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Abstract 
 Computing the Euclidean Distance Transform 
(EDT) for binary images is an important problem with 
applications involving medical image processing, 
computer vision, computational geometry, and pattern 
recognition. Currently, there exists a sequential 
algorithm of O(n) complexity developed by Maurer et 
al. and a parallel implementation of Maurer's algorithm 
developed by Staubs et al. with a theoretical 
complexity of O(n/p) for n voxels and p threads. In this 
paper, we present an efficient, scalable parallel 
implementation of Maurer's algorithm for large 
datasets with high efficiency for 16 processors.  
 
1.  Introduction  
 An EDT of an N-dimensional binary image is an N-
dimensional matrix representing the Euclidean 
distance of each volume pixel (voxel) in the binary 
image to the closest foreground element in the binary 
image. Currently, the best sequential algorithm for 
calculating the EDT of a binary image, developed by 
Maurer[1], computes it in linear time. Maurer's 
algorithm focuses on dimensionality reduction by 
computing the EDT at each dimension by generating 
partial Voronoi diagrams for each row of voxels in 
each dimension. This is done by first initializing the 
EDT by iterating through each row of voxels in the 
binary image for the lowest dimension. When a 
foreground voxel is found, the associated voxel in the 
EDT is set to zero while all others are set to infinity. 
The voxel data of the binary image is only used for 
initialization. The EDT is used for the remainder of the 
computations. After initialization, each row of voxels 
for each dimension in the EDT is iterated through 
beginning with the lowest dimension. All voxels that 
are equal to infinity are disregarded. All of the 
remaining voxels, known as feature voxels (FV) are 
compared against the two closest FV to determine if 
the current FV intersects the row of voxels that is 
currently being examined. If the current FV does not 
intersect the current row, then this FV is disregarded. 
After all of the FV have been compared, the row of 
voxels is iterated through comparing the current 

Euclidean distance for the given voxel to the Euclidean 
distance to each FV. The lower of the two distances is 
the new Euclidean distance for the current voxel. The 
EDT of the lower dimension is used to calculate the 
EDT of the current dimension. The order of processing 
for a two dimensional image is shown in Figure 1. 
Each row, of the first dimension is iterated through, 
then each row of the second dimension is iterated 
through. 
 

 
 

Figure 1. Order of Rows to Process 
 

Figure 2 and Figure 3 show an example of an image of 
brain ventricles from the Brain Atlas[3] and its 
corresponding 3D distance transform, respectively. 
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Figure 2. Image of Brain Ventricles 
 

 

 
 

Figure 3. 3D Distance Transform of Figure 2 
 
There is another parallel implementation of Maurer’s 
algorithm, presented in Staubs[2] which features 
significant speedup for small scale problems and a low 
number of threads. In this paper, we present a more 
generalized, scalable, and efficient parallel 
implementation of Maurer’s algorithm. Our 
implementation is able to provide a mean speedup of 6 
times for 8 threads while Staubs[2] was only able to 
provide a mean speedup of 3 times with 8 threads. 

Also, the speedup data presented in Staubs[2] 
asymptotically approaches 3 times, while our 
implementation has a projected asymptote of 20 times 
for the speedup for large datasets.  
 
2.  Our Approach 
 Our algorithm follows the same dimensionality 
reduction approach and partial Voronoi diagram 
generation developed by Maurer[1] to efficiently 
calculate the EDT for the image. Our algorithm is 
generalized to compute the EDT for any given number 
of dimensions. This is done by representing the image 
as a single array in row-major order. The row-major 
representation is used instead of column-major 
representation because the elements are accessed by 
iterating the index of the current dimension. Row-major 
order would produce a benefit in access time over 
column-major order for computing the EDT of a row, 
while column-major order would produce a benefit for 
computing the EDT of a column. The array is laid it 
contiguously in memory which results in better cache 
performance for iterating over a row or column for row-
major or column-major organization, respectively, of 
the array representation of the binary image.  
 For our implementation, we are utilizing the POSIX 
Threads Programming library. The library includes a 
pthread datatype and a mutex datatype which we 
required to implement our algorithm. A pthread is the 
POSIX version of a thread. A thread is an individual 
collection of instructions to be executed. Without the 
use of threads, a program runs sequentially, one 
instruction after another, waiting for each instruction to 
terminate before beginning the next instruction. With 
threads, multiple instructions may be executed 
simultaneously. A mutex is the name given to the 
semaphore to control access to a common resource. 
When a thread locks a mutex, then that thread has 
exclusive control of that resource until the controlling 
thread releases the resource by unlocking the mutex. 
If a thread tries to gain control of a mutex that is 
already owned, or locked, by another thread, then the 
calling thread waits until the resource becomes 
available. We also use the thread controls wait, signal, 
and broadcast. When a thread waits, the thread 
pauses its execution until it receives a signal. If 
multiple threads are waiting, then all thread may 
resume execution through the use of a broadcast. 
 
2.1  Load Balancing 
 A common problem in parallel algorithms is load 
balancing. In order to maximize speedup, idle time 
must be minimized. We have achieved this by utilizing 
the producer-consumer paradigm in that the main 
program creates the consumer threads and creates 
the work for the consumer threads. The total amount 
of work is stored in Wd, a one-dimensional array, while 



the indices of each dimension are stored in Dd,w,i, a 
three-dimensional array. The total amount of work for 
a given dimension can be calculated with a single 
multiplicative summation if the current dimension is 
excluded: 
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Where Ni is the number of rows for dimension i. For 
each dimension i, there are Ni number of rows. For 
calculating the EDT, each row of the current dimension 
must be iterated through for all other dimensions. 
Consider the example of a 3x4x2 matrix, (width of 3, 
height of 4, and a depth of 2). For the lowest 
dimension, we calculate the number of rows that need 
to be processed by multiplying the number of rows in 
all other dimensions. So the number of rows that need 
processing for the lowest dimension would be 4*2=8, 
and the number of rows the need processing for the 
next dimension would be 3*2=6, and 3*4=12 for the 
highest dimension. 
Once the work has been generated for the current 
dimension by the producer, a signal is sent to the 
consumers which then retrieve work from the front of 
the queue and compute the EDT by iterating through 
the indices of the current dimension while keeping the 
indices of the other dimensions fixed based on the 
values retrieved from Dd,i. This approach provides 
better load-balancing than statically allocating work 
before processing begins. When a consumer thread 
checks the queue of work and the queue is empty, the 
consumer thread goes into a wait state. Once all 
threads have reached the wait state, a signal is sent to 
the producer. If the producer has finished generating 
the work queue for the next dimension, the producer 
broadcasts to the consumer threads to begin 
processing the next dimension. A barrier cannot be 
used because we cannot guarantee that the producer 
will have produced the work queue necessary for the 
next dimension by the time the current dimension has 
finished computing. While the consumer threads 
process the current dimension, the producer is 
generating the work queue. This also helps eliminate 
thread idle time by not waiting until the work queue for 
all dimensions is generated. This approach is possible 
because the only task dependency (other than the 
dependency of the consumer for the producer in 
generating the work queue) is that the EDT for current 
dimension is dependent on the previous dimension. 
Each row in the current dimension is independent of all 
other rows in the current dimension. 
 
 

2.2  Dimension Generalization 
 Once the binary image is represented in row-major 
form as a single array, the indices for iterating through 
a given dimension can be computed using the stored 
size information in N and the current fixed dimensions 
stored in Di,w. We were able to generalize the 
calculations to compute the indices for a given 
dimension using a summation of multiplicative 
summations. These computations are few, even in the 
case of large dimensions, compared to the task of 
generating and querying the partial Voronoi diagram 
and therefore do not have a significant effect on the 
complexity of the algorithm. Given the current 
dimension and the indices of the fixed dimension, Dd,i , 
the indices of the current dimension are calculated 
during the construction of the partial Voronoi diagram 
by 
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This formula works by calculating the offset for each 
dimension. To calculate the offset for a dimension, the 
summation of the multiplicative summation of all 
dimensions is calculated. The multiplicative summation 
of a dimension is represented by multiplying the size of 
all lower dimensions to produce an offset. This offset 
represents the number of voxels that comprise one set 
of the given dimension. This offset represents the first 
index of the first set of the dimension. To find the first 
index of the N-th set of a dimension, the offset is 
multiplied by N. For our algorithm, the N-th set of the 
fixed dimensions is given by Dd,w,i while the N-th set of 
the current dimension is given by i. It is important to 
store these indices for future use while querying the 
partial Voronoi diagram. 
 
3.  Experimental Performance 
 We have tested our implementation on a machine 
with 40 CPUs and 126G of memory. We generated 
cube images with dimensions of 500x500x500, 
1000x1000x1000, and 1250x1250x1250 and ran each 
with a literal interpretation of the algorithm presented 
in Maurer[1] sequentially and with our implementation 
using 2, 4, 8, 16, 24, 32, and 40 threads. A cube with 
dimensions 1250x1250x1250 is used as our largest 



test case because our machine does not have enough 
memory to process larger cubes. 
The image data that is being processed are cubes, so 
the amount of work can be represented by 3*n

2 
where 

n is the number of rows in each dimension. One unit of 
work is one row of voxels for a dimension. For our 
500x500x500 cube image, there are 750,000 tasks; 
1000x1000x1000: 3,000,000 tasks; 1250x1250x1250: 
4,687,500 tasks. As the number of threads increases, 
efficiency decreases. The point at where the efficiency 
starts decreasing rapidly depends on the problem size. 
This is due to thread idle time and overhead costs for 
accessing the mutex to retrieve work. The thread idle 
time is minimized through dynamic load balancing. 
Through the user of a mutex, dynamic load balancing 
is made possible. However, for implementations that 
use static allocation of tasks, thread idle time would 
increase due to improper load balancing and there 
would be minimal overhead costs. For larger 
problems, using a mutex to minimize thread idle time 
results in better performance and an overall higher 
efficiency. Results are depicted in Figure 4 (Speed Up) 
and Figure 5 (Efficiency).  
 

 
 

Figure 4. Graph of Speed Up for Cube Data 
 

 
 

Figure 5. Graph of Efficiency for Cube Data 
 

3.1 Performance Comparisons 
 The difference between our implementation and 
the implementation presented in Staubs[2] is that our 
implementation is more scalable in regards to problem 
size and number of threads. Our implementation is 
able to provide a mean speedup of 6 times for 8 
threads while Staubs[2] was only able to provide a 
mean speedup of 3 times with 8 threads on a machine 
with 4 processors and 2 GB of memory. Also, the 
speedup data presented in Staubs[2] asymptotically 
approaches 3 times, while our implementation has a 
projected asymptote of 20 times for the speedup for 
large datasets. Using our current machine, we were 
able to measure mean speedups of 19 times using 40 
threads. 
 
3.2  Work In Progress 
 This implementation is currently still a work in 
progress as we plan to test our implementation on 
larger machines and larger datasets. We also plan to 
further analyze and modify our algorithm to improve 
the efficiency. Limitations of our implementation 
include a drop in performance when using a larger 
number of threads. This is most likely due to the mutex 
required to access the shared queue of work as the 
efficiency drops even for larger problem sizes. Another 
possible adaptation of our implementation that we will 
examine and evaluate is the master-worker paradigm 
where the master will communicate to each thread 
which tasks need to be generated and processed as 
opposed to our current implementation of the 
producer-consumer paradigm where the producer 
generates the tasks and the consumers process them. 



The master-worker paradigm will decrease the need 
for the mutex and alleviate some startup costs on the 
main program (i.e. the producer in this case). Another 
possible, but smaller adaptation, would be to create 
multiple queues of work and multiple mutexes for 
accessing the work queues. Since the efficiency drops 
rapidly after 16 threads, one possibility would be to 
have the number of queues equal to the ceiling of the 
number of threads divided by 16. Each thread would 
be designated to an initial queue and when the queue 
becomes empty, those threads may request work from 
the other queue(s). 
 
4.  Conclusions 
 Our introduction of a more scalable Parallel 
Euclidean Distance Transform algorithm 
implementation will allow for larger datasets to be 
processed more efficiently and with more processing 
power. Also, because our algorithm operates on any 
dimension, we are able to provide an efficient and 
extendable algorithm for many different image 
processing applications to utilize without the need to 
modify our algorithm.  
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