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Optimistic Delaunay Meshing
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Parallel Projection-Based Delaunay Meshing
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Parallel Constrained Delaunay Meshing
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Parallel Constrained Delaunay Meshing
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Domain Decomposition and Decoupling
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Given domain Ω ⊂ Rn, construct the separators Sij ⊂ Rn−1, such that the
domain is decomposed into subdomains Ωi :

Ω =
N⋃

i=1

Ωi , ∂Ωi ∩ ∂Ωj = Sij , i, j = 1, . . . ,N, i 6= j,

while the separators do not create very small angles and other features.

(Has not been extended to 3D)

Linardakis and Chrisochoides: SISC’06, SISC’08, TOMS’08 7



Parallel Delaunay Refinement Method
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No rollbacks

No fine-grain synchronization

Does not require to solve the domain decomposition problem

Extended to 3D

Code reuse

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 8



Sufficient Condition for Graded PDR (3D)

Lemma (Sufficient condition of Delaunay-independence) Points pi and pj are
Delaunay-independent if there exists a subsegment s ⊆ L

(
pi pj

)
such that

∀τ ∈ T : s ∩© (τ) =⇒ 2r (τ) ≤ |s|.

s

p
k

p
r

p
m

p
l

p
n

p
i

p
j

© (τ (prξ))

© (τ (pmξ))

ξ

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 9



Buffer Zone (3D)

L

Definition 3D buffer zone is the set of leaves

BUF (L) =
⋃

α∈Λx
Nα (L) ∪

⋃
β∈Λy

{Nβ (L′) | L′ ∈ Nα (L)} ∪⋃
γ∈Λz

{Nγ (L′′) | L′′ ∈ {Nβ (L′) | L′ ∈ Nα (L)}}

under the condition

∀L′ ∈ BUF (L) , ∀τ ∈ T : © (τ) ∩ L′ 6= ∅ =⇒ r (τ) <
1
6
`
(
L′
)
,

Chernikov and Chrisochoides: FINEL’09, SISC’06, ACM ICS’08, ACM ICS’04, IMR’06, IMR’05 10



Overview

[Nave, Chrisochoides, and Chew, 2003, 2004]
Parallel Optimistic Delaunay Meshing
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Parallel Delaunay Meshing Methods
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[Kadow and Walkington, 2004] 
Parallel Projection−Based Delaunay Meshing

Parallel Generalized Delaunay Refinement
[Chernikov and Chrisochoides, 2005−2009] 

Parallel Constrained Delaunay Meshing
[Chernikov and Chrisochoides, 2006] 

Parallel Domain Delaunay Decoupling
[Linardakis and Chrisochoides, 2006, 2008]
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Parallel Advancing Front Meshing

Idea: Given a final surface
mesh of domain D construct
a 3D zone using a
pre-computed surface S to
guide a single layer along S
starting from any external
boundary of D.

Given a source driven AFT, a
zone can be constructed from
elements whose size will
remain invariant throughout
the mesh generation process.

No new features or small
angles due to decomposition,
therefore any decomposition
works.

Caveat: termination not
guaranteed for the
sub-problems.

Zagaris, Pirzadeh, and Chrisochoides: AIAA’09 12



Parallel Terminal Edge Bisection

A terminal-edge is the longest edge
of every element that shares such an
edge.

A terminal star is the set of elements
that share a terminal-edge.

The stopping criteriob is the
predefined bound for the length of the
terminal edges.

The terminal-star algorithm eliminates
the management of non-conforming
edges both in the interior of the
submeshes and in the interfaces i.e.,
eliminates communication.

Rivara, Pizarro, and Chrisochoides: IMR’04 13



Parallel Terminal Edge Bisection

Qulaity is measured as normalized volume / (longest edge)3.

Rivara, Pizarro, and Chrisochoides: IMR’04 14
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An Overview of Parallel Triangular/Tetrahedral Mesh Optimization
Methods

There are two types of parallel mesh optimization methods:

mesh smoothing methods

mesh untangling methods.

Current literature: 4 parallel mesh smoothing algorithms; 1 parallel mesh untangling
algorithm; 1 combined algorithm.

Additional methods: 1 parallel mesh smoothing algorithm; 1 parallel mesh untangling
method. Under review in paper by Sastry and Shontz.

Totals: 5 parallel mesh smoothing algorithms; 2 parallel mesh untangling method; 1
combined algorithm.

15



Parallel Mesh Smoothing Methods

First parallel mesh smoothing algorithm: Proposed by Freitag, Jones, and
Plassmann in SISC in 1999.

Algorithm and architecture: parallel nonsmooth optimization algorithm for tetrahedral
meshes on distributed memory machines.

Graph coloring: used to identify independent sets of vertices.

For each independent set:
1 Optimize the locations of vertices of color i using local vertex movement.
2 Communicate the new vertex positions.

Communication/synchronization: Root process performs unstructured,
asynchronous communication.

Freitag, Jones, and Plassmann: SISC’95 16



Parallel Mesh Smoothing Methods

Freitag/Jones/Plassmann Method (continued):

Synchronization: No global synchronization is needed, as only one independent set
of vertices is smoothed at a time.

Algorithmic Results: Parallel efficiencies of up to 70− 88% were obtained for up to
64 processors when run on the IBM SP. Efficiencies were not reported for their runs on
the ATM connected SPARC Ultras.

Theoretical Results: For a Parallel Random Access Machine (PRAM) version of the
algorithm: Provably fast runtime bound, correct execution.

Freitag, Jones, and Plassmann: SISC’95 17



Parallel Mesh Smoothing Methods

Parallel feature-preserving mesh smoothing algorithm: Proposed by Jiao and
Alexander at 2005 ICCSA Conference.

Algorithm and architecture: Parallel feature-preserving triangular surface mesh
smoothing algorithm on distributed memory machines

Key concept: Medial quadric (extension of quadric involving medial axis). Used in
feature detection.

Approach: Detect features, such as edges, corners, cusps, and one-sided normals
along edges. Move vertices while preserving the shape and features of a surface as
follows. Ridge vertices are moved before smooth vertices.

Results: 43% of maximum parallel efficiency when implented on distributed memory
computers with up to 128 processors.

Jiao and Alexander: ICCSA’05 18



Parallel Mesh Smoothing Methods

Parallel anisotropic mesh smoothing algorithm: Proposed by Gorman, Southern,
Farrell, Piggott, Rokos, and Kelly at 2012 ICCS Conference.

Algorithm and architecture: Hybrid OpenMP/MPI anisotropic mesh smoothing
algorithm for cache coherent nonuniform memory access (ccNUMA) machines.

Architecture: Has many cores per node. Thus, there are aspects of distributed
memory (node-to-node) and shared memory (core-to-core).

Parallelism: Message passing paradigm for distributed memory (MPI); thread-based
parallelism for shared memory (OpenMP). OpenMP is preferred due to greater
potential for use with co-processors. Easy to extend (older) MPI methods.

Gorman, Southern, Farrell, Piggott, Rokos, and Kelly: ICCS 2012 19



Parallel Mesh Smoothing Methods

Gorman et al. algorithm (continued)

Smoothing kernels: Quality-constrained Laplacian smoothing and nonsmooth
optimization.

Graph coloring: Uses parallel graph coloring algorithm to identify independent sets of
vertices for use with local mesh optimization.

Data locality: Three techniques: Partitioning of Linux kernel memory (page faults);
processor affinity between threads and CPUs; vertex reordering (fill-reducing).

Progressive domain masking: Only smooth vertices which need updating. Effect:
reduced data locality but better load balancing.

Results: Dual-socket Intel Westmere server, with each socket consisting of a 6-core
Xeon CPU X5650 @ 2.67 GHz. High degree of concurrency and fine grained scaling
behavior obtained.

Gorman, Southern, Farrell, Piggott, Rokos, and Kelly: ICCS 2012 20



Parallel Untangling and Smoothing Algorithm

Parallel untangling and smoothing algorithm: Proposed by Benitez, Rodriguez,
Escobar, and Montenegro at IMR 2013

Algorithm and architecture: OpenMP parallel simultaneous untangling and
smoothing for tetrahedral meshes on shared-memory, many-core machines

Key concept: use a modified mesh quality metric (without singularities) which allows
for simultaneous untangling and smoothing of meshses

Graph coloring: Various graph coloring algorithms are used to identify independent
sets of vertices for use with local mesh optimization.

Graph coloring techniques: Luby’s Monte Carlo algorithm (serial), parallel version of
previous algorithm, Bozdag’s parallel greedy coloring algorithm.

Benitez, Rodriguez, Escobar, and Montenegro: IMR 2013 21



Parallel Untangling and Mesh Smoothing Algorithm

Montenegro et al. algorithm (continued):

Architectures for experiments: (1) HP Integrity Superdome node that contains 128
Itanium 2 Montvale cores with 1.6 GHz clock speed, 1024 GB NUMA shared memory;
(2) Manycore Testing Lab: 40 Westmere 2.27 GHz cores and 252 GB NUMA shared
memory.

Results: On 128 cores: Parallel efficiency: 76% and up (main optimization
procedure), 50% and up (entire algorithm). On 40 cores: The parallel efficiency is
reduced. No winner: There is no best graph coloring algorithm.

Observation: OpenMP loop-scheduling overhead: mainly responsible for
performance deterioration and load imbalance when observed.

Benitez, Rodriguez, Escobar, and Montenegro: IMR 2013 22



Parallel Untangling and Smoothing Algorithms

Parallel untangling and smoothing algorithms: Proposed by Sastry and Shontz in
2013 (under review).

Algorithm and architecture: OpenMPI parallel nonlinear mesh optimization on
distributed memory architectures. Can be used for either mesh smoothing (with any
mesh quality metric) or mesh untangling (with appropriate choice of metric).

Approach: Global mesh smoothing.

Graph coloring: Used to identify independent edges in graph of communicating
processes (not mesh edges). Used to synchronize unstructured communication.

Results: Run on Intel Xeon CPU E-7-4870 cluster with 80 cores with 2.40 GHz clock
speed, 750 GB RAM. Strong scaling efficiency: 80% on 64 cores. Weak scaling
efficiency: good.

Sastry and Shontz: Under review 2013 23



Conclusions

1 We reviewed existing parallel mesh smoothing and untangling methods.

2 All of the methods with the exception of the method by Sastry and Shontz involve
local mesh optimization. The latter methods involve global mesh optimization.

3 The methods were developed for distributed memory or shared memory
machines; the exception was the hybrid method by Gorman et al.

4 Important concepts: graph coloring, vertex reordering, load balancing,
scheduling, etc.

24



Promising Research Directions

1 Simultaneous parallel mesh construction and optimization
2 Comparison study of existing methods
3 More methods are needed!
4 Hybrid methods (distributed and shared memory)
5 Architectures: GPUs, co-processors, etc.
6 Vertex reordering (for both local and global methods)
7 Mesh partitioning (local/patch/global)
8 Graph coloring
9 Load balancing, scheduling, performance modeling, etc.
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