
Scalability of a Parallel Arbitrary-Dimensional Image Distance Transform

Scott K. Pardue, Nikos P. Chrisochoides, Andrey N. Chernikov
Old Dominion University Computer Science Department

spardue@cs.odu.edu, nikos@cs.odu.edu, achernik@cs.odu.edu

Keywords: Parallel computing, parallel distance
transform, distance transform, scalability, speedup,
efficiency, algorithms, Euclidean Distance Transform,
EDT, medical imaging, image processing

Abstract
 Computing the Euclidean Distance Transform
(EDT) for binary images is an important problem with
applications involving medical image processing,
computer vision, computational geometry, and pattern
recognition. Currently, there exists a sequential
algorithm of O(n) complexity developed by Maurer et
al. and a parallel implementation of Maurer's algorithm
developed by Staubs et al. with a theoretical
complexity of O(n/p) for n voxels and p threads. In this
paper, we present an efficient, scalable parallel
implementation of Maurer's algorithm for large
datasets with high efficiency for 16 processors.

1. Introduction
 An EDT of an N-dimensional binary image is an N-
dimensional matrix representing the Euclidean
distance of each volume pixel (voxel) in the binary
image to the closest foreground element in the binary
image. Currently, the best sequential algorithm for
calculating the EDT of a binary image, developed by
Maurer[1], computes it in linear time. Maurer's
algorithm focuses on dimensionality reduction by
computing the EDT at each dimension by generating
partial Voronoi diagrams for each row of voxels in
each dimension. This is done by first initializing the
EDT by iterating through each row of voxels in the
binary image for the lowest dimension. When a
foreground voxel is found, the associated voxel in the
EDT is set to zero while all others are set to infinity.
The voxel data of the binary image is only used for
initialization. The EDT is used for the remainder of the
computations. After initialization, each row of voxels
for each dimension in the EDT is iterated through
beginning with the lowest dimension. All voxels that
are equal to infinity are disregarded. All of the
remaining voxels, known as feature voxels (FV) are
compared against the two closest FV to determine if
the current FV intersects the row of voxels that is
currently being examined. If the current FV does not
intersect the current row, then this FV is disregarded.
After all of the FV have been compared, the row of
voxels is iterated through comparing the current

Euclidean distance for the given voxel to the Euclidean
distance to each FV. The lower of the two distances is
the new Euclidean distance for the current voxel. The
EDT of the lower dimension is used to calculate the
EDT of the current dimension. The order of processing
for a two dimensional image is shown in Figure 1.
Each row, of the first dimension is iterated through,
then each row of the second dimension is iterated
through.

Figure 1. Order of Rows to Process

Figure 2 and Figure 3 show an example of an image of
brain ventricles from the Brain Atlas[3] and its
corresponding 3D distance transform, respectively.

mailto:spardue@cs.odu.edu
mailto:nikos@cs.odu.edu
mailto:achernik@cs.odu.edu

Figure 2. Image of Brain Ventricles

Figure 3. 3D Distance Transform of Figure 2

There is another parallel implementation of Maurer’s
algorithm, presented in Staubs[2] which features
significant speedup for small scale problems and a low
number of threads. In this paper, we present a more
generalized, scalable, and efficient parallel
implementation of Maurer’s algorithm. Our
implementation is able to provide a mean speedup of 6
times for 8 threads while Staubs[2] was only able to
provide a mean speedup of 3 times with 8 threads.

Also, the speedup data presented in Staubs[2]
asymptotically approaches 3 times, while our
implementation has a projected asymptote of 20 times
for the speedup for large datasets.

2. Our Approach
 Our algorithm follows the same dimensionality
reduction approach and partial Voronoi diagram
generation developed by Maurer[1] to efficiently
calculate the EDT for the image. Our algorithm is
generalized to compute the EDT for any given number
of dimensions. This is done by representing the image
as a single array in row-major order. The row-major
representation is used instead of column-major
representation because the elements are accessed by
iterating the index of the current dimension. Row-major
order would produce a benefit in access time over
column-major order for computing the EDT of a row,
while column-major order would produce a benefit for
computing the EDT of a column. The array is laid it
contiguously in memory which results in better cache
performance for iterating over a row or column for row-
major or column-major organization, respectively, of
the array representation of the binary image.
 For our implementation, we are utilizing the POSIX
Threads Programming library. The library includes a
pthread datatype and a mutex datatype which we
required to implement our algorithm. A pthread is the
POSIX version of a thread. A thread is an individual
collection of instructions to be executed. Without the
use of threads, a program runs sequentially, one
instruction after another, waiting for each instruction to
terminate before beginning the next instruction. With
threads, multiple instructions may be executed
simultaneously. A mutex is the name given to the
semaphore to control access to a common resource.
When a thread locks a mutex, then that thread has
exclusive control of that resource until the controlling
thread releases the resource by unlocking the mutex.
If a thread tries to gain control of a mutex that is
already owned, or locked, by another thread, then the
calling thread waits until the resource becomes
available. We also use the thread controls wait, signal,
and broadcast. When a thread waits, the thread
pauses its execution until it receives a signal. If
multiple threads are waiting, then all thread may
resume execution through the use of a broadcast.

2.1 Load Balancing
 A common problem in parallel algorithms is load
balancing. In order to maximize speedup, idle time
must be minimized. We have achieved this by utilizing
the producer-consumer paradigm in that the main
program creates the consumer threads and creates
the work for the consumer threads. The total amount
of work is stored in Wd, a one-dimensional array, while

the indices of each dimension are stored in Dd,w,i, a
three-dimensional array. The total amount of work for
a given dimension can be calculated with a single
multiplicative summation if the current dimension is
excluded:

 [∏

] [∏

]

Where Ni is the number of rows for dimension i. For
each dimension i, there are Ni number of rows. For
calculating the EDT, each row of the current dimension
must be iterated through for all other dimensions.
Consider the example of a 3x4x2 matrix, (width of 3,
height of 4, and a depth of 2). For the lowest
dimension, we calculate the number of rows that need
to be processed by multiplying the number of rows in
all other dimensions. So the number of rows that need
processing for the lowest dimension would be 4*2=8,
and the number of rows the need processing for the
next dimension would be 3*2=6, and 3*4=12 for the
highest dimension.
Once the work has been generated for the current
dimension by the producer, a signal is sent to the
consumers which then retrieve work from the front of
the queue and compute the EDT by iterating through
the indices of the current dimension while keeping the
indices of the other dimensions fixed based on the
values retrieved from Dd,i. This approach provides
better load-balancing than statically allocating work
before processing begins. When a consumer thread
checks the queue of work and the queue is empty, the
consumer thread goes into a wait state. Once all
threads have reached the wait state, a signal is sent to
the producer. If the producer has finished generating
the work queue for the next dimension, the producer
broadcasts to the consumer threads to begin
processing the next dimension. A barrier cannot be
used because we cannot guarantee that the producer
will have produced the work queue necessary for the
next dimension by the time the current dimension has
finished computing. While the consumer threads
process the current dimension, the producer is
generating the work queue. This also helps eliminate
thread idle time by not waiting until the work queue for
all dimensions is generated. This approach is possible
because the only task dependency (other than the
dependency of the consumer for the producer in
generating the work queue) is that the EDT for current
dimension is dependent on the previous dimension.
Each row in the current dimension is independent of all
other rows in the current dimension.

2.2 Dimension Generalization
 Once the binary image is represented in row-major
form as a single array, the indices for iterating through
a given dimension can be computed using the stored
size information in N and the current fixed dimensions
stored in Di,w. We were able to generalize the
calculations to compute the indices for a given
dimension using a summation of multiplicative
summations. These computations are few, even in the
case of large dimensions, compared to the task of
generating and querying the partial Voronoi diagram
and therefore do not have a significant effect on the
complexity of the algorithm. Given the current
dimension and the indices of the fixed dimension, Dd,i ,
the indices of the current dimension are calculated
during the construction of the partial Voronoi diagram
by

 [∑(∏

)

]

 [(∏

)]

 [∑ (∏

)

]

This formula works by calculating the offset for each
dimension. To calculate the offset for a dimension, the
summation of the multiplicative summation of all
dimensions is calculated. The multiplicative summation
of a dimension is represented by multiplying the size of
all lower dimensions to produce an offset. This offset
represents the number of voxels that comprise one set
of the given dimension. This offset represents the first
index of the first set of the dimension. To find the first
index of the N-th set of a dimension, the offset is
multiplied by N. For our algorithm, the N-th set of the
fixed dimensions is given by Dd,w,i while the N-th set of
the current dimension is given by i. It is important to
store these indices for future use while querying the
partial Voronoi diagram.

3. Experimental Performance
 We have tested our implementation on a machine
with 40 CPUs and 126G of memory. We generated
cube images with dimensions of 500x500x500,
1000x1000x1000, and 1250x1250x1250 and ran each
with a literal interpretation of the algorithm presented
in Maurer[1] sequentially and with our implementation
using 2, 4, 8, 16, 24, 32, and 40 threads. A cube with
dimensions 1250x1250x1250 is used as our largest

test case because our machine does not have enough
memory to process larger cubes.
The image data that is being processed are cubes, so
the amount of work can be represented by 3*n

2
where

n is the number of rows in each dimension. One unit of
work is one row of voxels for a dimension. For our
500x500x500 cube image, there are 750,000 tasks;
1000x1000x1000: 3,000,000 tasks; 1250x1250x1250:
4,687,500 tasks. As the number of threads increases,
efficiency decreases. The point at where the efficiency
starts decreasing rapidly depends on the problem size.
This is due to thread idle time and overhead costs for
accessing the mutex to retrieve work. The thread idle
time is minimized through dynamic load balancing.
Through the user of a mutex, dynamic load balancing
is made possible. However, for implementations that
use static allocation of tasks, thread idle time would
increase due to improper load balancing and there
would be minimal overhead costs. For larger
problems, using a mutex to minimize thread idle time
results in better performance and an overall higher
efficiency. Results are depicted in Figure 4 (Speed Up)
and Figure 5 (Efficiency).

Figure 4. Graph of Speed Up for Cube Data

Figure 5. Graph of Efficiency for Cube Data

3.1 Performance Comparisons
 The difference between our implementation and
the implementation presented in Staubs[2] is that our
implementation is more scalable in regards to problem
size and number of threads. Our implementation is
able to provide a mean speedup of 6 times for 8
threads while Staubs[2] was only able to provide a
mean speedup of 3 times with 8 threads on a machine
with 4 processors and 2 GB of memory. Also, the
speedup data presented in Staubs[2] asymptotically
approaches 3 times, while our implementation has a
projected asymptote of 20 times for the speedup for
large datasets. Using our current machine, we were
able to measure mean speedups of 19 times using 40
threads.

3.2 Work In Progress
 This implementation is currently still a work in
progress as we plan to test our implementation on
larger machines and larger datasets. We also plan to
further analyze and modify our algorithm to improve
the efficiency. Limitations of our implementation
include a drop in performance when using a larger
number of threads. This is most likely due to the mutex
required to access the shared queue of work as the
efficiency drops even for larger problem sizes. Another
possible adaptation of our implementation that we will
examine and evaluate is the master-worker paradigm
where the master will communicate to each thread
which tasks need to be generated and processed as
opposed to our current implementation of the
producer-consumer paradigm where the producer
generates the tasks and the consumers process them.

The master-worker paradigm will decrease the need
for the mutex and alleviate some startup costs on the
main program (i.e. the producer in this case). Another
possible, but smaller adaptation, would be to create
multiple queues of work and multiple mutexes for
accessing the work queues. Since the efficiency drops
rapidly after 16 threads, one possibility would be to
have the number of queues equal to the ceiling of the
number of threads divided by 16. Each thread would
be designated to an initial queue and when the queue
becomes empty, those threads may request work from
the other queue(s).

4. Conclusions
 Our introduction of a more scalable Parallel
Euclidean Distance Transform algorithm
implementation will allow for larger datasets to be
processed more efficiently and with more processing
power. Also, because our algorithm operates on any
dimension, we are able to provide an efficient and
extendable algorithm for many different image
processing applications to utilize without the need to
modify our algorithm.

5. Acknowledgements
 We would like to thank the Old Dominion
University Information Technology Services for making
available the computing resources used in our
evaluation.

6. References
[1] Calvin R. Maurer, Jr., Rensheng Qi, and Vijay

Raghavan. A linear time algorithm for computing
exact euclidean distance transforms of binary
images in arbitrary dimensions. IEEE Trans.
Pattern Anal. Mach. Intell., 25(2):265–270, 2003.
http://dx.doi.org/10.1109/TPAMI.2003.1177156.
(document), 1, 2, 3

[2] Staubs R., Fedorov A., Linardakis L., Dunton B.,

Chrisochoides N. Parallel N-Dimensional Exact
Signed Euclidean Distance Transform. 2006 Sep.
http://www.insight-
journal.org/browse/publication/123.

[3] Talos I-F., Jakab M., Kikinis R., Shenton M.E. SPL-

PNL Brain Atlas. SPL-PNL March;

