
A Scalable Parallel Arbitrary-Dimensional Image Distance Transform

Scott K. Pardue, Nikos P. Chrisochoides, Andrey N. Chernikov
Old Dominion University Computer Science Department

spardue@cs.odu.edu, nikos@cs.odu.edu, achernik@cs.odu.edu

Keywords: Parallel computing, parallel distance
transform, distance transform, algorithms, Euclidean
Distance Transform, image processing

Abstract
 Computing the Euclidean Distance Transform
(EDT) for binary images is an important problem with
applications involving medical image processing,
computer vision, computational geometry, and pattern
recognition. In algorithm development, execution time
is an important factor. Parallel algorithm development
also needs to focus on scalability and efficiency.
Currently, there exists a sequential algorithm of O(n)
complexity developed by Maurer et al. and a parallel
implementation of Maurer's algorithm developed by
Staubs et al. with an asymptotical speedup of 3 times.
In this paper, we present a parallel implementation of
Maurer's algorithm with a theoretical complexity of
O(n/p) for n voxels and p threads and an evaluated
unprecedented linear speedup for large datasets.

1. Introduction
 Computing the EDT of a binary image was originally
performed through an exhaustive method by first
iterating through the image and identifying each voxel
as a background voxel or a feature voxel (FV). After the
set of FVs have been identified, the image is then
iterated through again and each background voxel is
compared to every FV to determine the distance from
the current background voxel to each of the FVs. The
shortest distance is then recorded for the background
voxel. This method requires an initial loop through the
image and a nested loop to compute the distances for
each background voxel. This approach has a
complexity on average of O(n2+n) or just O(n2). In 2003,
Maurer et. al[1] developed an approach to compute the
EDT of a binary image in linear time through an
approach of dimensionality reduction and partial
Voronoi diagrams. For the approach developed by
Maurer[1], each row of voxels for each dimension of the
EDT is iterated through beginning with the lowest
dimension and the partial Voronoi diagram for each row
is generated. Using this partial Voronoi diagram, each
voxel in the row is compared to each candidate Voronoi
site in the row and the Euclidean distance is calculated.
This is done by first initializing the EDT by iterating
through each row of voxels in the binary image for the
lowest dimension. When a foreground voxel is found,

the associated voxel in the EDT is set to zero while all
others are set to infinity. The voxel data of the binary
image is only used for initialization. The EDT is used for
the remainder of the computations. After initialization,
each row of voxels for each dimension in the EDT is
iterated through beginning with the lowest dimension.
All voxels that are equal to infinity are disregarded. All
of the remaining voxels, known as potential candidate
FVs are compared against the two closest FVs to
determine if the current potential candidate FV
intersects the row of voxels that is currently being
examined. If the current potential candidate FV does not
intersect the current row, then this potential candidate
FV is disregarded. After all of the candidate FVs have
been identified, the row of voxels is iterated through
comparing the current Euclidean distance for the given
voxel to the Euclidean distance to each candidate FV.
The smaller of the two distances is the new Euclidean
distance for the current voxel. The EDT of the lower
dimension is used to calculate the EDT of the current
dimension. The order of processing for a two
dimensional image is shown in Figure 1. Each row, of
the first dimension is iterated through, then each row of
the second dimension is iterated through.

Figure 1. Order of Rows to Process

mailto:spardue@cs.odu.edu
mailto:nikos@cs.odu.edu
mailto:achernik@cs.odu.edu

 Currently, the approach developed by Maurer[1] is
determined to be the best sequential approach for
computing the EDT of a binary image. Using the
approach developed by Maurer[1], a parallel
implementation was presented by Staubs et. al[2]
which featured a maximum speedup of three times.
This maximum speedup was achieved using eight
threads. Previously, we[3] developed a parallel
implementation also using the approach developed by
Maurer[1]. We[3] obtained a mean speedup of six
times for eight threads along with a projected
asymptote of twenty times speedup. In this paper, we
present a parallel implementation of Maurer’s
algorithm. Our parallel implementation operates with
unprecedented speedup and has a complexity of
O(n/p).

2. Our Approach
 Our algorithm follows the same approach
developed by Maurer[1] and uses the same producer-
consumer paradigm which we[3] previously
implemented. However, after our experimental
performance showed a logarithmic drop in efficiency
with a projected asymptote of a times 20 speedup
around 40 processes, we began researching the cause
of the drop in performance. We examined
communication time between the producer process and
the consumer processes along with the accumulated
wait time of the consumer processes as the number of
consumer processes increased. Additionally, we
monitored the call stack and system memory to
determine how resources were being allocated. We
also studied how long the consumer processes waited
to access the shared queue of work. Based on these
examinations, we discovered that the source of the drop
in performance did not lie within the shared queue of
work, but in how the system is managing the call stack
and other resources. Additionally, other optimization
techniques were utilized to minimize tasks that are
performed in constant and linear time as the number of
processes increases.

2.1 Load Balancing
 We had originally speculated that our algorithm’s
efficiency dropped as the number of processes
increased due to access to the shared mutex. Upon
further experimentation, it was discovered that the
accumulated wait times associated with accessing the
shared queue of work through a single mutex increases
linearly as the number of processes increases, but the
individual process wait times decrease. This is partially
due to the inverse relationship between units of work
per process and number of processes. The important
evidence to note is that the maximum accumulated wait
times for each experiment increases linearly as the
number of processes increases with a fixed amount of

work, which is acceptable for our algorithm as it
operates with a complexity of O(n/p).

Figure 2. Graph of Wait Times for Cube Data

 Results for the accumulated wait times for threads
for three cubes (1000x1000x1000, 2000x2000x2000,
3000x3000x3000) are depicted in Figure 2. The
accumulated wait times for the 4000x4000x4000 and
5000x5000x5000 cube are not shown for graphical
scaling reasons as the data plotted from the
4000x4000x4000 cube would render the data from the
shown cubes as flat lines and the 5000x5000x5000
cube would render the data from the 4000x4000x4000
cube as a flat line.

2.2 Elimination of Recursion
 The task of creating the shared queue of work was
originally handled recursively in order to provide an
algorithm which can compute the EDT of an image
independent of the number of dimensions and the
length of rows for each dimension. In programming,
when a method is invoked, a new stack frame is added
to the call stack. The call stack contains all of the stack
frames of the active methods currently executing while
a stack frame contains all of the data associated with
the particular stack frame’s method. The stack frame
data includes input variables, local variables, and a
reference to where the method will return control after
the method terminates. Originally most programming
languages chose not to support recursion because
each stack frame was identified by the name of the
method in the call stack. This causes recursion to be
impossible as there would be no way to distinguish
between stack frames because the identifiers would be
identical. For programming languages that support
recursion, each invocation of a method is identified by

an address which is independent of the method name.
This allows for multiple instances of a method to exist
by allowing the call stack to contain unique stack
frames for identical method invocations. However, this
poses a problem for recursive methods because the
call stack has a limited amount of memory allocated to
itself by the system. If the call stack exceeds the
memory size limitation, then the program will crash.
For recursive methods that generate a large number of
subsequent recursive calls or are deeply recursive, the
probability of a crash due to stack overflow is
increased.
 The following pseudocode shows the structure of
a simplified version of the two recursive function
responsible for generating the shared queue of work. d
is an integer representing the current dimension that
work is being defined for, c is a dimension iterator, and
N is the set of the length of the row size for the given
dimension. The computeEDT function is originally
invoked with an input of the number of dimensions
minus one. The computeEDT_R function is tail
recursive, meaning that a new stack frame does not
need to be added to the call stack because most
modern compilers interpret tail recursive functions as
GOTO statements. However, the computeEDT
function is not tail recursive and a new stack frame is
needed. Additionally, each call to computeEDT where
d is not zero generates Nd new calls to computeEDT.
Each call to computeEDT generates a call to
computeEDT_R. Each call to computeEDT_R where d
is not equal to c generates Nc new calls to
computeEDT_R.

computeEDT(d)

BEGIN

if(d != 0)

 for 0..Nd

 allocate subsections of work queue

 computeEDT(d-1)

 end for

end if

computeEDT_R(0, d)

END

computeEDT_R(c, d)

BEGIN

if(c == d)

 create work

else

 for i..Nc

 initialize subsections of work queue

 computeEDT_R(c+1, d)

 end for

end if

END

Even though the computeEDT_R function is tail
recursive, the compiler should not be relied on to
optimize tail recursive approaches. Additionally, not all
compilers support tail recursion, and not all languages
support recursion. A switch to iterative methods was
chosen to improve optimization during the task of
generating the shared queue of work, eliminate stack
overflows caused by recursion, and define an
approach that can be implemented independently of
programming language.
 Given the input of a three-dimensional cube with a
row size of x, the number of additional computeEDT
calls totals x2+x while the number of additional
computeEDT_R calls totals 3x2+2x. In developing a
sustainable and robust algorithm suitable for usage for
exascale computing, recursion was replaced with an
iterative approach, utilizing the structure of the tasks.
Each task involves a process iterating through a row of
voxels and computing the EDT of the given row based
on the current values of the in-progress EDT. The term
row is used generically to refer to a linear set of voxels
parallel to an axis. Each task has one dimension that
is iterated over while all other dimensions remain fixed.
Examining the set of tasks, we notice that each row
must be iterated over for each dimension. This allows
us to use combinatorics, a branch of mathematics
focusing on countable structures, to generate all of the
tasks in an iterative fashion.

2.3 Inline Methods
 For methods that are repetitively called in
immediate succession, a large portion of runtime is
wasted for creating a new stack frame, pushing the
stack frame to the call stack, passing the input
variables, allocating and initializing local variables,
returning the output variables, releasing control back
to the calling method, releasing memory space for the
local variables, and popping the stack frame from the
call stack. By modifying the algorithm to replace the
successive method invocations with a while loop
eliminates the system tasks of allocating, pushing, and
popping stack frames along with eliminating the
constant allocation and deallocation of local variables.
Using an inline approach, local variables are allocated
outside of the while loop and initialized inside of the
loop for each iteration of the method. The removeEDT
method is invoked when there are three FV identified.
Each of the three FV has its corresponding Voronoi
area computed to determine which Voronoi areas
intersect the current row of the image. The
removeEDT method has six input parameters and
three local variables. Converting the removeEDT
method to an inline representation of the method
eliminates six copy assignments and three allocation
and deallocation instructions per method invocation.
Given a row of size x, the maximum number of

removeEDT calls totals x-2 (at least three FV are
needed to call removeEDT). This accumulates to
approximately 6x copy instructions and 3x allocation
and deallocation instructions eliminated per row.

2.4 Memoization
 Memoization is an optimization technique which
involves storing the results of computationally
expensive calculations so that the result can be reused
when the inputs are repeated. This allows for the
computationally expensive calculations to not have to
be repeated. Our algorithm requires the indices of the
row to be used twice: once for constructing the partial
Voronoi diagram and again for computing the EDT.
Since our algorithm uses dimension generalization, the
following calculation must be evaluated for each voxel:

𝑖𝑛𝑑𝑒𝑥𝑖 = [∑ (∏ 𝑁𝑗

𝑘−1

𝑗=0

)

𝑑−1

𝑘=0

∗ 𝐷𝑑,𝑤,𝑘]

+ [(∏ 𝑁𝑗

𝑑−1

𝑗=0

) ∗ 𝑖]

+ [∑ (∏ 𝑁𝑗

𝑘−1

𝑗=0

)

𝑛𝑑

𝑘=𝑑+1

∗ 𝐷𝑑,𝑤,𝑘]

where i is the index being computed, d is the current
dimension that the EDT is being calculated in, k is the
dimension iterator, N is the set of the length of the row
size for the given dimension, and Dd,w is the set of the
current dimension indices. The parameter w is fixed for
the calculation and only represents a single unit of
work for computing the EDT for a given row. Storing
the resulting index for each calculation during the
construction of the partial Voronoi diagram allows for
the index to be reused during the calculation for the
EDT for the given row of voxels. Additional
memoization is implemented by only calculating the
offset portion of the index calculation once. The offset
is given by the two summations of the index
calculation:

𝑜𝑓𝑓𝑠𝑒𝑡 = [∑ (∏ 𝑁𝑗

𝑘−1

𝑗=0

)

𝑑−1

𝑘=0

∗ 𝐷𝑑,𝑤,𝑘]

+ [∑ (∏ 𝑁𝑗

𝑘−1

𝑗=0

)

𝑛𝑑

𝑘=𝑑+1

∗ 𝐷𝑑,𝑤,𝑘]

Note that the reason why this calculation can be
extracted and stored is that the offset is independent

of the indices being calculated. The offset is only
dependent on the set of the current dimension indices,
Dd,w and the set of the length of the row size for the
dimensions, N. From the offset, the set of indices can
be calculated from:

𝑖𝑛𝑑𝑒𝑥𝑖 = 𝑜𝑓𝑓𝑠𝑒𝑡 + [(∏ 𝑁𝑗

𝑑−1

𝑗=0

) ∗ 𝑖]

For a three-dimensional image, storing the set of
indices reduces the calculations by 50% and first
calculating the offset reduces the initial calculation of
indices by 80% because there are five multiplicative
summations that must be calculated (four of which are
used to calculate the offset).Without these two
methods, ten multiplicative summations must be
computed. With these methods of memoization, only
one multiplicative summation needs to be computed,
reducing the total computation time for index
calculations by 90%.

2.5 Barriers
 Our original approach did not utilize barriers
because the shared queue of work is generated for a
dimension by the single producer process while the
lower dimension’s EDT is computed by the consumer
processes and there is no guarantee that the producer
process will finish generating the work before the
consumer processes finish computing the EDT.
Instead of a barrier, the use of signals, broadcasting,
and wait statements are utilized. Once a consumer
process has computed the EDT for all of its rows, it
increments a global variable and waits for a signal via
broadcast from the producer process. Each consumer
process checks the incremented global variable to
determine if all of the consumer processes are finished
computing. If all of the consumer processes are
finished, then the final consumer process sets a flag to
represent that the consumer processes are finished
computing and then sends a signal to the producer
process. A flag must be set in the event that the
producer process is not finished producing the shared
queue of work for the next higher dimension so that
when the producer process is finished generating the
work, then the flag can be checked because the
producer process will not be waiting on a signal from
the final consumer process resulting in the signal from
the final consumer process to be ignored. If the flag is
set (showing that the consumer processes are finished
computing) then the producer immediately broadcasts
a signal to the consumer processes to start computing
the EDT of the higher dimension. If the flag is not set,
then the producer process waits for a signal from the
final consumer process before the producer process

broadcasts the signal to the consumer processes.
Both the flag and signal from the final consumer
process are needed for the two cases: first where the
consumer processes complete before the producer
process and second where the producer process
completes before the consumer processes.
 As a result of the shortened producer process time
due to the elimination of recursion, and the reduced
computation time for each consumer process from the
result of memoization techniques and the switch to
inline methods, we made the decision to have the
producer complete the work generation task
completely for all dimensions before the consumer
processes began computing. This decision was made
because the time for the entirety of the consumer
processes to increment the completion counter and
execute wait statements, the producer process to
check the completion flag or receive the wait signal,
and the producer process to broadcast to the
collection of consumer processes becomes
computationally expensive as the number of consumer
processes increases. Additionally, the time for the
producer process to complete the work generation
task is negligible now that recursion has been
eliminated. This decision then allowed us to utilize
barriers, which are highly optimized control structures
which cause all consumer processes to wait at the
barrier until all consumer processes have reached the
barrier. This approach has been proven to be faster
than the wait, signal, and broadcast paradigm which
we were using before.

3. Experimental Performance
 We have tested our implementation on a machine
containing 2 Intel Xeon E5-2697 v2 processors with
2.7 GHz and 12 physical cores each and a NVIDIA
Tesla K40c GPU with 2880 cores. The machine also
contains 768 GB of 1600MHz DDR3L memory. We
generated cube images with dimensions of
1000x1000x1000, 2000x2000x2000,
3000x3000x3000, 4000x4000x4000, and
5000x5000x5000 ran each with our implementation
using 2, 4, 8, 12, 16, 20, and 24 threads. The cube
images that we generated had randomized FVs for
1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%
of the voxels. Additionally, we also created cube
images with a special case of a single FV in the
corner, or the lowest dimension’s first row’s first voxel.
On our current machine, the maximum sized image we
are able to generate is a cube of 5000x5000x5000
voxels, totaling 125 billion voxels. We have achieved
linear speedup for all of our test cases, as depicted in
Figure 3.

Figure 3. Graph of Speedup for Cube Data

 The percentage of FVs in the image did not have a
significant effect regarding the overall computation
time. The minimum and maximum computation times
for each percentage of FVs for each of the cube images
sizes for number of processes only varied by five
percent of the average computation time for each cube
image. The average computation time was computed
by the grouping of number of threads and cube size. We
have also made significant improvements in not only
speedup, but also overall execution time.

4. Conclusions
 Our introduction of a linearly scalable parallel
Euclidean Distance Transform algorithm approach will
allow for larger datasets to be processed with a high
number of processes without experiencing a significant
loss of performance. Our approach does not utilize
recursion, which is language dependent, and also
avoids the possibility of stack overflow errors. Our
approach operates on any dimension for any row
length size for each dimension, which allows us to
provide a generalized, efficient, and extendable
algorithm for exascale computing.

5. Future Work
 We plan to extend our work to handle anisotropic
EDTs as well as signed EDTs in the future. We do not
foresee any significant effect to the overall scalability
of the algorithm with the introduction of anisotropic
and/or signed EDTs.

6. Acknowledgements
 We thank the Old Dominion University Computer
Science Department for making available the
computing resources used in our evaluation.
 This work was supported in part by the NSF grant
CCF-1139864.

7. References
[1] Calvin R. Maurer, Jr., Rensheng Qi, and Vijay

Raghavan. A linear time algorithm for computing
exact euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Trans.
Pattern Anal. Mach. Intell., 25(2):265–270, 2003.
http://dx.doi.org/10.1109/TPAMI.2003.1177156.
(document), 1, 2, 3

[2] Staubs R., Fedorov A., Linardakis L., Dunton B.,

Chrisochoides N. Parallel N-Dimensional Exact
Signed Euclidean Distance Transform. 2006 Sep.
http://www.insight-
journal.org/browse/publication/123.

[3] Pardue S., Chrisochoides N., Chernikov A.

Scalability of a Parallel Arbitrary-Dimensional

Image Distance Transform. 2014 Apr.

https://crtc.cs.odu.edu/pub/papers/conf_147.pdf.

