to the consumer processes. 
Both the flag and signal from the final consumer 
process are needed for the two cases: first where the 
consumer processes complete before the producer 
process and second where the producer process 
completes before the consumer processes. 
 As a result of the shortened producer process time 
due to the elimination of recursion, and the reduced 
computation time for each consumer process from the 
result of memoization techniques and the switch to 
inline methods, we made the decision to have the 
producer complete the work generation task 
completely for all dimensions before the consumer 
processes began computing. This decision was made 
because the time for the entirety of the consumer 
processes to increment the completion counter and 
execute wait statements, the producer process to 
check the completion flag or receive the wait signal, 
and the producer process to broadcast to the 
collection of consumer processes becomes 
computationally expensive as the number of consumer 
processes increases. Additionally, the time for the 
producer process to complete the work generation 
task is negligible now that recursion has been 
eliminated. This decision then allowed us to utilize 
barriers, which are highly optimized control structures 
which cause all consumer processes to wait at the 
barrier until all consumer processes have reached the 
barrier. This approach has been proven to be faster 
than the wait, signal, and broadcast paradigm which 
we were using before.  
 
3.  Experimental Performance 
 We have tested our implementation on a machine 
containing 2 Intel Xeon E5-2697 v2 processors with 
2.7 GHz and 12 physical cores each and a NVIDIA 
Tesla K40c GPU with 2880 cores. The machine also 
contains 768 GB of 1600MHz DDR3L memory. We 
generated cube images with dimensions of 
1000x1000x1000, 2000x2000x2000, 
3000x3000x3000, 4000x4000x4000, and 
5000x5000x5000 ran each with our implementation 
using 2, 4, 8, 12, 16, 20, and 24 threads. The cube 
images that we generated had randomized FVs for 
1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99% 
of the voxels. Additionally, we also created cube 
images with a special case of a single FV in the 
corner, or the lowest dimension’s first row’s first voxel. 
On our current machine, the maximum sized image we 
are able to generate is a cube of 5000x5000x5000 
voxels, totaling 125 billion voxels. We have achieved 
linear speedup for all of our test cases, as depicted in 
Figure 3. 
 

 
 

Figure 3. Graph of Speedup for Cube Data 
 
 The percentage of FVs in the image did not have a 
significant effect regarding the overall computation 
time. The minimum and maximum computation times 
for each percentage of FVs for each of the cube images 
sizes for number of processes only varied by five 
percent of the average computation time for each cube 
image. The average computation time was computed 
by the grouping of number of threads and cube size. We 
have also made significant improvements in not only 
speedup, but also overall execution time.  
 
4.  Conclusions 
 Our introduction of a linearly scalable parallel 
Euclidean Distance Transform algorithm approach will 
allow for larger datasets to be processed with a high 
number of processes without experiencing a significant 
loss of performance. Our approach does not utilize 
recursion, which is language dependent, and also 
avoids the possibility of stack overflow errors. Our 
approach operates on any dimension for any row 
length size for each dimension, which allows us to 
provide a generalized, efficient, and extendable 
algorithm for exascale computing.  
 
5. Future Work 
 We plan to extend our work to handle anisotropic 
EDTs as well as signed EDTs in the future. We do not 
foresee any significant effect to the overall scalability 
of the algorithm with the introduction of anisotropic 
and/or signed EDTs. 
 
 
 
 



6. Acknowledgements 
 We thank the Old Dominion University Computer 
Science Department for making available the 
computing resources used in our evaluation. 
 This work was supported in part by the NSF grant 
CCF-1139864. 

 
7.  References 
[1] Calvin R. Maurer, Jr., Rensheng Qi, and Vijay 

Raghavan. A linear time algorithm for computing 
exact euclidean distance transforms of binary 
images in arbitrary dimensions. IEEE Trans. 
Pattern Anal. Mach. Intell., 25(2):265–270, 2003. 
http://dx.doi.org/10.1109/TPAMI.2003.1177156. 
(document), 1, 2, 3 

 
[2] Staubs R., Fedorov A., Linardakis L., Dunton B., 

Chrisochoides N. Parallel N-Dimensional Exact 
Signed Euclidean Distance Transform. 2006 Sep. 
http://www.insight-
journal.org/browse/publication/123. 

 
[3] Pardue S., Chrisochoides N., Chernikov A. 

Scalability of a Parallel Arbitrary-Dimensional 

Image Distance Transform. 2014 Apr. 

https://crtc.cs.odu.edu/pub/papers/conf_147.pdf.  

 


