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Summary. The Marching Cubes algorithm is a well known and widely used
approach for extracting a triangulated isosurface from a three-dimensional
rectilinear grid of uniformly sampled data values. The algorithm relies on a
large manually constructed table which exhaustively enumerates all possi-
ble patterns in which the isosurface can intersect a cubical cell of the grid.
For each pattern the table contains the local connectivity of the triangles.
The construction of this table is labor intensive and error prone. Indeed, the
original paper allowed for topological holes in the surface. This problem was
later fixed by several authors, however a formal proof of correctness to our
knowledge was never presented. In our opinion the most reliable approach
to constructing a formal proof for this algorithm is to write a computer pro-
gram which checks that all the entries in the table satisfy some sufficient
condition of correctness. In this paper we present our formal proof which
follows this approach, developed with the Coq proof assistant software. The
script of our proof can be executed by Coq which verifies that the proof is
logically correct, in the sense that its conclusions indeed logically follow from
the assumptions. Coq offers a number of helpful features that automate proof
development. However, Coq cannot check that the development corresponds
to the problem we wish to solve, therefore, this correspondence is elaborated
upon in this paper. Our complete Coq development is available online.1

1 Introduction

The Marching Cubes algorithm is used in a large number of applications for
three-dimensional surface representation and visualization in graphics, finite
element simulations, medical image computing, and other areas [1, 2]. This
algorithm was originally proposed by Lorensen and Cline [3] in 1987. The
algorithm processes each cubical cell of the sampled rectilinear grid one by

1 http://sourceforge.net/projects/coq-mc
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one, and, by examining the values in its corners, identifies the edges of the
cell that intersect the isosurface. Then the algorithm uses a predetermined
table of triangle connectivity to construct the local patches of the isosurface
inside every cubical cell. The union of the isosurface patches from all cubical
cells makes up the final result. The exact coordinates of the intersections of
the isosurface with grid edges are determined by linear interpolation.
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Fig. 1 A two-dimensional example of the use of a Marching Squares algorithm.
The resulting isocontour (blue) corresponds to an isovalue ξ = 10. The nodes of the
rectilinear grid corresponding to values less than ξ are shown with white circles,
and the nodes corresponding to values greater than ξ are shown with black circles.
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Fig. 2 Two-dimensional rules for creating intersection vertices and intersection
edges. Blue circles and segments show the intersection vertices and intersection
edges created by the algorithm. Solid edges correspond to the set of rules analyzed
in this paper, while dashed edges show another feasible set of rules.

In Fig. 1 we show an example of the application of a two-dimensional
Marching Squares algorithm to a simple data grid. The table we used to
create the segments of the isocontour was published previously [1] and is
shown in Fig. 2. Each cell has four corners, therefore the total number of
distinct cases is 24 = 16. In a three-dimensional grid each cube has eight
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Fig. 3 A three-dimensional example of the use of a Marching Cubes algorithm:
an isosurface computed using a Matlab Marching Cubes implementation [4] with a
part of the SPL-PNL brain atlas [5]. Left: A zoomed out view. Right: A zoomed
in view.

corners, and the total number of cases is 28 = 256.2 In Fig. 3 we show an
example of a three-dimensional Marching Cubes surface constructed using a
Matlab implementation [4] which we analyze in this paper.

The resemblance of the resulting isosurface to the true surface is usu-
ally measured in terms of their geometric and/or topological proximity. The
stronger properties of the true surface are known, the tighter proximity con-
ditions can be proven. In the absence of any information of the true surface, a
minimal correctness requirement we can expect of a Marching Squares/Cubes
algorithm is the following: all the nodes of the rectilinear grid with values
less than ξ be separated by the resulting isocontours/isosurfaces from all the
nodes with values greater than ξ. In this paper, for the three-dimensional
algorithm, we refine this requirement down to two components, based on
dimensionality:
1. Two- and three-dimensional cohesion, i.e., every axis-aligned plane of the

three-dimensional rectilinear grid (passing through the nodes) contains
zero or more isocontours from the three-dimensional Marching Cubes iso-
surfaces that are a correct output of a two-dimensional Marching Squares
algorithm.3

2. Water-tightness, i.e., the absence of holes. The output of the Marching
Cubes algorithm is required to consists of zero or more water-tight trian-
gulated isosurfaces.

2 In this analysis we treat the case of the sampled value being equal to the isovalue
together with the case when it is greater than the isovalue. In an implementation
this simplifying assumption can lead to some triangles being squeezed to an edge
or a point. Such triangles can be easily pruned out by a post-processing step.

3 The correctness of the two-dimensional Marching Squares algorithm based on
the rules shown in Fig. 2 easily follows through observation and a dimensional
regression of these requirements.
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The first requirement ensures the separation in the directions of the axes,
and the second extends it to all other directions.

One way to reason about the properties of the resulting isosurfaces is
through manual examination of each of the 256 templates in the lookup
table, which is labor intensive and error prone. The authors of the original
paper [3] reduce the complexity of the algorithm through exploring two types
of symmetry: grouping two cases with the opposite relations to the isovalue in
all corners into one case, and also grouping rotationally symmetric cases. Un-
fortunately, as it was later pointed out [6–11], some symmetric cases cannot
be treated as one case, as we show in Fig. 4. The authors [6–9,11] state that
they solved this problem, each by their own extension of the lookup table,
however they do not provide formal proofs. Overall, we argue that in order
to gain a high level of confidence in the correctness of a Marching Cubes al-
gorithm, all cases need to be examined disregarding the perceived symmetry.
Furthermore, considering the possibility of human error, such a proof is more
reliable if based on an exhaustive verification performed by a computer.

Fig. 4 Two cubes of a sampled grid sharing a common face. The corresponding
corners of the cubes have pairwise opposite relations to the isovalue. Left: The sets
of triangles created by the application of the same triangulation pattern to both
cubes form a hole in the surface at the shared face. Both cubes correspond to a
single case (13) in the original paper [3] which combines these two cubes into one
case due to symmetry. Right: The triangulations are consistent in the shared face.

Since this proof requires an enumeration and a verification of a large num-
ber of cases, we decided that we need to delegate this task to a computer.
One option was to write a program in a conventional imperative language
like C/C++, Python, or any other. However, there is a possibility that such
a program may introduce mistakes of its own. A much higher degree of as-
surances is offered by proof assistant software programs, which are designed
specifically for proof purposes. From a number of proof assistants [12–22]
we chose Coq since it appealed to us with its user friendly interface, a solid
supporting library, and comprehensive documentation.

Below we describe our Coq [23] script written in a functional programming
language Gallina based on a formal language Calculus of Inductive Construc-
tions [14]. In a number of respects this language is more restrictive than the
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conventional imperative programming languages, and even some other func-
tional languages, and therefore allows for sound logical reasoning over its
constructs. For example, arguments to functions are passed only by value,
case analysis must always be exhaustive, and the termination of recursive
functions has to be protected by guard conditions. The script of our proof
can be executed by Coq interpreter which verifies that the proof is logically
consistent, in the sense that its conclusions indeed logically follow from the
assumptions. Coq offers a number of helpful features that facilitate proof
development, such as support of data types, a comprehensive set of tactics
for proving theorems, and an integrated development environment. However,
Coq cannot check if the development corresponds to the problem we wish
to solve; therefore, this correspondence is elaborated upon in this paper. We
show and describe the key parts of our development. We introduce some im-
portant features of the language on the as-needed basis. For further treatment
of Coq the reader can consult a number of excellent tutorials [14,24,25]. Due
to the limited space, we could not include our entire script in this paper. The
reader is welcome to download and execute the complete script.

Computer-assisted proofs in Coq have been used previously to support
solutions of mesh generation and other geometric problems. Dufourd and
Bertot [26] presented a proof of correctness of a planar Delaunay triangula-
tion algorithm. Gonthier proved the Four-Color Theorem [27]. Dufourd [28]
developed a hypermap framework for computer-aided proofs in surface sub-
divisions. He uses this framework to prove the genus theorem and the Euler’s
formula as its corollary. Brun et al. [29] designed a two-dimensional convex
hull algorithm based on hypermaps and proved its correctness. A computer-
assisted proof of dihedral angle bounds for a three-dimensional tetrahedral
meshing algorithm was performed by Labelle and Shewchuk [30], although
the programming language was not specified.

The rest of the paper is organized as follows. In Section 2 we briefly describe
the classical Marching Cubes algorithm. In Section 3 we introduce the naming
conventions and the basic Coq definitions required for the proof. In Section 4
we describe our Coq proof of two- and three-dimensional cohesion. Section 5
presents our Coq proof of surface water-tightness. Section 6 concludes the
paper.

2 Classical Algorithm

The main steps of the classical Marching Cubes algorithm [3, 6–9, 11] are
shown in pseudocode in Fig. 5. The function TableLookup(index ) queries
a manually constructed table with a key composed of eight bits, each bit
corresponding to the result of the test, F (x) ≥ ξ or F (x) < ξ, in one of the
eight corners of cube b. Consider the notation shown in Fig. 6 which is used in
the implementation we study here. Let cj , j = 0, . . . , 7, be the corners of the
cube. Let ij ∈ {0, 1} be the corresponding colors: black (or 1) for F (x) ≥ ξ,
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Algorithm MarchingCubes(I , ξ)
Input: I is a three-dimensional image, i.e., a rectilinear grid of points

G ⊂ R
3 along with a mapping F : G→ R, and an isovalue ξ ∈ R

Output: A triangular surface M embedded in R
3 that interpolates

the set {x ∈ R
3 | F (x) = ξ}

1: M ←− ∅
2: For each point x in G, determine whether F (x) ≥ ξ or F (x) < ξ
3: Compute the set B of cubes by connecting adjacent points in G
4: for each b ∈ B
5: index ←− Index(b)
6: M ←−M ∪ TableLookup(index )
7: endfor
8: Compute vertex coordinates in M by interpolation
9: return M

Fig. 5 A high level description of the Marching Cubes algorithm

c0(0, 0, 0)

c6(1, 1, 1)

c1(1, 0, 0)

c3(0, 1, 0) c2(1, 1, 0)

c7(0, 1, 1)

c4(0, 0, 1) c5(1, 0, 1)

v8(0, 0, ∗)

v10(1, 1, ∗)

v6(∗, 1, 1)

v7(0, ∗, 1) v5(1, ∗, 1)
v4(∗, 0, 1)

v3(0, ∗, 0) v1(1, ∗, 0)

v0(∗, 0, 0)

v2(∗, 1, 0)

v11(0, 1, ∗)

v9(1, 0, ∗)

Fig. 6 Ordering and naming conventions for cube corners and cut-vertices

and white (or 0) for F (x) < ξ. Then the index of the table entry for a cube
can be computed as

index =

7∑

j=0

ij2
j. (1)

For the example shown in Fig. 7, index = 213. The return value of the
function call TableLookup(213) is shown in the figure. It is a set of five
triangles defined by their vertices, where each vertex is located on one edge
of the cube according to the convention.
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v0

v5

v11

v2

v1

v3

v4

Fig. 7 An example of an intersection pattern and the corresponding triangulation:
(v11, v3, v0), (v11, v0, v4), (v11, v4, v5), (v11, v5, v1), (v11, v1, v2)

3 Definitions and Setup

In our entire development we work with a single cube which represents any
cube of the sampled grid. We call it a generic cube because our proofs are valid
for any combination of the sampled values in the corners of this cube and any
isovalue.We call the points in the corners of the generic cube cube corners, and
the points in the intersection of the resulting isosurface with the edges of the
generic cube cut-vertices (or simply vertices). A cut-edge is an edge in one of
the faces of the generic cube that connects two cut-vertices. Both cut-vertices
and cut-edges can be either prospective if we do not know whether or not they
are created, or created if we do have an affirmative answer.

In our Coq script we start with importing some standard libraries:

Require Import Bool Arith List.

These and other standard libraries in Coq provide proven data types and
functions that we can use in our own developments, similar to other pro-
gramming languages.

We then introduce our own data type Dimension that enumerates the
names of the coordinate axes of the three-dimensional grid:

Inductive Dimension := Dimension X | Dimension Y | Dimension Z.

The keyword Inductive indicates that here we define a finite number of
ways (constructors) to build a data item of type Dimension. Furthermore,
no other ways to build a value of type Dimension are allowed. In this case
the constructors are simply constants naming each dimension, however they
could be functions accepting parameters in more involved definitions.
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Similarly, we define a data type named Insideness to communicate the two
possible results of the test F (c) ≥ ξ or F (c) < ξ for a grid corner c:

Inductive Insideness : Set := Insideness Inside | Insideness Outside.

The following function converts a list of Insideness values to the corre-
sponding natural index using formula (1):

Fixpoint Insideness 2Index (I : list Insideness) : nat :=
match I with

| nil ⇒ 0
| i :: I’ ⇒
match i with
| Insideness Inside ⇒ 1
| Insideness Outside ⇒ 0
end +
2 × (Insideness 2Index I’)

end.

Here the Fixpoint keyword indicates that the function is recursive. Since
Coq does not provide the conventional loop constructs, the use of recursion
is the standard way to iterate over a list. Coq always checks that a recursive
function satisfies a guard condition which ensures that the function returns
after a finite number of recursive calls. In this example the guard condition is
satisfied by the fact that list I decreases in length at every recursive call. This
reduction in size of I is performed by the match construct which decomposes
the list into its head i and tail I’. Coq also verifies that case analysis in
a match expression is exhaustive, and therefore allows to argue about all
possible ways to construct a value of a particular inductive type.

We also define a data type for the coordinates of the corners of the generic
cube. We only need two values:

Inductive Coord : Set := Coord Zero | Coord One.

The following function compares two values of type Coord for equality and
returns true or false accordingly:

Definition Coord IsEqual (a b : Coord) : bool :=
match a, b with

| Coord Zero, Coord Zero
| Coord One , Coord One ⇒ true
| , ⇒ false
end.

A standalone underscore in a match expression matches any value and is used
as a wildcard. The match clauses are evaluated in the order written, and a
value is returned as soon as a fitting expression is found.
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The option data type is standard in Coq and allows us to add a convenient
constructor None to any type A, which can be used as a return value for
search-like functions:

Inductive option (A : Type) : Type :=
| Some : A → option A
| None : option A.

In this case the first constructor (Some) is a function which takes a value of
type A and returns a value of type option A with the name Some embedded in
the value. The second constructor (None) does not receive any parameters and
returns a value of type option A which simply consists of its name None. An
analogy from imperative programming languages is the special treatment of
pointer NULL in C/C++. For example, if the parameter data type A is speci-
fied asCoord, then we have a data type option Coord which admits three values:
Some Coord Zero, Some Coord One, andNone. This is convenient for our ma-
nipulations with corners, edges, and faces of the generic cube, as can be seen
below.

To compare for equality two values of type option Coord we use the fol-
lowing function:

Definition CoordOption IsEqual (A B : option Coord) : bool :=
match A, B with

| Some a, Some b ⇒ Coord IsEqual a b
| None, None ⇒ true
| , ⇒ false
end.

Now we can define a data type for three-dimensional coordinates:

Inductive CoordOption3 : Set :=
CoordOption3 Cons :
option Coord → option Coord → option Coord → CoordOption3.

Here the constructor is a function which takes three values of type Coord as
parameters and builds a value of type CoordOption3. Any of the three com-
ponents of a value of this data type can assume a value of None, represented
as ∗ in Fig. 6. For example, the edge of the cube between corners c0(0, 0, 0)
and c1(1, 0, 0) can be considered having coordinate (∗, 0, 0). The face defined
by corners c0(0, 0, 0), c1(1, 0, 0), c2(1, 1, 0), and c3(0, 1, 0) can be considered
as having coordinate (∗, ∗, 0). The whole cube can be thought of as having
coordinate (∗, ∗, ∗). Depending on the point of view, the value of None in this
context can be also though of as “Any”.

The definition of the function deciding equality of twoCoordOption3 values
is based on the component-wise comparison:
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Definition CoordOption3 IsEqual (A B : CoordOption3 ) : bool :=
match A, B with

CoordOption3 Cons x1 y1 z1,
CoordOption3 Cons x2 y2 z2 ⇒
(CoordOption IsEqual x1 x2 ) &&
(CoordOption IsEqual y1 y2 ) &&
(CoordOption IsEqual z1 z2 )

end.

We will also be using data type Location which is a convenient structure
for representing a face of the generic cube:

Inductive Location : Set :=
Location Cons : Dimension → Coord → Location.

The following function finds the common location (i.e., a face of the cube),
if any, of two CoordOption3 (i.e., edges) parameters:

Definition Location GetCommon
(A B : CoordOption3 ) : option Location :=

let f a b d :=
match a, b with

| Some u, Some v ⇒
if Coord IsEqual u v
then Some (Location Cons d u)
else None

| , ⇒ None
end

in

match A, B with CoordOption3 Cons x1 y1 z1,
CoordOption3 Cons x2 y2 z2 ⇒

let fx := f x1 x2 Dimension X in

let fy := f y1 y2 Dimension Y in

let fz := f z1 z2 Dimension Z in

match fx, fy, fz with

| Some , None , None ⇒ fx
| None , Some , None ⇒ fy
| None , None , Some ⇒ fz
| , , ⇒ None
end

end.

For compactness and esthetics we substitute long and/or repetitive terms
using local binding to short names with the let-in construct.
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By now we have built the preliminaries for working with the triangles of
the resulting surface. First we define an edge of a triangle as a pair of values
of type CoordOption3 :

Inductive TriangleEdge : Set :=
TriangleEdge Cons : CoordOption3 → CoordOption3 →

TriangleEdge.

The following function checks two TriangleEdges for equality:

Definition TriangleEdge IsEqual (E1 E2 : TriangleEdge) : bool :=
match E1, E2 with TriangleEdge Cons A1 B1,

TriangleEdge Cons A2 B2 ⇒
let f x y := (CoordOption3 IsEqual A1 x ) &&

(CoordOption3 IsEqual B1 y)
in (f A2 B2 ) || (f B2 A2 )

end.

We define a Triangle as a triple of the coordinates of its vertices. The
vertices of the triangles in our problem are cut-vertices which are defined by
the corresponding edges of the generic cube.

Inductive Triangle : Set :=
Triangle Cons :
CoordOption3 → CoordOption3 → CoordOption3 → Triangle.

At this point we are ready to define the table of triangle connectivity. We
wrote a short Matlab routine to transform the table developed previously [4]
into the following function:

Definition TriangleList Get (n : nat) : list Triangle :=
let g u v w := Triangle Cons u v w in

let f x y z := CoordOption3 Cons x y z in

let a := (Some Coord Zero) in
let b := (Some Coord One) in
let c := None in

match n with

| 0 ⇒ [ ]
| 1 ⇒ [ g (f c a a) (f a a c) (f a c a) ]
| 2 ⇒ [ g (f c a a) (f b c a) (f b a c) ]
| 3 ⇒ [ g (f b c a) (f a a c) (f a c a); g (f b a c) (f a a c) (f b c a) ]
. . .

| 254 ⇒ [ g (f c a a) (f a c a) (f a a c) ]
| 255 ⇒ [ ]
| ⇒ [ ]
end.
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The dots in this and other displays are used in place of some omitted code.
The parameter n to this function is the case number, computed with function
Insideness 2Index, and the return value is the corresponding list of triangles.

4 Proof of Two- and Three-Dimensional Cohesion

Fig. 2 shows the rules for creating cut-edges and cut-vertices in any face
of the generic cube. Black circles represent the corners marked with Insi-
deness Inside and white circles represent the corners marked with Inside-
ness Outside. We organized the figure in two rows: the Insideness values in
the bottom row (b) are the opposite of the Insideness values in the top row
(a). These rules satisfy two fundamental requirements:
• A cut-vertex is created in an edge of the grid if and only if this edge has
opposite Insideness values at its ends.

• In every case all the Insideness Inside corners are completely separated
by cut-vertices and cut-edges from all the Insideness Outside corners. In
each column, except the last one, there is just one way to satisfy this
requirement, that is followed. In the last column each of the two cases, (a)
and (b), admits two solutions, and therefore we could have four different
sets of two-dimensional rules. However, to avoid creating holes, we should
always use either the pair of edges that intersect the diagonal between the
Insideness Inside corners, or the pair of edges that intersect the diagonal
between the Insideness Outside corners. The former pair of edges (used in
the implementation we study here) is shown with the solid lines, and the
latter is shown with the dashed lines.
We encoded the two-dimensional rules shown in Fig. 2 with the following

function:

Definition CutEdge2D Exists
(U V : CoordOption3 )
(I : list Insideness) : bool := . . .

Given two potential cut-vertices, defined by their respective coordinates U
and V, and an Insideness configuration I, this function returns a boolean
value indicating whether or not the cut-edge between U and V is created
according to the two-dimensional rules.

Below we are going to prove that the set of cut-edges returned by the
function CutEdge2D Exists is exactly the same as the set of cut-edges created
by the triangulation returned by the function TriangleList Get, for each of
the 256 lists of eight Insideness values. We are going to break this goal into
two subgoals, each verifying that one set is a subset (including set equality)
of the other.

First, we define the function which checks that the three-dimensional poly-
gons (edges of the triangles lying in the faces of the generic cube) are a subset
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of the cut-edges specified by the two-dimensional rules, for a given list I of
Insideness values:

Definition Polygons3D Subset CutEdges2D
(I : list Insideness) : bool :=

let f x y :=
match Location GetCommon x y with

| Some ⇒ CutEdge2D Exists x y I
| None ⇒ true
end

in

let fix g T :=
match T with

| nil ⇒ true
| (Triangle Cons A B C ) :: T’ ⇒
(f A B) && (f B C ) && (f C A) && (g T’)

end

in

g (TriangleList Get (Insideness 2Index I )).

Here the local function f checks if the edge (x, y) lies in a face of the cube, and,
if affirmative, if this edge is specified by the function CutEdge2D Exists. The
second local function g (recursive as indicated by the keyword fix) iterates
over the list of triangles returned by the function TriangleList Get and calls
function f for each edge of each triangle.

Now we are going to define the other part of the subset verification. We
start with listing the coordinates of all the potential cut-vertices:

Definition AllVertices : list CoordOption3 := [
CoordOption3 Cons None (Some Coord Zero) (Some Coord Zero);
CoordOption3 Cons (Some Coord One) None (Some Coord Zero);

. . .
CoordOption3 Cons (Some Coord Zero) (Some Coord One) None

].

Then we define a function which checks that the cut-edges specified by the
two-dimensional rules are a subset of the edges of the triangles lying in the
faces of the cube:

Definition CutEdges2D Subset Polygons3D
(I : list Insideness) : bool :=

let T := TriangleList Get (Insideness 2Index I ) in
let fix f u V :=
match V with

| nil ⇒ true
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| v :: V’ ⇒
let b := f u V’ in
if CutEdge2D Exists u v I
then

let E := TriangleEdge Cons u v in

(beq nat (TriangleEdge Count T E ) 1) && b
else b

end

in

let fix g V :=
match V with

| nil ⇒ true
| v :: V’ ⇒ (f v V’) && (g V’)
end

in

g AllVertices.

Again, we have two local functions. The first recursive function f, given a
potential cut-vertex u and a list of potential cut-vertices V, for each v from
V checks if edge (u,v) is defined by the function CutEdge2D Exists. If af-
firmative, it also checks if (u,v) appears exactly once on the list of triangles
returned by the function TriangleList Get. The second recursive function g
calls f for each vertex from the list AllVertices and the sublist of AllVertices
after this vertex. In other words, we check all pairs of potential cut-vertices.

The following theorem formally proves that both of the above functions
return true for all possible lists of eight Insideness values:

Theorem CutEdges2D SetEqual Polygons3D :
∀ i0 i1 i2 i3 i4 i5 i6 i7 : Insideness,
let I := [i0 ;i1 ;i2 ;i3 ;i4 ;i5 ;i6 ;i7 ] in
(Polygons3D Subset CutEdges2D I ) &&
(CutEdges2D Subset Polygons3D I ) = true.
Proof.
intros;
destruct i0, i1, i2, i3, i4, i5, i6, i7 ;
vm compute;
reflexivity.

Qed.

Once a theorem is stated, Coq enters into a proof mode. The statement of the
theorem becomes a goal which needs to be discharged through some sequence
of predefined transformations. These transformations are called tactics. The
user is responsible for choosing the appropriate tactics. Coq automatically
performs the transformations of the goal according to the tactics, and enforces
that these transformations are performed in a logically sound manner. In the
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case of our theorem CutEdges2D SetEqual Polygons3D, we prove it by using
the following four tactics:
• intros moves the universally quantified variables into the local context,
which is similar to assuming a view of the goal as a function of these
variables.

• destruct i0, i1, i2, i3, i4, i5, i6, i7 considers all possible values for all of
the variables in the list. Since each of the eight variables can assume one of
two values (Insideness Inside or Insideness Outside) this tactic generates
28 = 256 different lists of these values.

• vm compute computes the goal for a given local context. Since we concate-
nated the tactics with a semi-colon, every tactic in the sequence applies to
all subgoals produced by the previous tactic.

• reflexivity is used to finish up the proof when it is a simple equality,
such as true = true in this case.

At this point Coq discharges all proof goals completely, and we enter the
command Qed which validates the proof and includes the theorem into the
environment.

5 Proof of Water-tightness

In this section we describe our proof that the lists of triangles returned by
the function TriangleList Get for all cubes in the grid collectively form a
water-tight surface. In particular, for each edge E of each triangle, we prove
that the following conditions are satisfied:

(i) if E lies in some face F of the current-case cube (E is a cut-edge):
(a) E appears exactly once cumulatively in all triangles in this cube, and
(b) for any possible neighbor cube incident to F , E appears exactly once

cumulatively in all triangles of this neighbor cube;
(ii) if E does not lie in any of the faces of the current cube (it is not a cut-

edge), then it appears exactly twice cumulatively in all triangles of the
current cube.

The following function examines all possible lists of eight Insideness values
that are partially defined by a list OI of eight option Insideness values. More
specifically, the function builds lists I of Insideness values such that each
member of OI which is None is represented in turn by Insideness Inside and
Insideness Outside in I. The members of OI that have a value of Some i are
represented only by i. This way, we can constrain the four Insideness values
in the corners of a face shared by two cubes, and check all combinations of
the Insideness values in the four corners of the neighbor cube that are not
shared. This function returns true if and only if the edge E appears exactly
once in all possible Insideness configurations of the neighbor cube.
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Fixpoint TriangleEdge IsCount1
(OI : list (option Insideness))
(I : list Insideness)
(E : TriangleEdge) : bool :=

match OI with

| nil ⇒
let T := TriangleList Get (Insideness 2Index I ) in
beq nat (TriangleEdge Count T E ) 1

| oi :: OI’ ⇒
let f x := TriangleEdge IsCount1 OI’ (I ++ [x ]) E in

match oi with
| Some i ⇒ f i
| None ⇒ (f Insideness Inside) && (f Insideness Outside)
end

end.

Here beq nat is a built-in Coq function which checks two natural numbers
for equality and returns the corresponding boolean value.

The function TriangleEdge IsCount1 NeiCube below builds the input pa-
rameters and calls the function TriangleEdge IsCount1 :

Definition TriangleEdge IsCount1 NeiCube
(L : Location)
(A B : CoordOption3 )
(I : list Insideness) : bool := . . .

In this function, L identifies the face of the current cube, A and B identify the
end points of the edge, and I is the Insideness configuration of the current
cube.

The following function checks all the conditions we specified above:

Definition TriangleList NoHoles (I : list Insideness) : bool :=
let WholeList := TriangleList Get (Insideness 2Index I ) in
let f x y :=
let E := TriangleEdge Cons x y in

let n := TriangleEdge Count WholeList E in

match Location GetCommon x y with

| None ⇒ beq nat n 2
| Some L ⇒

if (beq nat n 1)
then TriangleEdge IsCount1 NeiCube L x y I
else false

end

in
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let fix g CurrentList :=
match CurrentList with
| nil ⇒ true
| (Triangle Cons A B C ) :: CurrentList’ ⇒

(f A B) && (f B C ) && (f C A) && (g CurrentList’)
end

in

g WholeList.

This function first obtains the list of triangles WholeList corresponding to
the given Insideness configuration. Then it calls the local recursive function
g which iterates over all triangles on the list, and for each edge of each tri-
angle calls another local recursive function f. Function f checks the number
of times the given edge appears in the triangles of WholeList, and calls Tri-
angleEdge IsCount1 NeiCube when this number is 1.

Finally, we state and prove a theorem which ensures the absence of holes:

Theorem No Holes :
∀ i0 i1 i2 i3 i4 i5 i6 i7 : Insideness,
TriangleList NoHoles [i0 ;i1 ;i2 ;i3 ;i4 ;i5 ;i6 ;i7 ] = true.
Proof. . . . Qed.

The tactics used in this proof are the same as those used in the proof of
Theorem CutEdges2D SetEqual Polygons3D.

6 Conclusions

The Marching Cubes algorithm is difficult to implement and to verify man-
ually due to a large number of cases. One way to reduce the number of cases
is to exploit symmetry, however this approach can introduce mistakes of its
own, as it happened in the original paper. In this paper we present our for-
mal proof of correctness of an existing Marching Cubes implementation. Our
proof checks all cases disregarding any perceived symmetry. Our develop-
ment is performed with the Coq proof assistant software which provides a
solid framework for proof construction and validation. The interested reader
can download and execute our Coq script. Furthermore, our script can be
used to verify a different table of triangle connectivity, since the problem
admits many correct solutions. For example, one might wish to construct a
table which improves certain features of the resulting triangulation, such as
planar or dihedral angles, triangle normals, surface area, or vertex degrees.

The proof presented here works with a uniform grid only. We are currently
working on extending this analysis to the more complex case of a non-uniform
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grid, for example, represented by an octree. Another extension we are plan-
ning is the use of a Coq mechanism known as program extraction: the parts
of the script that deal with the proof of correctness can be separated from
the parts that actually execute the algorithm. Program extraction in Coq
allows for automatic production of executable code in OCaml, while the cor-
rectness of this code is backed by the removed logical part. This logical part
can be thought of as a certificate, a notion used in the formal methods com-
munity, that is a formal artifact which demonstrates that a program satisfies
its specifications.
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