
Overview of Parallel Mesh Generation and Optimization
Methods

Andrey Chernikov1, Suzanne Shontz2, and Nikos Chrisochoides1

1Department of Computer Science
Center for Real-Time Computing

Old Dominion University
achernik@cs.odu.edu, nikos@cs.odu.edu

2Department of Mathematics and Statistics
Center for Computationsl Sciences

Department of Computer Science and Engineering
Computational Engineering Graduate Program

Mississippi State University
sshontz@math.msstate.edu

February 20, 2014

mailto:achernik@cs.odu.edu
mailto:nikos@cs.odu.edu
mailto:sshontz@math.msstate.edu

Outline

1 A Taxonomy of Parallel Delaunay Meshing Algorithms

2 Other Parallel Meshing Algorithms

3 Parallel Mesh Optimization Algorithms

2

Outline

1 A Taxonomy of Parallel Delaunay Meshing Algorithms

2 Other Parallel Meshing Algorithms

3 Parallel Mesh Optimization Algorithms

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
i

p
i

p
jp

i

p
jp

i
p
i

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 3

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
i

p
i

p
jp

i

p
jp

i
p
i

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 3

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
i

p
i

p
jp

i

p
jp

i
p
i

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 3

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
i

p
i

p
jp

i

p
jp

i

p
i

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 3

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
i

p
i

p
jp

i

p
jp

i
p
i

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 3

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

1 16 32 64 128 144 160 176
0

50

100

150

200

Number of cores

S
p
e
e
d
−

u
p

ideal

RWS

HWS

Execution Time

C
u
m

u
la

ti
v
e
 o

v
e
rh

e
a
d

 b
y
 a

ll
th

re
a
d
s

d
u

ri
n
g

 e
x
e
c
u
ti
o
n

0 14 27 40 53 66 79 93 106 119 132 145 158 171
0

300

690
760

1000

1500 cumulative contention overhead by all threads

cumulative load balance overhead by all threads

cumulative rollback overhead by all threads

71.9%

efficiency ≈ 100% efficiency

94%

efficiency

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 4

Optimistic Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

1 16 32 64 128 144 160 176
0

50

100

150

200

Number of cores

S
p
e
e
d
−

u
p

ideal

RWS

HWS

Execution Time

C
u
m

u
la

ti
v
e
 o

v
e
rh

e
a
d
 b

y
 a

ll
th

re
a
d
s

d
u
ri
n
g
 e

x
e
c
u
ti
o
n

0 14 27 40 53 66 79 93 106 119 132 145 158 171
0

300

690
760

1000

1500 cumulative contention overhead by all threads

cumulative load balance overhead by all threads

cumulative rollback overhead by all threads

71.9%

efficiency ≈ 100% efficiency

94%

efficiency

Nave, Foteinos, Chrisochoides, and Chew: SoCG’02, IJNME’03, CGTA’04, ICS’13, JPDC’14 4

Parallel Projection-Based Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

Kadow and Walkington: TUMG’03, http://www.imr.sandia.gov/papers/tumg4/kadow.zip 5

Parallel Constrained Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
14

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

15

p

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

24 8 16 32 48 64 80 96 112 128 144
2
8

16

32

48

64

80

96

112

128

144

Number of processes

S
c
a
le

d
 s

p
e
e
d
u
p

Linear speedup
PCDM (pipe cross−section)
PCDM (cyliner flow)
PCDM (Chesapeake bay)

Scaled speedup: the number of triangles ≈ 10M × P, that is, for 2 processors 20M, and for 144 processors about 1.4B.

(Extension to 3D subject to availability of a 3D domain decomposer)

Chernikov and Chrisochoides, ACM TOMS’08 6

Parallel Constrained Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
14

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

15

p

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

24 8 16 32 48 64 80 96 112 128 144
2
8

16

32

48

64

80

96

112

128

144

Number of processes

S
c
a
le

d
 s

p
e
e
d
u
p

Linear speedup
PCDM (pipe cross−section)
PCDM (cyliner flow)
PCDM (Chesapeake bay)

Scaled speedup: the number of triangles ≈ 10M × P, that is, for 2 processors 20M, and for 144 processors about 1.4B.

(Extension to 3D subject to availability of a 3D domain decomposer)

Chernikov and Chrisochoides, ACM TOMS’08 6

Parallel Constrained Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
14

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

15

p

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

24 8 16 32 48 64 80 96 112 128 144
2
8

16

32

48

64

80

96

112

128

144

Number of processes

S
c
a
le

d
 s

p
e
e
d
u
p

Linear speedup
PCDM (pipe cross−section)
PCDM (cyliner flow)
PCDM (Chesapeake bay)

Scaled speedup: the number of triangles ≈ 10M × P, that is, for 2 processors 20M, and for 144 processors about 1.4B.

(Extension to 3D subject to availability of a 3D domain decomposer)

Chernikov and Chrisochoides, ACM TOMS’08 6

Parallel Constrained Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
14

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

15

p

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

24 8 16 32 48 64 80 96 112 128 144
2
8

16

32

48

64

80

96

112

128

144

Number of processes

S
c
a
le

d
 s

p
e
e
d
u
p

Linear speedup
PCDM (pipe cross−section)
PCDM (cyliner flow)
PCDM (Chesapeake bay)

Scaled speedup: the number of triangles ≈ 10M × P, that is, for 2 processors 20M, and for 144 processors about 1.4B.

(Extension to 3D subject to availability of a 3D domain decomposer)

Chernikov and Chrisochoides, ACM TOMS’08 6

Parallel Constrained Delaunay Meshing

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

p
14

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

15

p

p
15

p

p

p

p

p

p p

p

p

p

p

p
2

p
2

1

3

1

3

4

5

6

7

8

10

11

p
9

p
12

24 8 16 32 48 64 80 96 112 128 144
2
8

16

32

48

64

80

96

112

128

144

Number of processes

S
c
a
le

d
 s

p
e
e
d
u
p

Linear speedup
PCDM (pipe cross−section)
PCDM (cyliner flow)
PCDM (Chesapeake bay)

Scaled speedup: the number of triangles ≈ 10M × P, that is, for 2 processors 20M, and for 144 processors about 1.4B.

(Extension to 3D subject to availability of a 3D domain decomposer)

Chernikov and Chrisochoides, ACM TOMS’08 6

Domain Decomposition and Decoupling

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

Given domain Ω ⊂ Rn, construct the separators Sij ⊂ Rn−1, such that the
domain is decomposed into subdomains Ωi :

Ω =
N⋃

i=1

Ωi , ∂Ωi ∩ ∂Ωj = Sij , i, j = 1, . . . ,N, i 6= j,

while the separators do not create very small angles and other features.

(Has not been extended to 3D)

Linardakis and Chrisochoides: SISC’06, SISC’08, TOMS’08 7

Parallel Delaunay Refinement Method

T
ig

h
t

D
eg

re
e

o
f

co
u

p
li

n
g

 L
o

o
se

No rollbacks

No fine-grain synchronization

Does not require to solve the domain decomposition problem

Extended to 3D

Code reuse

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 8

Sufficient Condition for Graded PDR (3D)

Lemma (Sufficient condition of Delaunay-independence) Points pi and pj are
Delaunay-independent if there exists a subsegment s ⊆ L

(
pi pj

)
such that

∀τ ∈ T : s ∩© (τ) =⇒ 2r (τ) ≤ |s|.

s

p
k

p
r

p
m

p
l

p
n

p
i

p
j

© (τ (prξ))

© (τ (pmξ))

ξ

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 9

Buffer Zone (3D)

L

Definition 3D buffer zone is the set of leaves

BUF (L) =
⋃

α∈Λx
Nα (L) ∪

⋃
β∈Λy

{Nβ (L′) | L′ ∈ Nα (L)} ∪⋃
γ∈Λz

{Nγ (L′′) | L′′ ∈ {Nβ (L′) | L′ ∈ Nα (L)}}

under the condition

∀L′ ∈ BUF (L) , ∀τ ∈ T : © (τ) ∩ L′ 6= ∅ =⇒ r (τ) <
1
6
`
(
L′
)
,

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 10

Overview

[Nave, Chrisochoides, and Chew, 2003, 2004]
Parallel Optimistic Delaunay Meshing

N
o

 d
o

m
ai

n
d

ec
o

m
p

o
si

ti
o

n

sy
n

ch
ro

n
iz

at
io

n

N
o

 r
o

ll
b

ac
k

s

N
o

 f
in

e
g

ra
in

S
ta

b
il

it
y

Parallel Delaunay Meshing Methods

P
ro

p
er

ti
es

E
x

te
n

d
ed

 t
o

 3
D

C
o

d
e

re
u

se

[Kadow and Walkington, 2004]
Parallel Projection−Based Delaunay Meshing

Parallel Generalized Delaunay Refinement
[Chernikov and Chrisochoides, 2005−2009]

Parallel Constrained Delaunay Meshing
[Chernikov and Chrisochoides, 2006]

Parallel Domain Delaunay Decoupling
[Linardakis and Chrisochoides, 2006, 2008]

11

Outline

1 A Taxonomy of Parallel Delaunay Meshing Algorithms

2 Other Parallel Meshing Algorithms

3 Parallel Mesh Optimization Algorithms

Parallel Advancing Front Meshing

Idea: Given a final surface
mesh of domain D construct
a 3D zone using a
pre-computed surface S to
guide a single layer along S
starting from any external
boundary of D.

Given a source driven AFT, a
zone can be constructed from
elements whose size will
remain invariant throughout
the mesh generation process.

No new features or small
angles due to decomposition,
therefore any decomposition
works.

Caveat: termination not
guaranteed for the
sub-problems.

Zagaris, Pirzadeh, and Chrisochoides: AIAA’09 12

Parallel Terminal Edge Bisection

A terminal-edge is the longest edge
of every element that shares such an
edge.

A terminal star is the set of elements
that share a terminal-edge.

The stopping criteriob is the
predefined bound for the length of the
terminal edges.

The terminal-star algorithm eliminates
the management of non-conforming
edges both in the interior of the
submeshes and in the interfaces i.e.,
eliminates communication.

Rivara, Pizarro, and Chrisochoides: IMR’04 13

Parallel Terminal Edge Bisection

Qulaity is measured as normalized volume / (longest edge)3.

Rivara, Pizarro, and Chrisochoides: IMR’04 14

Outline

1 A Taxonomy of Parallel Delaunay Meshing Algorithms

2 Other Parallel Meshing Algorithms

3 Parallel Mesh Optimization Algorithms

An Overview of Parallel Triangular/Tetrahedral Mesh Optimization
Methods

There are two types of parallel mesh optimization methods:

mesh smoothing methods

mesh untangling methods.

Current literature: 4 parallel mesh smoothing algorithms; 1 parallel mesh untangling
algorithm; 1 combined algorithm.

Additional methods: 1 parallel mesh smoothing algorithm; 1 parallel mesh untangling
method. Under review in paper by Sastry and Shontz.

Totals: 5 parallel mesh smoothing algorithms; 2 parallel mesh untangling method; 1
combined algorithm.

15

Parallel Mesh Smoothing Methods

First parallel mesh smoothing algorithm: Proposed by Freitag, Jones, and
Plassmann in SISC in 1999.

Algorithm and architecture: parallel nonsmooth optimization algorithm for tetrahedral
meshes on distributed memory machines.

Graph coloring: used to identify independent sets of vertices.

For each independent set:
1 Optimize the locations of vertices of color i using local vertex movement.
2 Communicate the new vertex positions.

Communication/synchronization: Root process performs unstructured,
asynchronous communication.

Freitag, Jones, and Plassmann: SISC’95 16

Parallel Mesh Smoothing Methods

Freitag/Jones/Plassmann Method (continued):

Synchronization: No global synchronization is needed, as only one independent set
of vertices is smoothed at a time.

Algorithmic Results: Parallel efficiencies of up to 70− 88% were obtained for up to
64 processors when run on the IBM SP. Efficiencies were not reported for their runs on
the ATM connected SPARC Ultras.

Theoretical Results: For a Parallel Random Access Machine (PRAM) version of the
algorithm: Provably fast runtime bound, correct execution.

Freitag, Jones, and Plassmann: SISC’95 17

Parallel Mesh Smoothing Methods

Parallel feature-preserving mesh smoothing algorithm: Proposed by Jiao and
Alexander at 2005 ICCSA Conference.

Algorithm and architecture: Parallel feature-preserving triangular surface mesh
smoothing algorithm on distributed memory machines

Key concept: Medial quadric (extension of quadric involving medial axis). Used in
feature detection.

Approach: Detect features, such as edges, corners, cusps, and one-sided normals
along edges. Move vertices while preserving the shape and features of a surface as
follows. Ridge vertices are moved before smooth vertices.

Results: 43% of maximum parallel efficiency when implented on distributed memory
computers with up to 128 processors.

Jiao and Alexander: ICCSA’05 18

Parallel Mesh Smoothing Methods

Parallel anisotropic mesh smoothing algorithm: Proposed by Gorman, Southern,
Farrell, Piggott, Rokos, and Kelly at 2012 ICCS Conference.

Algorithm and architecture: Hybrid OpenMP/MPI anisotropic mesh smoothing
algorithm for cache coherent nonuniform memory access (ccNUMA) machines.

Architecture: Has many cores per node. Thus, there are aspects of distributed
memory (node-to-node) and shared memory (core-to-core).

Parallelism: Message passing paradigm for distributed memory (MPI); thread-based
parallelism for shared memory (OpenMP). OpenMP is preferred due to greater
potential for use with co-processors. Easy to extend (older) MPI methods.

Gorman, Southern, Farrell, Piggott, Rokos, and Kelly: ICCS 2012 19

Parallel Mesh Smoothing Methods

Gorman et al. algorithm (continued)

Smoothing kernels: Quality-constrained Laplacian smoothing and nonsmooth
optimization.

Graph coloring: Uses parallel graph coloring algorithm to identify independent sets of
vertices for use with local mesh optimization.

Data locality: Three techniques: Partitioning of Linux kernel memory (page faults);
processor affinity between threads and CPUs; vertex reordering (fill-reducing).

Progressive domain masking: Only smooth vertices which need updating. Effect:
reduced data locality but better load balancing.

Results: Dual-socket Intel Westmere server, with each socket consisting of a 6-core
Xeon CPU X5650 @ 2.67 GHz. High degree of concurrency and fine grained scaling
behavior obtained.

Gorman, Southern, Farrell, Piggott, Rokos, and Kelly: ICCS 2012 20

Parallel Untangling and Smoothing Algorithm

Parallel untangling and smoothing algorithm: Proposed by Benitez, Rodriguez,
Escobar, and Montenegro at IMR 2013

Algorithm and architecture: OpenMP parallel simultaneous untangling and
smoothing for tetrahedral meshes on shared-memory, many-core machines

Key concept: use a modified mesh quality metric (without singularities) which allows
for simultaneous untangling and smoothing of meshses

Graph coloring: Various graph coloring algorithms are used to identify independent
sets of vertices for use with local mesh optimization.

Graph coloring techniques: Luby’s Monte Carlo algorithm (serial), parallel version of
previous algorithm, Bozdag’s parallel greedy coloring algorithm.

Benitez, Rodriguez, Escobar, and Montenegro: IMR 2013 21

Parallel Untangling and Mesh Smoothing Algorithm

Montenegro et al. algorithm (continued):

Architectures for experiments: (1) HP Integrity Superdome node that contains 128
Itanium 2 Montvale cores with 1.6 GHz clock speed, 1024 GB NUMA shared memory;
(2) Manycore Testing Lab: 40 Westmere 2.27 GHz cores and 252 GB NUMA shared
memory.

Results: On 128 cores: Parallel efficiency: 76% and up (main optimization
procedure), 50% and up (entire algorithm). On 40 cores: The parallel efficiency is
reduced. No winner: There is no best graph coloring algorithm.

Observation: OpenMP loop-scheduling overhead: mainly responsible for
performance deterioration and load imbalance when observed.

Benitez, Rodriguez, Escobar, and Montenegro: IMR 2013 22

Parallel Untangling and Smoothing Algorithms

Parallel untangling and smoothing algorithms: Proposed by Sastry and Shontz in
2013 (under review).

Algorithm and architecture: OpenMPI parallel nonlinear mesh optimization on
distributed memory architectures. Can be used for either mesh smoothing (with any
mesh quality metric) or mesh untangling (with appropriate choice of metric).

Approach: Global mesh smoothing.

Graph coloring: Used to identify independent edges in graph of communicating
processes (not mesh edges). Used to synchronize unstructured communication.

Results: Run on Intel Xeon CPU E-7-4870 cluster with 80 cores with 2.40 GHz clock
speed, 750 GB RAM. Strong scaling efficiency: 80% on 64 cores. Weak scaling
efficiency: good.

Sastry and Shontz: Under review 2013 23

Conclusions

1 We reviewed existing parallel mesh smoothing and untangling methods.

2 All of the methods with the exception of the method by Sastry and Shontz involve
local mesh optimization. The latter methods involve global mesh optimization.

3 The methods were developed for distributed memory or shared memory
machines; the exception was the hybrid method by Gorman et al.

4 Important concepts: graph coloring, vertex reordering, load balancing,
scheduling, etc.

24

Promising Research Directions

1 Simultaneous parallel mesh construction and optimization
2 Comparison study of existing methods
3 More methods are needed!
4 Hybrid methods (distributed and shared memory)
5 Architectures: GPUs, co-processors, etc.
6 Vertex reordering (for both local and global methods)
7 Mesh partitioning (local/patch/global)
8 Graph coloring
9 Load balancing, scheduling, performance modeling, etc.

25

Acknowledgments

NSF CAREER Award ACI-1330056 (formerly ACI-1054459)

NSF PECASE Award

26

References I

Andrey Chernikov and Nikos Chrisochoides.

Practical and efficient point insertion scheduling method for parallel guaranteed quality Delaunay refinement.
In ACM International Conference on Supercomputing, pages 48–57, Saint-Malo, France, June 2004.

Andrey Chernikov and Nikos Chrisochoides.

Parallel 2D graded guaranteed quality Delaunay mesh refinement.
In International Meshing Roundtable, pages 505–517, San Diego, CA, September 2005.

Andrey Chernikov and Nikos Chrisochoides.

Generalized Delaunay mesh refinement: from scalar to parallel.
In International Meshing Roundtable, pages 563–580, Birmingham, AL, September 2006a.

Andrey Chernikov and Nikos Chrisochoides.

Parallel guaranteed quality Delaunay uniform mesh refinement.
SIAM Journal on Scientific Computing, 28:1907–1926, November 2006b.

Andrey Chernikov and Nikos Chrisochoides.

Three-dimensional Delaunay refinement for multi-core processors.
In ACM International Conference on Supercomputing, pages 214–224, Island of Kos, Greece, June 2008a.

Andrey Chernikov and Nikos Chrisochoides.

Algorithm 872: parallel 2D constrained Delaunay mesh generation.
ACM Transactions on Mathematical Software, 34:6–25, January 2008b.

Andrey Chernikov and Nikos Chrisochoides.

A template for developing next generation parallel Delaunay refinement methods.
Finite Elements in Analysis and Design, 46:96–113, 2010.

Nikos Chrisochoides and Démian Nave.

Parallel Delaunay mesh generation kernel.
International Journal for Numerical Methods in Engineering, 58:161–176, 2003.

27

References II

Panagiotis Foteinos and Nikos Chrisochoides.

High quality real-time image-to-mesh conversion for finite element simulations.
In ACM International Conference on Supercomputing, Eugene, OR, 2013. ACM.

Panagiotis Foteinos and Nikos Chrisochoides.

High quality real-time image-to-mesh conversion for finite element simulations.
Journal on Parallel and Distributed Computing, 74(2):2123–2140, 2014.

Clemens Kadow and Noel Walkington.

Design of a projection-based parallel Delaunay mesh generation and refinement algorithm.
In 4th Symposium on Trends in Unstructured Mesh Generation, Albuquerque, NM, July 2003.
http://www.andrew.cmu.edu/user/sowen/usnccm03/agenda.html.

Leonidas Linardakis and Nikos Chrisochoides.

Delaunay decoupling method for parallel guaranteed quality planar mesh refinement.
SIAM Journal on Scientific Computing, 27(4):1394–1423, 2006.

Leonidas Linardakis and Nikos Chrisochoides.

Graded Delaunay decoupling method for parallel guaranteed quality planar mesh generation.
SIAM Journal on Scientific Computing, 30(4):1875–1891, March 2008a.

Leonidas Linardakis and Nikos Chrisochoides.

Algorithm 870: A static geometric medial axis domain decomposition in 2D Euclidean space.
ACM Transactions on Mathematical Software, 34(1):1–28, 2008b.

Démian Nave, Nikos Chrisochoides, and L. Paul Chew.

Guaranteed–quality parallel Delaunay refinement for restricted polyhedral domains.
In Proceedings of the 18th ACM Symposium on Computational Geometry, pages 135–144, Barcelona, Spain, 2002.
ISBN 1-58113-504-1.

Démian Nave, Nikos Chrisochoides, and L. Paul Chew.

Guaranteed–quality parallel Delaunay refinement for restricted polyhedral domains.
Computational Geometry: Theory and Applications, 28:191–215, 2004.

28

References III

Maria-Cecilia Rivara, Daniel Pizarro, and Nikos Chrisochoides.

Parallel refinement of tetrahedral meshes using terminal-edge bisection algorithm.
In 13th International Meshing Roundtable, pages 427–436, Williamsburg, VA, September 2004.

George Zagaris, Shahyar Pirzadeh, and Nikos Chrisochoides.

A framework for parallel unstructured grid generation for practical aerodynamic simulations.
In 47th AIAA Aerospace Sciences Meeting, Orlando, FL, January 2009.

29

	A Taxonomy of Parallel Delaunay Meshing Algorithms
	Other Parallel Meshing Algorithms
	Parallel Mesh Optimization Algorithms

