
Automatic curvilinear mesh generation with
smooth boundary driven by guaranteed
validity and fidelity

Jing Xu and Andrey N. Chernikov

Department of Computer Science, Old Dominion University, Norfolk, VA, USA,
{jxu, achernik}@cs.odu.edu

Summary. The development of robust high-order finite element methods requires
the construction of valid high-order meshes for complex geometries without user
intervention. This paper presents a novel approach for automatically generating a
high-order mesh with two main features: first, the boundary of the mesh is globally
smooth; second, the mesh boundary satisfies a required fidelity tolerance. Invalid
elements are guaranteed to be eliminated. Example meshes demonstrate the features
of the algorithm.

Key words: mesh generation, high-order, Bézier polynomial basis, smoothness

1 Introduction

High-order finite element methods have been used extensively in direct nu-
merical simulations in the last decades. The exponential rates of convergence,
small dispersion and diffusion solution errors have motivated the development
of the technics of the appropriate geometric representation of high-order finite
elements [1, 2, 3]. How well the geometry is approximated has fundamentally
important effects on the accuracy of finite element solutions [4, 5]. Therefore,
valid meshes with properly curved elements must be constructed to approxi-
mate the curved domain geometry.

The discretization error results from the fact that a function of a continu-
ous variable is represented in the computer by a finite number of evaluations.
In conventional meshes with all straight-sided elements, the discretization er-
ror is usually controlled by making sufficiently small elements where geometry
features occur such as on the objects’ boundary. But this is not numerically
efficient in the sense that the cost of assembling and solving a sparse system
of linear equations in the FE method directly depends on the number of ele-
ments. The high-order methods however, decompose the solution domain into
fewer elemental regions which capture the features of the geometry.

2 Jing Xu and Andrey N. Chernikov

There are two ways to accomplish the generation of a curvilinear mesh
when a geometric domain is given. The first is to directly create a valid curvi-
linear boundary and interior discretization with required size and shape of el-
ements. The second way is to initially construct a straight-edge discretization
of the model geometry, followed by the transformation of that discretization
into high-order elements suitable for a high-order FE method.

Various procedures have been developed and implemented using the lat-
ter approach. Sherwin and Peiro [6] addressed an high-order unstructured
mesh generation algorithm. In this paper, a linear triangular surface mesh is
first generated, the transformation of that mesh into high-order surface is per-
formed, and finally a curved mesh is constructed of the interior volume. Three
strategies are adopted to alleviate the problem of invalid high-order meshes:
optimization of the surface mesh that accounts for surface curvature, hybrid
meshing with prismatic elements near the domain boundaries and curvature
driven surface mesh adaption.

Dey et al. [14] described an iterative algorithm for curving straight-edge
meshes using quadratic Lagrange interpolation functions. First, curve all mesh
edges and faces classified on curved model boundaries. Second, detect and
eliminate intersections between mesh edges on the model surface. Third, use
local mesh modification tools to aid in correcting invalid curved mesh regions.

Shephard et al. [7] discussed the automatic generation of adaptively con-
trolled meshes for general three-dimensional domains. The algorithm starts
with isolating all of the edges and vertices in the model that will have singu-
larities, construction of a coarse linear mesh on the boundary of the model
with appropriate geometric gradation towards the isolated singular features
and construction of a coarse linear mesh of the remainder of the domain. Then
the algorithm curves the singular feature isolation mesh, and the remaining
mesh entities classified on the curved boundaries. Finally, mesh modification
is applied to ensure a valid mesh of acceptably shaped elements.

Luo et al. [8] isolates singular reentrant model entities, then generates
linear elements around those features, and curves them while maintaining
the gradation. Linear elements are generated for the rest of the domain, and
those elements which are classified on the curved boundary, are transformed
into curved elements conforming to the curved boundary. Modification opera-
tions are applied to eliminate invalid elements whenever they are introduced.
Later, they extended their work to adapted boundary layer meshes to al-
low for higher-order analysis of viscous flows [22]. The layered structure of
anisotropic elements in the boundary layer meshes is able to construct ele-
ments with proper configuration and gradation.

George et al. [10] proposed a method for constructing tetrahedral meshes of
degree two from a polynomial surface mesh of degree 2. Corresponding linear
surface mesh is first extracted, followed by constructing the linear volumetric
mesh. Next the algorithm enriches the linear mesh to polynomial with degree
2 mesh by introducing the edge nodes. After that Jacobian is introduced for

Title Suppressed Due to Excessive Length 3

guiding the correction of the invalid curved elements. Finally an optimization
procedure is used to enhance the quality of the curved mesh.

Lu et al. [12] presented a parallel mesh adaptation method with curved
element geometry. The core of the algorithm is two classes of mesh modifica-
tion. Curved entity reshape operation and local mesh modification operation
explicitly resolve element invalidity and improve the shape quality.

The validity of a curved mesh is crucial to the successful execution of high-
order finite element simulations. To verify the validity, it is efficient to calculate
the determinant of the Jacobian matrix (Jacobian). A curved element is valid
if and only if its Jacobian is strictly positive everywhere. However, it is cum-
bersome to verify the element validity when Lagrangian polynomial being
used because calculating Jacobian becomes computationally and geometri-
cally complex. Prior work shows that the properties of Bézier polynomials
provide an attractive solution [9, 10, 11, 12]. A lower bound for the determi-
nant of the Jacobian matrix can be evaluated by the convex hull property of
the Bézier polynomial. If the lower bound is not tight enough, either degree el-
evation procedure or subdivision procedure is selected to yield a tighter lower
bound [9, 10, 12]. Johnen [11] expands the Jacobian determinant using Bézier
polynomial basis. Based on its properties, boundedness and positivity were
obtained to provide an efficient way to determine the validity and to measure
the distortion.

In this paper, a new approach is proposed for automatically generating
a high-order mesh to represent geometry with smooth mesh boundaries and
graded interior with guaranteed fidelity. Cubic Bézier polynomial basis is se-
lected for the geometric representation of the elements because it provides
a convenient framework supporting the smooth operation while maintaining
guaranteed fidelity. We list the contributions in this paper here. To our knowl-
edge, no consideration was given to them in prior work.

1. Curved mesh boundary is globally smooth, i.e., its tangent is everywhere
continuous.

2. Curved mesh boundary everywhere satisfies a user-defined fidelity toler-
ance.

The procedure starts with the automatic construction of a graded linear
mesh that simultaneously satisfies the quality and the fidelity requirements.
The edges of those linear elements which are classified on curved boundary
are then curved using cubic Bézier polynomial basis while maintaining the
smoothness. To resist inverted elements, the procedure next curves the interior
elements by solving for the equilibrium configuration of an elasticity problem.
A validity verification procedure demonstrates that intersection edges and
highly distorted elements are eliminated.

The rest of the paper is organized as follows. in Sect. 2, we review some
basic definitions and material. Sect. 3 gives a description of the automatic
construction of graded linear mesh, while Sect. 4 describes the transformation
of those linear mesh elements into high-order elements. Sect. 5 presents the

4 Jing Xu and Andrey N. Chernikov

validity checking algorithms. Sect. 6 proves mesh fidelity. We present meshing
results in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

The method uses cubic Bézier polynomial basis to construct a high-order
mesh that has smooth boundaries. The idea is to deform the linear mesh
edges such that the curved edges conform to the expected domain boundary.
The determinant of the Jacobian matrix is used to determine the validity. In
this section we review the Bézier curve, Bézier triangle and the Jacobian.

2.1 Bézier curve and Bézier triangle

We will express Bézier curves in terms of Bernstein polynomials. The n + 1
Bernstein basis polynomials of degree n are defined explicitly by

Bn
i (t) =

(
n

i

)
ti(1− t)n−i i = 0, ..., n, t ∈ [0, 1], (1)

where the binomial coefficients are given by(
n

i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n
0 else

(2)

Then a Bézier curve can be defined after the definition of Bernstein polyno-
mials

bn(t) =

n−r∑
i=0

bri (t)Bn−r
i (t), (3)

where bri (t) are the intermediate de Casteljau points which can be expressed
in terms of Bernstein polynomials of degree r. They can be interpreted as
control points of a Bézier curve of degree n− r

bri (t) =

r∑
j=0

bi+jB
r
j (t) i ∈ 0, ..., n− r. (4)

Specifically, a cubic Bézier curve can be written in the form of the barycen-
tric coordinates for convenience,

b3(u, v) =
∑

i+j=3

B3
ij(u, v)Pij , (5)

where B3
ij(u, v) = 3!

i!j!u
ivj , u ∈ [0, 1] and v ∈ [0, 1] are the barycentric coordi-

nates and u+ v = 1.
This lead to a simple definition of a Bézier triangle of degree three

Title Suppressed Due to Excessive Length 5

T 3(u, v, w) =
∑

i+j+k=3

B3
ijk(u, v, w)Pijk, (6)

where B3
ijk(u, v, w) = 3!

i!j!k!u
ivjwk, u ∈ [0, 1], v ∈ [0, 1]and w ∈ [0, 1] be the

barycentric coordinates and u+ v + w = 1.

2.2 The Jacobian

We explore the concept of a derivative of a coordinate transformation, which
is known as the Jacobian of the transformation.

Consider, for instance, a mapping with shape functions (or basis functions)
Na, a = 1, 2, ... from the set of local coordinates x̂, ŷ to a corresponding set of
global coordinates x, y. By the chain rule of partial differentiation we have{

∂Na

∂x̂
∂Na

∂ŷ

}
=
{

∂Na

∂x
∂Na

∂y

}[∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]
=
{

∂Na

∂x
∂Na

∂y

}
J, (7)

J =

[
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]
. (8)

J is known as the Jacobian matrix for the transformation. As x, y are ex-
plicitly given by the relation defining the curvilinear coordinates, the matrix
J can be found explicitly in terms of the local coordinates.

3 Linear mesh construction

We adopt the image-to-mesh conversion algorithm [13], for four reasons: (1) it
allows for a guaranteed angle bound (quality), (2) it allows for a guaranteed
bound on the distance between the boundaries of the mesh and the boundaries
of the tissues (fidelity), (3) it coarsens the mesh to a much lower number of
elements with gradation in the interior, (4) it is formulated to work in both
two and three dimensions. Once we have a high quality linear mesh, we are
about to construct curvilinear mesh based on it as the next step.

4 Curvilinear mesh transformation from linear meshes

Although it is attractive to construct valid high-order meshes by curving mesh
entities classified on curved boundaries and the remainder of the domain si-
multaneously, in practice we transform the linear mesh entities classified on
boundaries followed by curving mesh entities in the interior while eliminat-
ing invalid elements. Bézier curve basis is selected because its mathematical
descriptions are compact, intuitive, and elegant. It is easy to compute, easy
to use in higher dimensions (3D and up), and can be stitched together to
represent any shape.

6 Jing Xu and Andrey N. Chernikov

4.1 Constructing smooth Bézier paths from boundary mesh
entities

Fig. 1. Two Bézier paths with their control points (in green), made out of two
quadratic Bézier curves connected by the endpoints (in red). The yellow line seg-
ments are tangents to the double sides of the red Bézier endpoint. Left: a smooth
Bézier path because the two green control points and the red endpoint lie in a
straight line. Right: a Bézier path with a cusp where the curves connect, because
the two green control points and the red endpoint do not lie in a straight line.

Fig. 2. An example of finding control points of a smooth cubic Bézier path. For
the curve between P1 and P2, we need C2 and C3. On segment P0P2, find a point
Q1 such that|P0Q1|/|Q1P2|= |P0P1|/|P1P2|. Translate segment P0P2 so that point
Q1 lies on point P1, and scale the length of translated segment P0P2, then the new
position of point P2 is the position of control point C2. Similarly, the position of
control point C3 can be found by translating segment P1P3 so that point Q2 lies on
point P2.

Title Suppressed Due to Excessive Length 7

A curve or surface can be described as having Gn continuity, n being the
measure of smoothness. Consider the segments on either side of a point on a
curve:

G0: The curves touch at the join point.
G1: The curves also share a common tangent direction at the join point.

We aim to find a smooth G1 curve passing through all the mesh boundary
points given in order. A Bézier path is smooth provided that each endpoint
and its two surrounding control points lie in a straight line. In other words,
the two tangents at each Bézier endpoint are parallel. Fig. 1 shows two Bézier
paths with their control points.

The basic idea is to calculate control points around each endpoint so that
they lie in a straight line with the endpoint. However, curved segments would
not flow smoothly together when quadratic Bézier form (three control points)
is used. Instead, we need to go one order higher to a cubic Bézier (four control
points) so we can build ”S” shaped segments.

The points we have in hand are only endpoints of boundary segments, so
the task becomes to find the other two control points to define the Bézier
curve. We find these control points by translating the segments formed by the
lines between the previous endpoint and the next endpoint such that these
segments become the tangents of the curve at the endpoints. We scale these
segments to control the curvature. An example is illustrated in Fig. 2.

4.2 Curving mesh entities in the interior

Fig. 3. Invalid elements.

It is usually not enough to curve only the boundary mesh edges because
self-intersecting mesh edges may appear which lead to invalid elements. In such

8 Jing Xu and Andrey N. Chernikov

cases, interior mesh elements should also be curved to eliminate the invalidity.
Fig. 3 gives an example of such an occasion. Local mesh modifications such
as minimizing the deformation, edge or facet deletion, splitting, collapsing,
swapping as well as shape manipulation have been used to correct an invalid
region [14, 8, 10, 12].

Persson [15] proposed a node relocation strategy for constructing well-
shaped curved mesh. They use a nonlinear elasticity analogy, where the ge-
ometry of the domain to be meshed is represented as an elastic solid. By
solving for the equilibrium configuration, vertices located in the interior are
relocated as a result of a prescribed boundary displacement. We will follow
this idea in this section.

For each mesh edge, we find the positions of the two points which are
located in the one third and two thirds ratio of each edge of the mesh. These
positions are original positions of these points before deformation. We find
the control points corresponding to the new positions of these points for the
interior mesh edges after the mesh is deformed. We deform the mesh such
that the boundary vertices of the linear mesh assume the coordinates of the
corresponding vertices (with respect to their radial ordering) on the curved
boundary. The target coordinates of all the other vertices in the interior are
computed by solving an elastic finite element problem [16]. As a result, the
elements of the linear mesh are deformed minimally and proportionally to their
distance to the points lying on the curved mesh boundary and to the amount
of the displacement at these boundary vertices. Fig. 4 illustrates this step.
Using the new positions of these points after deformation, the corresponding

Fig. 4. An illustration of the solid mechanics approach to curved mesh genera-
tion.Upper: the bold blue line is curved boundary, the red crosses show the original
vertex positions, the blue stars show the new vertex positions after the elements
are deformed according to the solution of a nonlinear elasticity problem, the gray
segments show the displacements. Lower: elements are deformed according to the
equilibrium solution of a nonlinear elasticity problem.

control points which determine the linear edge curving passing through the

Title Suppressed Due to Excessive Length 9

points in the new positions can be easily calculated:

C1 = −5

6
v0 +

1

3
v1 + 3v3 −

3

2
v4, (9)

C2 =
1

3
v0 −

5

6
v1 −

3

2
v3 + 3v4, (10)

where C1 and C2 are two middle control points of the four control points of
the interior mesh edge, and v0, v1, v2 and v3 are points the curved edge will
pass through.

Validity check is executed after this procedure. In most cases, it can han-
dle this problem successfully. However, in the case that the curvature of the
boundary edge is very large, the interior linear edge may not be curved enough
to avoid the intersection. Once our validity checking procedure reports that
there is an intersected edge, local mesh modifications can be used to correct
the shape.

Because each curved edge has two control points in the middle, and each
control point determines the curvature of the corresponding half of the edge,
we first distinguish which part of the curved edge is intersected. For example,
if the left half of the curved edge is intersected, that means the curvature
determined by the corresponding control point is not large enough. We enlarge
the curvature by rotating the segment formed by the left endpoint and the left
control point around the left endpoint by a small angle α. We do it repeatedly
until there is no intersection at all.

5 Element validity

A Curvilinear Mesh is valid provided that any two elements do not intersect
(except the common vertices and edges). To verify a curved element, we can
use explicit intersection checks if the number of elements is small. A cheaper
way is detecting the intersection at the element level by evaluating the sign of
the determinant of the Jacobian matrix throughout the element. One approach
is verifying the positiveness by sampling the Jacobian at discrete locations.
A more efficient way is to calculate a lower bound for the determinant of
the Jacobian. It is easy to be obtained when the Bézier form is used when
mapping a reference element due to its convex hull property [19]. In the case
that a positive bound is obtained, it guarantees that the element is valid; on
the contrary, when a non-positive bound occurs, the element could be invalid.
In this case we need to obtain a tighter bound. This evaluation can be either
used to check the validity or to guide the correction of invalid elements.

We rewrite a cubic Bézier triangle T 3(u, v, w) in the following form:

T 3(u, v, w) = P300u
3 + P030v

3 + P003w
3 + 3P201u

2w + 3P210u
2v

+ 3P120uv
2 + 3P102uw

2 + 3P021v
2w + 3P012v

2w + 6P111uvw.

(11)

10 Jing Xu and Andrey N. Chernikov

The Jacobian matrix of a Bézier triangle can be written as

J =

[
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]
=
[
∂T
∂u

∂T
∂v

∂T
∂w

]
∂u
∂x̂

∂u
∂ŷ

∂v
∂x̂

∂v
∂ŷ

∂w
∂x̂

∂w
∂ŷ

 , (12)

with variable change (u = 1− x̂− ŷ, v = x̂, w = ŷ),

(13)

∂u
∂x̂

∂u
∂ŷ

∂v
∂x̂

∂v
∂ŷ

∂w
∂x̂

∂w
∂ŷ

 =

−1 −1
1 0
0 1

 ,
therefore,

J =
[
∂T
∂u

∂T
∂v

∂T
∂w

] −1 −1
1 0
0 1

 =
[
∂T
∂v −

∂T
∂u

∂T
∂w −

∂T
∂u

]
. (14)

Finally,

det(J) = (
∂T
∂v
− ∂T
∂u

)× (
∂T
∂w
− ∂T
∂u

) · n, (15)

where n is the vector (0, 0, 1). Because the derivative of a qth order Bézier
function is a (q − 1)th order Bézier function and the product of two Bézier
functions is also a Bézier function, the resulting determinant of Jacobian is a
Bézier polynomial function with order 2(q−1) [9]. In our case, the determinant
of Jacobian is a forth order Bézier polynomial with fifteen control points.
Specifically,

T 4(u, v, w) =
∑

i+j+k=4

B4
ijk(u, v, w)Pijk, (16)

where Pijk is one of the fifteen control values, B4
ijk(u, v, w) = 4!

i!j!k!u
ivjwk, u ∈

[0, 1], v ∈ [0, 1]and w ∈ [0, 1] is the barycentric coordinates and u+ v+w = 1.
Because

∂T
∂v
− ∂T
∂u

= 3u2a1 + 3v2b1 + 3w2c1 + 6uwd1 + 6uve1 + 6vwf1 (17)

and

∂T
∂w
− ∂T
∂u

= 3u2a2 + 3v2b2 + 3w2c2 + 6uwd2 + 6uve2 + 6vwf2, (18)

where a1 = P210−P300, b1 = P030−P120, c1 = P012−P102, d1 = P111−P201,
e1 = P120 − P210, f1 = P021 − P111, a2 = P201 − P300, b2 = P021 − P120,
c2 = P003 − P102, d2 = P102 − P201, e2 = P111 − P210, f2 = P012 − P111, the
fifteen control values can be calculated. They are listed in Table 1.

If the element is valid, it means the determinant of the Jacobian is positive
everywhere in this element. However, if the lower bound of the determinant

Title Suppressed Due to Excessive Length 11

Table 1. Fifteen control values for det(J) of a cubic triangle

Pijk Control Value

P400 a1 × a2 · n
P040 b1 × b2 · n
P004 c1 × c2 · n
P220

3
2
(a1 × b2 · n + b1 × a2 · n + 4e1 × e2 · n)

P202
3
2
(a1 × c2 · n + c1 × a2 · n + 4d1 × d2 · n)

P022
3
2
(b1 × c2 · n + c1 × b2 · n + 4f1 × f2 · n)

P301
9
2
(a1 × d2 · n + d1 × a2 · n)

P310
9
2
(a1 × e2 · n + e1 × a2 · n)

P130
9
2
(b1 × e2 · n + e1 × b2 · n)

P031
9
2
(b1 × f2 · n + f1 × b2 · n)

P103
9
2
(c1 × d2 · n + d1 × c2 · n)

P013
9
2
(c1 × f2 · n + f1 × c2 · n)

P211
3
2
(a1 × f2 · n + f1 × a2 · n + 2d1 × e2 · n + 2e1 × d2 · n)

P121
3
2
(b1 × d2 · n + d1 × b2 · n + 2e1 × f2 · n + 2f1 × e2 · n)

P112
3
2
(c1 × e2 · n + e1 × c2 · n + 2d1 × f2 · n + 2f1 × d2 · n)

of Jacobian is non-positive, it does not necessarily mean that the element is
invalid. Since it is only a sufficient condition to calculate a lower bound of the
determinant of Jacobian, sometimes, it is overly-conservative. In the cases
that the bound is not tight, the minimum value could be positive whereas
the element is reported invalid. To further confirm the answer, we explicitly
verify the mesh entities using the Bézier subdivision intersection algorithm.
The algorithm relies on the convex hull property and the de Casteljau algo-
rithm [19]. It proceeds by comparing the convex hulls of the two curves. If
they do not overlap, it reports immediately that the two curves do not have
intersections. If they do overlap, the two curves are subdivided into two in the
middle and the two halves of one curve are checked for overlap against the
two halves of the other curve. It recursively rejects regions of curves which
do not contain intersection points. Once the two curves have been subdivided
sufficiently that they can each be approximated by a line segment to within
a tolerance, the intersection of the two approximating line segments is found.
Other interference checking algorithms such as degree elevation intersection
algorithm could also be used, but the Bézier subdivision intersection algo-
rithm is selected here because the convergence of this repeated subdivision
process is very fast [20, 21].

6 Geometric and topological fidelity to boundaries

The algorithm we present in this paper offers a mathematical guarantee that
the boundary of the high-order mesh it produces is a faithful representation of

12 Jing Xu and Andrey N. Chernikov

the geometric shape within a requested fidelity tolerance. We present proofs
of the fact here.

The linear mesh constructed by the method in Sect. 3 provides a faithful
representation of the underlying tissues. To measure the distance between the
boundaries of the image tissues and the boundaries of the corresponding sub-
mesh, we use the two-sided Hausdorff distance. This measure requires that
the boundaries of the linear mesh are within the requested tolerance. Below
we prove that the curved mesh boundary cannot deviate from the straight
mesh boundary by more than a small multiple of the fidelity tolerance, and
therefore, for a given value of the fidelity tolerance, we can accommodate both
straight and curved deviations. However, the supplied fidelity tolerance must
be strictly positive.

Fig. 5. An illustration of the deviation from the curved edge to the original linear
edge. C1 is a control point of curved edge ÃO, C2 is a control point of curved edge
ÕB. Find the point Q such that |QA|/|QB|= |OA|/|OB|. CL ⊥ OA, QD ⊥ OA.

Since the curved mesh is transformed from the linear mesh, the deviation
of the curved edge from the linear edge influences the fidelity. In Fig. 5, let’s
consider the deviation (say X) of curved edge ÃO to linear edge AO. The
length of segment C1C2 controls the curvature of the curve at the Bézier
endpoint. Now we need to bound the deviation from the curved edge to the
original linear edge. We fix the length of segment C1C2 such that |C1C2| equals
to half of the length of shortest linear edge. Due to the convex hull property,
the maximum deviation from the curved edge to the original linear edge is
less than the distance from the control point to the linear edge, then we have

X < |C1L|< |C1O| (19)

Therefore, the deviation of the curved edge from the linear edge is bounded,
the boundary is completely enclosed by the requested tolerance while main-
taining the smoothness.

Title Suppressed Due to Excessive Length 13

7 Mesh examples

We apply our algorithm to a variety of examples in the following. For these
examples, the input data is a two-dimensional image. The procedure described
in Sect. 4.2 was implemented in MATLAB. All the other steps were imple-
mented in C++ for efficiency.

In both of the brain atlas [17] and abdominal atlas [18], the size are 256
* 256 pixels. Each pixel has side lengths of 0.9375 and 0.9375 units in x,
y directions, respectively. Table 2 lists the total number of elements in the
final meshes of the two examples, number of actual invalid mesh edges and
corrected edges. Several figures show the result of each step.

Table 2. Number of detected invalid elements for the two examples below

Image Elements Invalid edges Corrected edges

SPL brain atlas 3034 1 1
SPL abdominal atlas 2025 1 1

Fig. 6. Results of the first two steps of our algorithm. Left: Linear mesh of a slice
of the brain atlas within 2 pixels fidelity tolerance. Right: Smooth curved boundary
of a slice of the brain atlas within 2 pixels fidelity tolerance.

14 Jing Xu and Andrey N. Chernikov

Fig. 7. Result of curving mesh entities in the interior according to the equilibrium
solution of a nonlinear elasticity problem. After calculating the lower bound of the
determinant of Jacobian for each element, two were reported having the non-positive
value. The invalid elements are high-lighted in green bold curves.

8 Conclusion

We presented a new approach for automatically constructing a high-order
mesh to represent geometry with smooth boundaries with guaranteed fidelity

Fig. 8. After the detection of the possible invalid elements, the explicit interference
checking procedure reported the intersected mesh edge and correct it accordingly.
Left: a zoom in view of an possible invalid element, high-lighted by green bold curves.
Right: a zoom in view of the intersected mesh edge corrected by the red curve.

Title Suppressed Due to Excessive Length 15

Fig. 9. Results of the first two steps of our algorithm. Left: Linear mesh of a
slice of the abdominal atlas within 2 pixels fidelity tolerance. Right: Smooth curved
boundary of a slice of the abdominal atlas within 2 pixels fidelity tolerance.

Fig. 10. Result of curving mesh entities in the interior according to the equilibrium
solution of a linear elasticity problem. After calculating the lower bound of the
determinant of Jacobian for each element, only one was reported having the non-
positive value. The invalid elements are high-lighted in red bold curves.

and validity. The algorithm we presented is sequential. Our future work in-
cludes the development of the corresponding parallel algorithm and the ex-
tension to the three-dimensional high-order mesh generation.

9 Acknowledgments

This work was supported (in part) by the Virginia Space Grant
Consortium and by the Modeling and Simulation Graduate Re-
search Fellowship Program at the Old Dominion University.

16 Jing Xu and Andrey N. Chernikov

Fig. 11. After the detection of the possible invalid elements, the explicit interference
checking procedure reported the intersected mesh edge and correct it accordingly.
Left: a zoom in view of an possible invalid element, high-lighted by red bold curves.
Right: a zoom in view of the intersected mesh edge corrected by the red curve.

References

1. C.G. Kim and M. Suri (1993) On the p-version of the finite element method
in the presence of numerical integration. Numer. Methods. Partial Differential
Equations, 9: 593-629

2. I. Babuska and M. Suri (1994) The p and h-p versions of the finite element
method, basic priciples and properties. SIAM J.Numer. Anal., 36(4): 578-631

3. I. Babuska and B. Szabo (1997) Trends and New Problems in Finite Element
Methods. The Mathematics of Finite Elements and Applications, J.R. White-
man, Ed, John Wiley and Sons, Chichester, 1-33.

4. Saikat Dey, Mark S. Shephard and Joseph E. Flaherty (1997) Geometry rep-
resentation issues associated with p-version finite element computations. Com-
puter Methods in Applied Mechanics and Engineering 150(1-4): 39-55

5. George Em Karniadakis and Spencer J. Sherwin (2004) Spectral/hp Element
Methods for CFD, second edition. Oxford Univerisity Press, Great Clarendon
Street, Oxford.

6. S.J. Sherwin and J. Peiro (2000) Mesh generation in curvilinear domains using
high-order elements. Int. J. Numer. Engng 00:1-6

7. Mark S. Shephard, Joseph E. Flaherty and Kenneth E. Jansen (2005) Adaptive
mesh generation for curved domains. Applied Numerical Mathematics 52: 251-
271

8. Xiao-juan Luo, Mark S. Shephard, Robert M. O’Bara, Rocco Nastasia and
Mark W. Beall (2004) Automatic p-version mesh generation for curved domains.
Engineering with Computers 20: 273-285

9. Xiao-juan Luo, Mark S. Shephard, Lie-Quan Lee, Lixin Ge, Cho Ng (2011)
Moving curved mesh adaptation for high-order finite element simulations. En-
gineering with Computers 27: 41-50

Title Suppressed Due to Excessive Length 17

10. P.L.George and H.Borouchaki (2012) Construction of tetrahedral meshes of
degree two. Int. J. Numer. Mesh. Engng 90: 1156-1182

11. A. Johnen, J. F. Remacle and C. Geuzaine(2013) Geometrical validity of curvi-
linear finite elements. Journal of Computational Physics 233: 359-372

12. Qiukai Lu, Mark S. Shephard, Saurabh Tendulkar and Mark W. Beall (2014)
Parallel mesh adaptation for high-order finite element methods with curved
element geometry. Engineering with Computers 30: 271-286

13. Andrey Chernikov and Nikos Chrisochoides (2011) Multitissue tetrahedral
image-to-mesh conversion with guaranteed quality and fidelity. SIAM Journal
on Scientific Computing 33: 3491-3508

14. S. Dey, R.M.O’Bara and M.S. Shephard (2001) Towards curvilinear meshing in
3D: the case of quadratic simplices. Computer-Aided Design 33: 199-209

15. Per-Olof Persson and Jaime Peraire (2009) Curved Mesh Generation and Mesh
Refinement using Lagrangian Solid Mechanics. In: Proceedings of the 47th
AIAA Aerospace Sciences Meeting and Exhibit, Orlando (FL), USA, January
5-9, 2009.

16. O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu (2005) The Finite Element Method:
Its Basis and Fundamentals. 6th edition. Oxford: Butterworth-Heinemann.

17. I. Talos, M. Jakab, R. Kikinis, and M. Shenton (2008) SPL-PNL brain atlas.
http://www.spl.harvard.edu/publications/item/view/1265.

18. I. Talos, M. Jakab, R. Kikinis, and M. Shenton (2008) SPL-PNL abdominal
atlas. http://www.spl.harvard.edu/publications/item/view/1266.

19. Gerald Farin (1997) Curves and Surfaces for Computer-Aided Geometric De-
sign. Academic Press.

20. E. Cohen and L. Schumaker (1985) Rates of convergence of control polygons.
Computer Aided Geometric Design 2(1-3): 229-235

21. W. Dahmen (1986) Subdivision algorithm converge quadratically. J. of Com-
putational and Applied Mathematics 16: 145-158

22. O. Sahni, X. J. Luo, K. E. Jansen, M. S. Shephard (2010) Curved boundary
layer meshing for adaptive viscous flow simulations. Finite Elements in Analysis
and Design 46(1-2): 132-139

