
Quality Meshing of 2D Images with Guarantees Derived by a Computer-Assisted
Proof

Jing Xu and Andrey N. Chernikov
Department of Computer Science,

Old Dominion University,
Norfolk, VA, USA,

{jxu,achernik}@cs.odu.edu

Keywords: mesh generation, angle bounds, computer-
assisted proof, interval arithmetic

Abstract
This paper describes an algorithm for generating unstructured
triangular meshes from a continuous two-dimensional object
represented by an image. The algorithm uses squares as a
background grid from which to build the quadrilateral ele-
ments that conform to the input contours. Then the triangu-
lation is obtained by automatically choosing the diagonals
that optimize the angles of the triangles. The extracted tri-
angular meshes can be extensively used in the finite element
method (FEM) since our triangulation provides a minimum
angle bound of 18.4349◦. The angle bound is verified by a
computer-assisted proof using interval arithmetic.

1. INTRODUCTION
An important challenge of engineering decision-making is

to establish procedures that can represent the physical reality
with sufficient accuracy to make predictions. The main pro-
cedures are indicated schematically in Fig. 1.

Our work mainly concerns with the procedure of dis-
cretization, in other words, mesh generation. There are usu-
ally two kinds of meshes used in finite element methods and
its applications. The first is surface mesh, which explicitly
represents the surface of an object [2]. The second kind of
mesh, called volumetric mesh, is distinct from surface mesh
in that it explicitly represent both the surface and the volume
of the structure [11]. We are developing a three-dimensional
tetrahedral mesh generation algorithm, this paper is a prelim-
inary result. We describe our two-dimensional algorithm with
full details in this paper.

Finite element methods are now an important and fre-
quently indispensable part of engineering analysis and sim-
ulation and modeling. Finite element computer programs are
now widely used in practically all branches of engineering for
the analysis of fluids, interfaces, and solids. The first step in
the finite element computation is to discretize the problem do-
main into a union of elements, this step is often termed mesh
generation. A common choice for an element in two dimen-
sions is the triangle, in three dimensions is the tetrahedron.

Figure 1. The main procedures of numerical simulation and
error estimation.

Thus, a triangulation of the domain is required.
The quality of meshes as well as the number of mesh ele-

ments influences the accuracy of the finite element method
and condition number of the stiffness matrix. Just a few
bad elements can ruin the whole computation. On triangular
meshes, the discretization errors usually occur when large an-
gles approach 180◦; and both large and small angles are dele-
terious to the stiffness matrix conditioning [10]. The size of
mesh elements influences the computation time and memory
storage; the memory requirement and computation time for
the numerical process increases drastically when the number
of elements increases.

There has been a significant amount of algorithms that
theoretically guarantee a quality mesh. In principle, Delau-
nay triangulation, advancing front, and finite quadtree method
(octree for three-dimensional) are all applicable to two or
three-dimensional mesh generation.

Mesh generation by Delaunay refinement, whose input is

planar linear complexes, is one of the push-button algorithms
used for constructing guaranteed quality triangular and tetra-
hedral meshes. Quality is traditionally defined in terms of the
bounds on circumradius-to-shortest-edge ratio [3]. The use
of this measure leads to the improvement of the minimum
angle in two dimensions, which helps to improve the condi-
tioning of the stiffness matrix used by a field solver. In three
dimensions this measure does not yield such direct benefits.

The advancing front algorithm, taking the input models de-
fined by level set function, generates elements one by one
from an initial ’front’ formed from the specified boundary of
the domain, until the whole domain is completely covered by
elements [7,9]. Usually this method accompanies with mesh
quality enhancement techniques, such as mesh smoothing and
mesh modification.

Quadtree method, whose input is also a level set function,
was introduced for domain decomposition to generate non-
uniform meshes by Yerry and Shephard [12]. Later, Bern,
Eppstein, and Gilbert [1] studied several versions of gen-
erating triangular meshes of a planar point set or polygo-
nally bounded domain which guarantee well-shaped elements
and small total size simultaneously (Mitchell and Vavasis
[8] extended Bern’s work to three dimensions). Labelle and
Shewchuk [6] adopted the idea of warping and proposed the
Isosurface Stuffing tetrahedral meshing algorithm on geomet-
ric domains represented by a continuous cut function.

This paper develops a fast triangular mesh generation
method. The algorithm generates a triangulation for smooth
bounded domain with or without holes. In addition, our
method offers two guarantees. First, all the elements in the
meshes generated by our algorithm have high quality, mean-
ing that all the angles of all the triangles are bounded between
18.4349◦ and 143.1302◦. Second, the number of triangles is
within a constant factor of the best possible for any triangu-
lation with bounded angles. Besides, it is numerically robust
and simple to implement. It is applicable in any numerical
simulation of the partial differential equations such as fluid
flow, mechanical deformation, and diffusion.

The angle bounds were obtained through a computer-
assisted proof. These bounds hold for any continuous cut
function without sharp edges or corners. Interval arithmetic
is used in the proof to get the conservative bounds.

A second version of our algorithm creates meshes whose
interior triangles are graded, but on the boundary, the trian-
gles have uniform size. The algorithm relies on a balanced
quadtree subdivision that offers interior grading. Since it en-
sures that the mesh elements are uniform on the objects’
boundary, the angle bounds for the uniform meshes also apply
to the graded ones.

The remainder of this paper is organized as follows. In Sec-
tion 2 we give more details on our uniform meshing algo-
rithm. In Section 3 we describe the boundary graded quality

mesh generation algorithm. In Section 4 we provide the opti-
mality proof. Section 5 concludes the paper.

2. UNIFORM MESHING ALGORITHM
Our algorithm starts with constructing a initial regular

mesh from which to construct an output mesh. Then our algo-
rithm identifies all the edges and points that across the bound-
aries of objects. During the third step, we deform the initial
regular mesh so that a set of initial regular mesh edges respect
objects’ boundary. And finally we obtain the output mesh by
chosing the best triangulation.

2.1. Physical Domain and Background Mesh
We first define a bounded domain Ω ⊂ R2, where R is the

set of reals. Then we define f : R2→ R be a continuous level
set function that implicitly represents the geometric shape of
the physical domain. The points in point set {p : f (p) = 0}
are on the boundaries of the domain. Points where f is neg-
ative are inside the domain; points where f is positive are
outside the domain, and usually should not be meshed. Fig. 2
shows an example of the level set function, an ellipse.

The algorithm employs a space-tiling initial regular mesh
to guide the creation of the output mesh. Let L := Z2 be a
square lattice, i.e., the set of points whose coordinates are in-
tegers. Let s be the lattice spacing, we denote the uniformly
scaled square lattice by L(s), where all two dimensions are
scaled by s > 0.

Figure 2. An example of level set function, an ellipse.

2.2. Identify the Cut Edges and Cut Points
For each lattice point of the initial regular mesh, our algo-

rithm computes the sign of the value of the function. For any
point inside the level set, the sign is assumed negative, and
is assumed positive if the point lies outside the level set. If
a lattice point just happen to lie exactly on the level set, the
value is zero.

We define a cutedge E to be an edge in the initial regular
mesh such that it has different signs at two end points. If an
edge is a cutedge, there exists one point that exactly lies on
both the edge and the level set. We define this kind of points a

cut point c such that c ∈ E, and f (c) = 0. Then the algorithm
identifies all the edges that cross the level set and for each one
of those edges a cut point is computed. In Fig. 3, cut edges are
shown in red and cut points are shown in blue.

Figure 3. Cut edges and cut points.

2.3. Warping
The idea of deforming the initial regular mesh to conform

the objects’ boundary is to select a subset of mesh vertices
that approximate the level set and to force these mesh vertices
snap to the boundary. These vertices are chosen to prevent an
interior mesh vertex from being connected to an exterior ver-
tex through a mesh edge. The destination where these vertices
be warped is the location of cut points. When one end point is
warped to the boundary, the sign of the cut function no longer
be positive or negative, it becomes exactly zero.

Let v be an end point of a cut edge E, let D ∈ R be the
distance portion function between v and the cut point c lying
on this edge, and let l be the edge length function, then D can
be calculated as:

D(v,c,E) =
|v− c|
l(E)

(1)

We always choose the one of the two end points to warp
whose Euclidean distance is shorter. That means,

D(v,c,E)≤ 0.5 (2)

If one mesh vertex can be warped to several cut points, we
choose any one of them. Fig. 4 shows the initial regular mesh
after warping.

2.4. Triangulating the Background Mesh by
Optimization

In general, after endpoints of all cut edges are warped to
the destination cut points, there will be quadrilaterals and

Figure 4. Initial lattice after warping.

Figure 5. Rule of choice of the diagonal. The quadrilateral
ABCD and the quadrilateral A′B′C′D′ are the same quadrilat-
eral. The minimum angle in quadrilateral ABCD is ∠BAD,
and the minimum angle in quadrilateral A′B′C′D′ is ∠B′C′D′.
Because ∠BAD >∠B′C′D′, we chose diagonal AD instead of
diagonal B′C′. If the minimum angles in two quadrilaterals
are same, choose anyone of them.

squares remaining in the initial regular mesh. We triangulate
these quadrilaterals and squares by selecting different diago-
nals such that our choice optimizes the minimum angle in the
two triangles we obtain. Fig. 5 illustrates the rule for choosing
the diagonal.

After choosing the diagonal, a set of triangles are obtained
from the initial regular mesh. But only the ones inside the
level set should be part of the final mesh. The following con-
dition checks which triangle should be selected.

Let v0, v1 and v2 be the three vertices of a candidate output
triangle, let iso be the isovalue, the triangle is output ed if and
only if

(f (v0)≤ iso)∧ (f (v1)≤ iso)∧ (f (v2)≤ iso) (3)

Fig. 6 shows the final mesh of the ellipse.

2.5. Pseudocode
Fig. 7 summarizes the process:

Figure 6. Final mesh.

UNIFORM MESH GENERATION(f , Iso)
Input: f is the level set function

iso is the isovalue specified by user
Output: triangular mesh M that represents the geometry feature

of an object
1: Construct initial regular mesh B which is composed of a set

of uniform squares. The size of squares is defined by user
2: Find all cut edges and their associated cut points
3: Warp, i.e., move endpoints of all cut edges to the destination

cut points
4: Triangulate the warped initial regular mesh by selecting the

best diagonals which optimize the minimum angle in each
initial regular mesh elements

5: Output mesh

Figure 7. Pseudocode of uniform Mesh Generation.

3. GRADED MESHING ALGORITHM
Another version of our algorithm creates meshes that have

graded elements in the interior but uniform fine elements on
the boundary. The reason for this is for many applications,
the need of accuracy on the boundary is greatest and most
crucial, but the need in the interior does not have the same
importance. Thus, the computational time for finite element
method can be reduced by reducing the number of elements in
the meshes. Fig. 8 illustrates an example of a graded interior
mesh.

Figure 8. A graded interior mesh.

3.1. Pseudocode
We first present the pseudocode for our graded interior

meshing algorithm in Fig. 9:

GRADED INTERIOR MESH GENERATION(f , Iso)
Input: f is the level set function

iso is the isovalue specified by user
Output: Graded mesh M that represents the geometry feature

M has the fine uniform elements on its boundary
1: Construct initial regular mesh B by quadtree subdivision,

the size of minimum leaves is defined by user
2: Balance it by requiring that any two neighboring squares

differ at most by a factor of two in size
3: Find all cut edges and their associated cut points
4: Warp, i.e., move endpoints of all cut edges to the

destination cut points
5: Triangulate the warped initial regular mesh by two rules.

First, if at least one of the leaf side is split by a midpoint,
introduce the center of the leaf and connect the center to
the midpoint and the endpoints of the shared side;
Second, select the best diagonals which optimize the
minimum angle in each initial regular mesh elements

6: Output mesh

Figure 9. Pseudocode of graded interior mesh generation.

Figure 10. A balanced quadtree with marked leaves of an
ellipse.

3.2. Quadtree Subdivision
The main difference between the uniform meshing algo-

rithm and the graded interior meshing algorithm is the first
step, i.e., constructing the initial regular mesh, although the
implementation for the latter is more complicated. The main
data structure we use for the graded meshing algorithm is
a quadtree. The quadtree subdivision starts at subdividing a
square, we call it a box. We commonly refer to each node of
the quadtree as a sub-box. Later sub-boxes are warped and
triangulated, changing their geometric structure. An quadtree
node is either a leaf, or has four children. The process of
generating the four children of a node is called splitting. A
quadtree subdivision is a recursive function which needs a
condition to terminate.

To make sure that small angles never be created in the
mesh, after the quadtree subdivision, we balance it by requir-
ing that any two neighboring squares differ at most by a fac-

tor of two in size. Fig. 10 shows the balanced quadtree with
marked leaves that cross ellipse’s boundary.

3.3. Optimizing the Triangulation
We triangulate quadtree leaves using the following two

strategies: first, we say that the side of a sub-box is split if
either of the neighboring sub-boxes sharing it is split. If at
least one of its sides is split by a midpoint, introduce the cen-
ter of the sub-box and connect the center to the midpoint and
the endpoints of the shared side. Second, we select the mesh
edge by optimizing the minimum angle in the triangulation as
Fig. 11 illustrates. If none of the four sides was split, we se-
lect the best diagonal following the same rule in the uniform
algorithm.

Figure 11. An example of the use of the rule for chosing
mesh edges. The north side and the west side are splinted
by midpoints. The sub-box ABCD and the sub-box A′B′C′D′

are the same box. Vertex C and vertex C′ are warped ver-
tices. The triangulation of sub-box ABCD is set {4ABG,
4BDG, 4AFG, 4CFG, 4CEG, 4DEG}; and the trian-
gulation of sub-box A′B′C′D′ is set {4A′B′G′, 4B′D′G′,
4A′F ′G′, 4C′F ′E ′, 4F ′E ′G′, 4D′E ′G′}. We compare the
minimum angle in 4CFG, 4CEG and the minimum angle
in4C′E ′F ′, 4E ′F ′G′, if the former is larger than the later,
we choose edge CG as the remaining mesh edge; or choose
edge E ′F ′ otherwise.

4. EXPERIMENTAL RESULTS
We applied the algorithm to a variety of shapes and im-

ages. All the steps in the previous two sections were imple-
mented in C++. The input data is a scalar function f (x,y)
(i.e., a level set function). All tests were performed on a desk-
top with two Intel Core Xeon CPU with 3.06 GHz and 64 GB
of main memory.

4.1. Geometric Shapes
Fig. 13 shows a breakdown of the total run time of graded

interior algorithm applied to a sphere model into the major

Figure 12. A breakdown of the total run time of uniform
algorithm into the major computational parts, as the diameter
of the sphere varies from 100 to 400 voxels.

computational parts, as the diameter of the sphere grows from
100 to 400 pixels. These parts are the computation of a bal-
anced quadtree, warping, and triangulating the initial regular
mesh. For the simple shapes, f (x,y) is implemented analyt-

Figure 13. A breakdown of the total time of graded interior
algorithm into the major computational parts, as the diameter
of the sphere varies from 100 to 400 voxels.

ically. Fig. 12 shows a breakdown of the total run time of
uniform algorithm applied to a sphere model into the major
computational parts, as the diameter of the sphere grows from
100 to 400 pixels. These parts are the computation of the ini-
tial regular mesh, warping, and triangulating the initial regu-
lar mesh. We exclude the time taken by input and output.

4.2. Slices of Three-dimensional Images

Figure 14. Original three-dimensional image of the brain at-
las.

Figure 15. Uniform coarse mesh generated from back-
ground lattice with 2500 squares.

Figure 16. Uniform fine mesh generated from background
lattice with 22500 squares.

We used two complex real-world medical images: slices
from an abdominal atlas [5] and slices from a brain atlas

Figure 17. Graded mesh with fine boundary generated from
background lattice with balanced quadtree of one slice of
brain atlas.

Figure 18. Original three-dimensional image of the abdom-
inal atlas.

[4]. The atlases come with a segmentation, such that each
voxel is assigned a unique label. These slices are sampled
by 256× 256 rectilinear grids. The level set function f (x,y)
was defined by linear interpolation. The original images and
output meshes are shown in Fig. 14 to Fig. 20. The running
time and output mesh sizes are given in Table 1.

Table 1. Run time and size in output meshes
Output Mesh Run Time Number of Triangles
Mesh in Fig. 15 2.310391(s) 843
Mesh in Fig. 16 20.82288(s) 8336
Mesh in Fig. 17 46.22675(s) 14489
Mesh in Fig. 19 12.07399(s) 3132
Mesh in Fig. 20 44.50765(s) 12056

5. GUARANTEES FOR THE OUTPUT
MESH

Our algorithm offers a guarantee on the output meshes that
it never generates triangles with bad angles. Specifically, the

Figure 19. Graded mesh with coarse boundary generated
from background lattice with balanced quadtree of one slice
of abdominal atlas.

Figure 20. Graded mesh with fine boundary generated from
background lattice with balanced quadtree of one slice of ab-
dominal atlas.

angles in output mesh are bounded between 18.4349◦ and
143.1302◦.

The main idea of our meshing algorithm is to ensure that
the mesh elements on the objects’ boundary are uniformly
generated, so the angle bounds apply to our uniform meshes
as well as graded ones. Our minimum angle bound was ob-
tained through a computer-assisted proof. By placing a lower
bound on the smallest angle of a triangulation, we are also
bounding the largest angle, since in two dimensions, if no an-
gle is smaller than θ , then no angle is larger than 180−2θ.

In our proof we work with a single square which repre-
sents any quadrilaterals in the initial regular mesh. We call it
a generic square because our proofs are valid for any combi-
nation of locations the corners could be warped to. Since the
number of locations where a cut point might be placed is infi-
nite, we use interval arithmetic to verify the angle bounds. We
divide the intervals of possible triangle configurations into a
finite number of subintervals in that interval arithmetic calcu-
lates conservative bounds.

As illustrated in Fig. 21, each corner could lie on four seg-
ments, along x direction and y direction. We break each of the
segment into n intervals, thus each corner could be located in
4n intervals. So the square requires the analysis of 44n cases.

Figure 21. Gray quadrilateral is the generic square warped
to position A, B, C and D. Because the minimum angle in
4ABC and 4BCD is smaller than the minimum angle in
4ACD and 4ABD, we choose diagonal AD instead of di-
agonal BC.

In each of those cases, we choose the best diagonal optimiz-
ing the minimum angle in this square. Our minimum angle
bound is obtained among all the minimum angles in those
cases.

6. CONCLUSION
In this paper, we presented our new meshing algorithm

both for uniform and graded mesh generation. We provide
the angle bounds that make the resulting meshes suitable for
FE simulation. Moreover, we proved that our mesh elements
is optimal, and the meshes we created respect the geomet-
ric shapes of the input objects. For the future work, we are
planning to extend it to three-dimensional tetrahedral mesh
generation and its quality proof.

REFERENCES
[1] M. Bern and J. Gilbert. provably good mesh generation.

In Proceedings of the 31st Annual IEEE Symposium on
the Foundations of Computer Science, pages 231–241,
New York, 1990.

[2] Andrey Chernikov and Jing Xu. A computer-assisted
proof of correctness of a marching cubes algorithm. In
International Meshing Roundtable, pages 505–523, Or-
lando, FL, October 2013. Springer.

[3] L. P. Chew. Guaranteed-Quality Triangular Meshes.
Tech. Rep. pages TR–89–983, Department of Computer
Science, Cornell University, 1989.

[4] I. Talos M. Jakab R. Kikinis and M. Shenton. Spl-pnl
brain atlas, 2008.

[5] I. Talos M. Jakab R. Kikinis and M. Shenton. Spl ab-
dominal atlas, 2010.

[6] F. Labelle and J. R. Shewchuk. Isosurface stuffing: Fast
tetrahedral meshes with good dihedral angles. In ACM
Transactions on Graphics, special issue on Proceedings
of SIGGRAPH 2007, volume 26(3), pages 57.1–57.10,
August 2007.

[7] S.H. Lo. A new mesh generation scheme for arbitrary
planar domains. Int. J. Numer. Meth.Eng., 1985.

[8] S. A. Mitchell and S. A. Vavasis. Quality mesh gener-
ation in three dimensions. In the ACM Computational
Geometry Conference, pages 212–221, 1992.

[9] J Peraire and M Vahdati. Adaptive remeshing for com-
pressible flow computations. J. Comp. Phys., 2002.

[10] Jonathan Richard Shewchuk. What Is a Good Linear Fi-
nite Element? Interpolation, Conditioning, Anisotropy,
and Quality Measures. Preprint, 2002.

[11] Jing Xu and Andrey Chernikov. A guaranteed quality
boundary graded triangular meshing algorithm backed
by a computer-assisted proof. In International Meshing
Roundtable, Orlando, FL, October 2013. Springer. 5-
page research note.

[12] Mark A. Yerry and Mark S. Shephard. A modified
quadtree approach to finite element mesh generation.
Computer Graphics and Applications, 3:39–46, 1983.

