
Dynamic Parallel 3D Delaunay Triangulation

Panagiotis Foteinos1,2 and Nikos Chrisochoides2

1 Department of Computer Science, College of William and Mary
pfot@cs.wm.edu

2 Department of Computer Science, Old Dominion University
nikos@cs.odu.edu

Summary. Delaunay meshing is a popular technique for mesh generation. Usu-
ally, the mesh has to be refined so that certain fidelity and quality criteria are
met. Delaunay refinement is achieved by dynamically inserting and removing points
in/from a Delaunay triangulation. In this paper, we present a robust parallel algo-
rithm for computing Delaunay triangulations in three dimensions. Our triangulator
offers fully dynamic parallel insertions and removals of points and is thus suitable
for mesh refinement. As far as we know, ours is the first method that parallelizes
point removals, an operation that significantly slows refinement down. Our shared
memory implementation makes use of a custom memory manager and light-weight
locks which greatly reduce the communication and synchronization cost. We also
employ a contention policy which is able to accelerate the execution times even in
the presence of high number of rollbacks. Evaluation on synthetic and real data
shows the effectiveness of our method on widely used multi-core SMPs.

Key words: dynamic Delaunay triangulation, parallel, mesh generation

1 Introduction

1.1 Motivation

Mesh generation is a fundamental step for finite element analysis or visualiza-
tion. A popular meshing technique is the Delaunay mesh generation, since it is
able to mesh domains bounded by polyhedral surfaces [10, 12, 26, 35], curved
surfaces [19, 32], or non-manifold surfaces consisted of a single [8, 34] or even
multiple materials [18, 33].

The quality and fidelity of the mesh elements affect the speed and accu-
racy of the subsequent finite element analysis. Fidelity measures how well the
mesh boundary describes the surface of the object to be modelled and qual-
ity regards the shape of the elements. Poor fidelity or poor quality meshes
undermine the stability of the numerical solvers.



2 Panagiotis Foteinos and Nikos Chrisochoides

are

requirements

met?
no

yes

done

Data
Structures

Triangulator

“operation making”
Refiner

“decision making”

Queue

of candidate
points

Compute a new

point p

for insertion or

removal

Pick up a

candidate point

p for insertion or

removal

Apply operation.

Maintain the

Delaunay property

and update

the structures

Fig. 1. The mesh refinement procedure illustrating the relationship between the
refiner and the triangulator. The refiner computes the points that will potentially
improve the mesh, while the triangulator is responsible for the actual operations,
i.e, it maintains the Delaunay property and the data structures.

Therefore, after having computed an initial discretization of the input do-
main, meshers ought to refine it, until the specified quality and fidelity criteria
are met. In the literature, refinement is achieved by incrementally inserting in
or deleting points from an underlying Delaunay triangulation [8, 18, 19, 33, 34].
The triangulator, the backbone of any Delaunay refiner (see Figure 1), is re-
sponsible for updating the interconnectivity of mesh elements after the inser-
tion or removal of points while maintaining the so called Delaunay property.
The triangulator has to be able to support dynamic (i.e., on line) operations,
simply because the sequence of the point insertions/removals (that improve
the mesh) is not known a priori. In contrast, existing state of the art paral-
lel Delaunay triangulators [6, 7] assume that the points are known before the
parallel algorithm actually starts.

Figure 1 illustrates how the refiner and the triangulator cooperate with
each other in a mesh refinement algorithm. Although this is the design we
adopted for our own sequential mesh refinement algorithm [19], the high-level
concept remains valid for all the other Delaunay mesh refinement algorithms
in the literature. The key concept is that the refiner computes the point that
will have to be inserted or removed, i.e., decides the sequence of the points
that will improve the quality and the fidelity of the mesh, while the actual
insertion or removal is performed by the triangulator. As stated above, that
sequence of points is dynamically revealed by the refiner; decisions made in
the past determine the ones that will be made in the future.



Dynamic Parallel 3D Delaunay Triangulation 3

In [19], we developed a High Quality mesh Refinement algorithm (abbrevi-
ated to HQR hereafter) for medical images. Image-to-Mesh (I2M) conversion
software [18, 19, 22, 33, 38] is essential for visualization or medical simulations.
HQR at any time maintains the triangulation of points that have already
been inserted inside, outside, or precisely on the boundary of the manifold
(i.e., curved object) to be meshed. Therein, we prove that after the end of
the refinement, a subset of the final triangulation forms a good topological
and geometric approximation of the object and is of good quality. That sub-
set (which is uniquely defined and extracted) constitutes the actual mesh of
the object (this is a common technique used in the literature for meshing
volumes bounded by surfaces [8, 18, 32–34]). Note that mesh generators for
images need to also recover the surface of the object; the surface of the object
is unknown and not given as a polyhedral domain. HQR meshes the surface
and the volume of the object at the same time.

In this paper, towards the parallelization of our sequential I2M algo-
rithm [19], we present a dynamic Parallel Delaunay Triangulator (PDT).
Unlike all the other parallel implementations in the literature, we support
Delaunay removal of points, an operation that has been shown to significantly
improve the quality [26] and fidelity of the final meshes [19]. It will become
obvious in the next sections that removing points is not only a slow operation
(slower than insertions) but it is also a challenging task.

PDT follows the master-workers approach, because in this way we facil-
itate the integration of the triangulator with any refiner for manifold sur-
faces. In fact, the triangulator sees the refiner as a black box, which offers
great flexibility since no assumptions for the location of the points to be in-
serted/removed are made. The integration of our parallel triangulator to a
parallel refiner is the next step and is outside the scope of this paper.

1.2 Related work

In the literature, there has been extensive work on developing parallel De-
launay methods in two and three dimensions. Their main limitation is the
fact that they do not support removal of points, and therefore, they are not
suitable for mesh refinement codes where deletions are needed (see the work
by Klinger and Shewchuk [26] and Foteinos et al. [19] for few such refinement
schemes).

Blelloch et al. [7], Hardwick [23], and Amato et al. [3] compute the Delau-
nay triangulation of a given point set by solving the corresponding convex hull
problem using a parallel divide and conquer scheme. Teng et al. [36] construct
the triangulation by expanding faces on every vertex in parallel. Cignoni et
al. [14] present a divide and conquer and a construction parallel algorithm
and compare their performance on uniformly distributed points. Blandford et
al. [6] present a 3D incremental triangulator that first associates the unin-
serted vertices to the tetrahedra that contains them. Kohout et al. [27] give
two incremental randomized insertion schemes (i.e., the points to be inserted



4 Panagiotis Foteinos and Nikos Chrisochoides

have to be reordered) for computing the Delaunay triangulation in 2D. It is
worth noting that all the techniques described so far are not dynamic, since
the point set has to be known before the algorithm starts; therefore, they
are not suitable for mesh refinement because the list of uninserted vertices
constantly changes.

A dynamic parallel refinement algorithm for distributed memory platforms
is given by Okusanya and Peraire [31]. The observed speed up, however, is
very low: the execution time of 8 processes on uniformly distributed data is
higher than that of 2. Dynamic parallel mesh refinement methods are also
proposed by Chernikov and Chrisochoides [11]. Therein, the synchronization
between processors is greatly reduced by choosing to insert points in parallel
only if the insertions do not cause conflicts. Kadow [25] extends the work of
Blelloch et al. [7] in order to support dynamic insertions in 2D. Galtier and
George [20] propose a domain decomposition scheme. The domain is subdi-
vided by partitioning the polyhedral surface mesh. That partitioning is per-
formed by computing a suitable separator of the domain boundary. Linardakis
and Chrisochoides [28] present a 2D decoupling parallel method. The commu-
nication between workers is eliminated by inserting extra points on the medial
axis of the domain and meshing each resulting subdomain in parallel. Note
that the dynamic refinement algorithms mentioned so far target exclusively
polyhedral domains, that is, the surface of the object is already represented
as a set of polyhedral facets. As already explained in Section 1.1, our parallel
triangulator prepares the ground for a parallel guaranteed quality and fidelity
mesh generator for objects whose surface and volumes are meshed at the same
time, an essentially different problem.

Nave and Chrisochoides [30] parallelize the Bowyer-Watson kernel. The
new inserted points, however, are restricted to be the circumcenters of poorly
shaped triangles. That implies that locating the new point is not necessary,
since the first element in the cavity (i.e., the poor element) is known and it
needs not to be found. In the literature, meshing curved objects necessitates
the insertion of points that are not circumcenters of poor elements. See for
example the work in [8, 18, 32–34]. Therein, points on the voronoi edges are
also inserted to guarantee that the mesh boundary is a good approximation
of the object. As another example, our sequential refinement algorithm [19]
sometimes inserts points outside the circumball of poor elements. For these
reasons, our parallel triangulator makes no assumptions about the location of
the points to be inserted, and therefore it supports (in fact, it has to support)
parallel locating as well. Another difference is that Nave and Chrisochoides [30]
start their parallel Bowyer-Watson kernel after the sequential construction of
an initial mesh. Therefore, there is enough parallelism (i.e., no contention) in
the early stages of the refinement. We follow a different approach. Our parallel
Bowyer-Watson kernel tries to exploit parallelism in the early stages of the
triangulation via the help of a contention manager policy. Furthermore, our
implementation supports parallel removals.



Dynamic Parallel 3D Delaunay Triangulation 5

1.3 Our method

In this paper, we present a parallel dynamic Delaunay triangulation algorithm.
Its main features include support for dynamic removal of points and ease of
integration with any refinement schemes, especially refinement schemes that
work directly on manifold surfaces. This makes our implementation suitable
for mesh refinement schemes that (a) do not rely only on insertion of points
for quality/fidelity improvement but also on Delaunay deletions [19, 26] and
(b) decide to insert non-trivial points, i.e., points other than circumcenters or
midpoints [18, 32–34]. Indeed, our parallel triangulator imposes no restrictions
on the location of the points to be inserted or removed.

As stated above, we make use of a master-worker approach. More precisely,
the triangulator, instead of applying the operation for each point in its global
queue sequentially, launches the master thread. The master thread inspects
the global queue and as long as there are points left, it moves them to the
appropriate private queue of the workers. Each worker is responsible for only
the points that are in its private queue. If a worker, during the insertion or
removal of a point, encounters a locked vertex, then it aborts the operation
(rollback) [7, 30] and tries to operate on another vertex in its private queue.

Rollbacks, however, may cause livelocks which result in system-wide star-
vation [24], especially when there is high contention. Kohout et al. [27] over-
look this fact and that is the reason the resulting Delaunay triangulation is
not always valid: they report that few elements are not Delaunay. Blandford et
al. [6] deal with livelocks by bootstrapping: they insert the first 500, 000 ver-
tices sequentially and therefore the chances for high contention are minimized.
As we have already mentioned, however, we are not given any point a priori,
and therefore bootstrapping cannot be applied. Generally, dynamic triangula-
tors cannot rely on any pre-processing strategy. We solve the starvation issue
by employing a contention management policy. It guarantees correctness even
in cases of extreme contention (i.e., when the number workers is very large
with respect to the size of the triangulation), without compromising speed.
On the contrary, the contention manager always yields faster execution times
than these achieved by our sequential algorithm.

The rest of the paper is organized as follows: Section 2 describes our se-
quential implementation and Section 3 elaborates on the key aspects of our
parallel implementation. Section 4 evaluates our parallel code on synthetic
and real data, and Section 5 concludes the paper.

2 Sequential Implementation

The Delaunay triangulation D (V ) of a set of vertices V ⊂ R3 is a triangula-
tion that satisfies the Delaunay property. More precisely, let B (t) denote the
open circumscribing ball (a.k.a circumball) of tetrahedron t. Then, t belongs
in D (V ) if B (t) contains no vertex of V . The insertion of a new vertex v /∈ V



6 Panagiotis Foteinos and Nikos Chrisochoides

Algorithm 1: The Bowyer-Watson insertion kernel.

1 Algorithm: Insert(V , D (V ), v)

Input : V is the current set of vertices,
D (V ) is the Delaunay triangulation of V ,
v is the new vertex.

Output: The Delaunay triangulation of set V ∪ v.

2 Compute C (v) = {t ∈ D (V ) | v ∈ B (t)};
3 Delete all tetrahedra in C (v);
4 Compute ∂C (v), the set of triangles incident to a tetrahedron that belongs to

C (v) and to a tetrahedron that does not belong to the cavity;
5 Connect v with all the vertices of ∂C (v);
6 V = V ∪ v;

or the removal of an existing vertex v ∈ V necessitates local transformations
such that the Delaunay property is maintained and the triangulation is still
valid (i.e., the tetrahedra form a partition of the convex hull of the vertices).

2.1 Sequential Insertion

Let v be the new vertex inserted into V . The triangulation is updated using the
well known Bowyer-Watson kernel [9, 37]. See Algorithm 1 for an illustration.
First, the cavity C (v) of v is computed. The cavity contains all the tetrahedra
in D (V ) whose circumball contains v. Clearly, the elements composing the
cavity have to be deleted because they violate the Delaunay property. Let us
denote with ∂C (v) the boundary of the the cavity. As noted in [9, 37], ∂C (v)
is a convex polyhedron and therefore, every vertex on the cavity’s boundary
is visible from v. Hence, connecting the vertices of ∂C (v) to v constitutes a
valid triangulation. It can also be shown that the new elements created in this
way respect the Delaunay property [21].

Computing the cavity of v is trivial, as long as we know one tetrahedron
in D (V ) which actually contains v (or one tetrahedron that belongs to the
cavity). Thus, we first have to traverse part of the triangulation to locate that
tetrahedron before we proceed to cavity computation. For this reason, our
algorithm implements the visibility walk as described in [16]: starting from an
element, we perform orientation checks which will dictate the next element
of the walk, until we find the tetrahedron the contains v. In order to launch
the location from a good starting element, we implement the jump and walk
technique as described in [29]. Specifically, a small subset of the vertices in
the triangulation is sampled, and the starting element is an element incident
to the sample which is closest to v. Although, the jump and walk technique
is slower than more elaborate schemes [15], it is an ideal candidate because
it achieves fairly good complexity and its parallelization introduces no global
synchronization.



Dynamic Parallel 3D Delaunay Triangulation 7

Algorithm 2: The removal kernel.

1 Algorithm: Remove(V , D (V ), v)

Input : V is the current set of vertices,
D (V ) is the Delaunay triangulation of V ,
v is the vertex to be removed.

Output: The Delaunay triangulation of set V − v.

2 Compute H (v) = {t ∈ D (V ) | t is incident to v};
3 Delete all tetrahedra in H (v);
4 Compute ∂H (v), the set of triangles incident to a tetrahedron that belongs

to H (v) and to a tetrahedron that does not belong to the hole;
5 Compute the small triangulation of the vertices of ∂H (v);
6 Merge the small triangulation with D (V );
7 V = V − v;

It is worth noting that the Bowyer-Watson kernel never creates flat tetra-
hedra (which must not exist in legal triangulations). And this is due to the
fact that v cannot be coplanar with any of the facets of ∂C (v).

2.2 Sequential Removal

Removing a vertex v ∈ V from D (V ) involves re-triangulating the hole H (v)
created by the tetrahedra incident to v. See Algorithm 2. First, we compute
the Delaunay triangulation of the vertices on the boundary ∂H (v) of the hole.
We shall refer to that triangulation as “small” triangulation to distinguish it
from D (V ) (the “big” triangulation). Then, we sew the small triangulation
back to D (V ).

Extra care has to be taken, however, to ensure that the small and big
triangulations actually match. The problem is that ∂H (v) may not appear as
a set of facets in the small triangulation due to degenerate cases. As explained
in [17], if there are more than 3 cospherical and coplanar vertices in ∂H (v),
then their triangulation in the plane is not unique, and therefore, parts of
∂H (v) might fail to appear in the small triangulation. Hence, we need a way
to resolve ties, so that the small triangulation always matches the boundary
of the hole. We do so by keeping track of the order in which the vertices were
inserted in D (V ). We use that information when triangulate the vertices of
∂H (v): they are inserted into the small triangulation according to the order
they were inserted earlier in D (V ). In this way, we can guarantee that sewing
always gives valid triangulations. The proof of correctness is omitted in this
paper.

Removals are more expensive than insertions. During the evaluation of our
sequential triangulator, we observed that the removal of 3000 uniformly dis-
tributed points is about 6 to 7 times slower than their insertion. See Table 1
for a comparison. (Removals are 6 to 7 times slower than insertions in the



8 Panagiotis Foteinos and Nikos Chrisochoides

CGAL triangulator [2] as well, the fastest dynamic triangulator we are aware
of.) This result is counter-intuitive because insertions involve visibility walks,
while removals do not. Indeed, each inserted point v stores a pointer to an
incident element. Therefore, if v is removed, the hole can be found without tri-
angulation traversals. Although removals do not require triangulations walks,
the cost associated with memory management increases. And the reason is
that the small triangulation does not contain and maintain only the elements
needed to fill the hole. If the hole H (v) is not convex, then all the elements of
the small triangulation that are outside H (v) but inside the convex hull of the
vertices of ∂H (v) will never be a part of the big triangulation. Therefore, more
bookeeping is introduced for maintaining and sewing the small triangulation.

3 Parallel Implementation

Our parallel implementation makes use of the C++ Boost threads [1]. When
a thread wants to lock an element, it does so by locking its 4 vertices. If
the operation is a read-only operation, then the thread asks for a shared
ownership. For example, locating the element that contains a vertex does
not modify the triangulation. Therefore, multiple location operations might
overlap without any blocking.

3.1 Master-Workers Scheme

Each worker is responsible for a specific region. It inserts or removes a vertex
as long as it lies inside its region. A worker either inserts or removes vertices. In
the former case, it is referred to as an inserter, and in the latter as a remover.
The master thread keeps scanning the global queue and moves vertex v (if
any) to a worker’s private queue (implemented as a thread safe single linked
list) only if v lies inside the worker’s region. In order to assign each worker a
region, we assume that we are given the positions of the extreme points that
will come in the future. This is a reasonable assumption, since in most cases
the domain of interest is known. Then, the domain is logically divided into
3D structured blocks, each of which is assigned to a specific worker. Note that
there is no global synchronization for the private queues. The master thread
places new vertices at the head of the queues and the workers draw them from
the tail of their queues, locking each time 2 exactly queue nodes and not all
the queue.

3.2 Parallel Operations

When a cavity C (v) is explored by a worker W1, all of the cavity’s elements
are locked exclusively. If another worker W2 visits any of C (v)’s elements,
then W2 aborts the operation (rollback) and moves on to the next point in its
private queue [7, 30].



Dynamic Parallel 3D Delaunay Triangulation 9

When a worker attempts to remove a vertex v, it acquires an exclusive
lock on the elements of the hole H (v). Similarly to insertions, if another
worker happens to be on an element of H (v), it aborts and tries to operate
on another point in its private queue. Also, note that a remover might try
to remove a vertex which belongs to an inserter’s sample list (recall that the
jump and walk location technique implemented by the inserters requires some
processing of a small subset of already inserted vertices). Therefore, we require
that the inserters exclusively lock their samples. If an inserter finds a sample
exclusively locked (by either an another inserter or a remover), then it tries
to find another one to start the locating from.

In order to decrease the synchronization (as a result of locking) and com-
munication cost (as a result of reading and writing the shared memory) among
the threads, we developed our own custom memory manager and light-weight
locks. According to the findings presented by Antonopoulos et al. [4], efficient
memory utilization and locking greatly reduces the overhead of maintaining
multiple threads.

• Memory manager : Allocating and deallocating cells and vertices in multi-
threaded implementation is costly, because now the kernel calls a thread
safe implementation of the new/delete operator. This overhead can be
reduced if each thread has its own (private) memory pool from which
it asks blocks. If a block is to be deleted, then it throws it back to its
memory pool. When the pool does not contain any blocks, only then the
thread expands its pool by calling the kernel’s new operator. In order to
further expedite things and exploit localization, when the pool needs to
be expanded, a whole chunk of blocks is allocated. We set the chunk size
equal to 12 pages for cells and 3 pages for vertices (each page is 4KB).
Higher chunk sizes yielded similar results.

• Light-weight locks : Locking mechanisms using POSIX mutexes can waste
hundreds of cycles. On the contrary, the built-in atomic operations imple-
mented by the C++ GNU compiler just add few stall cycles. Therefore,
we decided to implement our own shared and exclusive try-locks using the
atomic fetch and add operation. More precisely, each vertex has a specific
flag which we atomically increment or decrement. That flag denotes the
number of readers (associated with the vertex) if the value is non-negative.
A non-negative flag implements a shared lock. If the flag is negative, then it
is exclusively owned by one and only one worker. By replacing the pthread
mutexes (that we used in the early stages of the development of our par-
allel code) with our light-weight locks, the removals sped up significantly.
For example, the single-threaded removal of 10, 000 random points was
faster by 24%. Interestingly, the insertions were not substantially affected.
We think that this happens because the number of cells incident to a point
(to be removed) tends to be higher than the number of cells of a point’s
cavity (to be inserted); hence, removing involves more locking and it is
more sensitive to the locking mechanism employed. In uniform data, for



10 Panagiotis Foteinos and Nikos Chrisochoides

example, we counted that on the average the insertion of a point requires
21 locks, while its removal 30 locks.

3.3 Contention Management

When the number of workers is high and the number of inserted vertices is
small, increased contention is introduced which hampers the performance of
the triangulator. What is even worse, the workers will most likely suffer from
livelocks, a common pitfall of non-blocking parallel algorithms [24]. Livelocks
are caused by continuous rollbacks: workers try to lock overlapping sets of
vertices for an undefined period of time. Kohout et al. [27] overlook that
problem and, for that reason, invalid Delaunay elements are reported. Bland-
ford et al. [6] solve the problem by bootstrapping: they insert the first 500, 000
vertices sequentially. We believe that even in the beginning (i.e., when there
are not many vertices inserted) there is parallelism that can be exploited.
Therefore, instead of bootstrapping, we decided to follow a more dynamic
(yet simple to implement and with little overhead; see Section 4.1) contention
policy. This is also one of the differences with the previous work of Nave and
Chrisochoides [30]: therein, an initial mesh is first constructed sequentially
and then the work is distributed among the workers.

We experimentally found that livelocks are always present in our algorithm
when the number of vertices already inserted into the triangulation is less than
750×N , where N is the number of parallel workers. And that fact did not only
cause specific threads to starve but also it prevented system-wide throughput:
none of the threads did useful work for a long (and thus undefined) time. To
solve the problem, each worker Wi keeps track of its progress by calculating
its progress ratio ui =

Ci

Ai
, where Ci is the number of completed operations

(i.e. amount of useful work) and Ai is the number of attempted operations.
If Ai is large compared to Ci, then that means that the worker spends most
of its time rolling back. When ui drops below a specified threshold u−, then
Wi goes to sleep, releasing all its resources. A low ratio implies that Wi finds
it difficult to cooperate with other threads, and therefore, it becomes inactive
in order to help the other workers do useful work. Conversely, if ui exceeds
a specified threshold u+ (≥ u−), then it signals a sleeping worker, say Wj

(if any). A high ratio implies that Wi does not conflict with other threads
often, which indicates that a inactive worker might be able to do some useful
work now. The awaken worker Wj can now inspect its private queue to find
a point to work on. (Note that when a worker Wj awakes, its counters Cj

and Ai are reset to 0, clearing in this way its progress history. We find no
good reason why the contention manager should not be memoryless.) In cases
of high contention, only one worker will be active, simulating a sequential
algorithm.

Although the contention manager’s primary goal is to insure correctness
(that is, absence of livelocks), we observed that it speeds up the triangu-
lator in its very early stages, i.e., when the triangulation does not contain



Dynamic Parallel 3D Delaunay Triangulation 11

Table 1. Contention management on extreme cases

Insertions Removals
#Threads 1 12 1 12

Time (secs) 0.06 0.04 0.39 0.12

Speedup 1 1.5 1 3.3

Max
#Rollbacks

#completed operations
(%) 0 80 0 3500

many vertices. Table 1 shows the speed up achieved by 12 inserters and 12
removers. For that experiment, only 3000 points are about to be inserted into
and removed from the triangulation, and therefore, we push our algorithm
to extremes. The points are normally distributed. (Note that without the
contention manager, the presence of livelocks prevented the insertion of any
vertex for more than 1 hour.) The thresholds u− and u+ were set to 0.7 and
0.9 respectively. Different configurations of the thresholds yielded the same
behavior. We observed similar results on different distributions (e.g., uniform
distribution, line distribution, points on a box, and grid points) too. We can
see from the last row that the contention is very intense. For example, a value

of 3500% for
#Rollbacks

#completed operations
means that a remover had to roll back

35 times on the average for every single point it removed. Despite that fact,
the parallel implementation not only did not encounter any livelocks but also,
it yielded faster executions.

4 Experimental Evaluation

In this section, we evaluate the performance of our Parallel Delaunay Trian-
gulator (PDT) on both synthetic and real data. Throughout the evaluation,
we used an Intel and an AMD machine. The Intel machine is equipped with
a 12-core Xeon X5690 CPU at 3.47GHz and 96GB of memory, and the AMD
machine with a 48-core Opteron 6174 CPU at 2.2GHz and 96GB of memory.
Both the sequential and the parallel code is written in C++.

4.1 Synthetic Data

We first evaluated our parallel implementation on synthetic data. More pre-
cisely, we dynamically feed the global queue with points to be inserted or
removed according to three distributions: uniform, normal, and line as de-
scribed in [7]. For all distributions, we simulate the dynamic insertion of 12M
points and the dynamic removal of the first 1.2M points (which account for
10% of the inserted points).

Table 2, Table 3, and Table 4 illustrate the results. The experiments were
run on the Intel machine. The reported Speedup1 is the speedup with respect

to our single-threaded parallel implementation. The
#Rollbacks
#compl. ops

row shows



12 Panagiotis Foteinos and Nikos Chrisochoides

Table 2. Uniform

Insertions Removals
#Threads 1 2 4 8 12 1 2 4 8 12

Time (secs) 743 355 186 89 61 167 85 46 24 17
Speedup1 1.00 2.09 3.99 8.35 12.18 1.00 1.96 3.63 6.96 9.82

Max
#Rollbacks
#compl. ops

(%) 0.000 0.001 0.008 0.013 0.032 0.000 0.000 0.000 0.000 0.003

CGAL time (secs) 402 - - - - 131 - - - -
Speedup2 0.54 1.13 2.16 4.52 6.59 0.78 1.54 2.85 5.46 7.71

Table 3. Normal

Insertions Removals
#Threads 1 2 4 8 12 1 2 4 8 12

Time (secs) 739 356 185 90 87 166 85 46 24 24
Speedup1 1.00 2.08 3.99 8.21 8.49 1.00 1.95 3.61 6.92 6.92

Max
#Rollbacks
#compl. ops

(%) 0.000 0.003 0.006 0.018 0.022 0.000 0.000 0.000 0.000 0.001

CGAL time (secs) 400 - - - - 131 - - - -
Speedup2 0.54 1.12 2.16 4.44 4.60 0.79 1.54 2.85 5.46 5.46

Table 4. Line

Insertions Removals
#Threads 1 2 4 8 12 1 2 4 8 12

Time (secs) 1,182 507 240 110 72 169 86 47 25 17
Speedup1 1.00 2.33 4.93 10.75 16.42 1.00 1.97 3.60 6.76 9.94

Max
#Rollbacks
#compl. ops

(%) 0.000 0.001 0.035 0.097 0.252 0.000 0.000 0.006 0.030 2.641

CGAL time (secs) 612 - - - - 133 - - - -
Speedup2 0.52 1.21 2.55 5.56 8.50 0.79 1.55 2.83 5.32 7.82

the number of rollbacks with respect to the number of points that were in-
serted/removed (see Section 3.3). High values imply that the worker spent
most of its time rolling back instead of doing useful work (i.e., instead of ac-
tually completing an operation). In fact, that row reports the higher value
among the workers.

First of all, notice that the penalty introduced by the contention manager
is negligible. In most cases, the maximum percentage of rollbacks with respect
to the total number of inserted/removed points is less than 0.1%. Also, the
total number of seconds that the workers sleep (not shown in the tables) were
less than 3 seconds for all the experiments. Therefore, it is safe to look at the
#Rollbacks
#compl. ops

to determine whether the synchronization cost is high or not.

For the uniform (Table 2) and line distribution (Table 4), we observe ex-
cellent speedups. With 12 workers, the uniform insertions are more than 12
times faster than the single-threaded execution; also, to our surprise, the line
insertions are more than 16 times faster. The reason for such superlinear im-
provements is memory locality and memory reuse achieved by our custom
memory manager. For the normal distribution (Table 3), we observe superlin-
ear speedups up to 8 threads. Increasing the number of threads do not result
in considerably less execution, although the number of rollbacks is still very



Dynamic Parallel 3D Delaunay Triangulation 13

small. This behavior is attributable to load imbalance. In fact, only 9 out of
the 12 launched workers have work to do (the same applies for the parallel
removals too). Load balancing ought to be considered on its own merit (see
for example the work by Barker and Chrisochoides [5]), and it is left as future
work.

For the parallel removals, notice that the speedups are smaller than those
achieved by the inserters. For example, the improvement with 12 uniform
removers is 9.82, while the improvement with 12 inserters is superlinear. We
believe that this happens because removals are more memory intensive than
insertions. During a removal the number of cells to be updated is higher
than in the case of an insertion (more on this shortly). Therefore, memory
management overhead per removal is higher than that per insertion. When the
number of removers increases, that communication cost hampers the speedup
of the inserters.

The increased number of cells to be updated during a removal is not only
due to the fact that the cells in a cavity of a point to be inserted are fewer
than the cells incident to a point to be removed, as reported in Section 3.2. It
is also due to the fact that the hole has to be retriangulated which introduces
extra memory overhead. For example, during the single threaded experiment
of uniform data, we counted that on the average 211 cells are touched per
removal, but only 19 cells are touched per insertion.

For comparison, the last row (Speedup2) of the tables above report the
speedup of our parallel algorithm over the Computational Geometry Algo-
rithms Library (CGAL) [2]. To our knowledge, CGAL triangulator is the
fastest sequential dynamic algorithm and it is also open-source software. Note
that CGAL triangulator has been highly optimized and tested over the last
years and it is the state of the art implementation to date.

Observe that although the time of our single-threaded removal of points
is comparable to that of CGAL, our single-threaded insertion is a little bit
less than 2 times slower. The reason for such a difference is not only the extra
cost associated with locking the elements in the cavity, but also the fact that
the jump and walk location technique we employed is asymptotically slower
than the optimal Delaunay hierarchy used by CGAL. (The worst-case cost

of the jump and walk technique is O(n
2
3 ), while the cost of the hierarchy is

O(log n).) As explained in Section 2, we used the jump and walk algorithm
because it can be parallelized without extra synchronization cost, has a good
expected complexity, and requires little memory. Despite the slower single-
threaded execution times of our algorithm, it soon outperforms CGAL. The
uniform insertions and removals by 12 inserters and 12 removers are 6.59 and
7.71 times faster, respectively. For the line insertions and removals, the speed
up over CGAL is 8.5 and 7.82. Lastly, the normal insertions and removals by
8 inserters and 8 removers are 4.6 and 5.46 times faster, respectively.

The last experiment on synthetic data is performed on the AMD machine.
In this experiment, we wanted to see the speedup of our algorithm when a
larger number of cores is used. We insert 1M uniformly distributed points per



14 Panagiotis Foteinos and Nikos Chrisochoides

Table 5. Results for the AMD machine

Insertions Removals
#Threads 1 2 4 8 16 32 48 1 2 4 8 16 32 48

Time (secs) 69 86 107 105 128 181 217 24 27 32 33 34 34 35

Max
#Rollbacks
#compl. ops

(%) 0.00 0.00 0.01 0.03 0.09 0.20 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00

CGAL time(secs) 40 87 194 418 898 1873 2869 16 37 66 132 264 526 800

Speedup 0.58 1.01 1.81 3.98 7.02 10.35 13.22 0.67 1.37 2.06 4.00 7.76 15.47 22.86

inserter and remove 0.1M points per remover. Table 5 depicts the results. The
last row shows the speedup of our implementation over CGAL on the same
input. Notice that the number of rollbacks is negligible, and therefore syn-
chronization cost is not a problem. However, we observe that after 8 workers
both inserters and removers stop scaling well. For example, with 48 inserters
the speedup over CGAL is 13.22, while if the scaling was perfect it should be
48 × 0.58 = 27.84. Recall that we increase the problem size per worker and
therefore one would expect a good scaling, since the number of rollbacks is
negligible. Note, however, that the application is memory intensive and that
when we increase the problem size, the memory management overhead also
increases (the memory reads/writes with 48 workers is at least 48 times more
than the memory reads/writes with 1 worker). For these reasons, we believe
that after a certain number of workers, the communication cost dominates
and the scaling is suboptimal.

4.2 Real Data

We also simulated the sequence of points produced by our high quality sequen-
tial I2M algorithm HQR (see Section 1 for some information on HQR) [19].
The quality and fidelity guarantees that HQR proves can be found in [19].
Note that in [19], we developed only our own refiner; the (sequential) triangu-
lator used there was built on top of a third party library (CGAL [2]). We ran
HQR on a segmented medical image and we traced the sequence of points that
were inserted and removed. Then, we fed that data to our parallel triangulator
to simulate a real case. Figure 2 shows the data produced by HQR.

Table 6 depicts the timings. During the simulation, 219, 031 points were
inserted and 63, 356 were removed in parallel. Although the insertions scale
well, the removals hit a wall after 4 workers. This is expected because there
is a little concurrency to be exploit, i.e., the number of points to be removed
per remover is low. (Note that load imbalance is not a problem in this simula-
tion, since we verified that each worker attempted to make roughly the same
number of operations, that is, the number of points to be removed is approx-
imately the same for all removers.) This also agrees with the huge rollback
percentages: for example, when 12 removers are launched, we noticed that a
thread had to try 1, 069, 400 times just to remove 5, 319 points. Clearly, the
computation for such a little work of removals is not enough to compensate
for the synchronization cost.



Dynamic Parallel 3D Delaunay Triangulation 15

Fig. 2. The result after the termination of our mesh refinement algorithm. This
sequence of points that were inserted/removed was fed into our parallel triangulator.

Table 6. Evaluation on real data. Notice the high rollback percentages associated
with the removals.

Insertions Removals
#Threads 1 2 4 8 12 1 2 4 8 12

Time (secs) 7.3 4.2 2.5 1.4 0.9 32.0 16.7 10.8 7.1 11.6
Speedup1 1.00 1.74 2.92 5.21 8.11 1.00 1.92 2.96 4.51 2.76

Max
#Rollbacks
#compl. ops

(%) 0.0 0.2 1.0 4.7 6.1 0.0 0.1 16.8 42.9 19837.0

CGAL time (secs) 3.9 - - - - 16 - - - -
Speedup2 0.53 0.93 1.56 2.79 4.33 0.50 0.96 1.48 2.25 1.38

5 Conclusions and Future Work

In this paper, we presented a dynamic parallel Delaunay triangulator. Its main
feature is its ability to support parallel removal of points, an operation that
is much slower than the insertion as we have already explained (Section 2.2).
For synthetic data, the execution time of our parallel insertions on the 12-core
Intel machine is 4.6− 8.5 times faster than the fastest sequential triangulator
(CGAL [2]) we are aware of. The corresponding speedup over CGAL for our
parallel removals is 5.46 to 7.82. The overall speedup (taking into account
both insertions and removals) over CGAL ranges from 4.78 to 8.37 when 12
workers are launched. Removals do not scale as well as insertions, but the
reason is not the synchronization cost. In fact, our light-weight lock imple-
mentation (see Section 3.2) greatly reduced the time spent for locking by 24%.
Indeed, as Table 2, Table 3, and Table 4 show, the time spent on rollbacks is
negligible when compared with the time of useful work. We noticed, however,
that removals are 11 times more memory intensive than insertions (see Sec-
tion 4.1). Therefore, removals exhibit higher communication cost which limits
scalability. We believe that communication cost is also the reason that our
algorithm stop scaling well after 8 workers on the 48-core AMD machine (see
Section 4.1).

A case of increased synchronization cost is shown in Table 6. The high
#Rollbacks
#compl. ops

numbers indicate exactly that. For example, the value 19837%



16 Panagiotis Foteinos and Nikos Chrisochoides

implies that a thread had to roll back 198.37 times on average for every point it
tried to remove. As explained in Section 4.2, the reason for so much contention
is because of the little concurrency that can be exploit. This experiment shows
that our contention manager (see Section 3.3) is able to remove livelocks under
extreme circumstances.

Our next goal is to combine our parallel triangulator with a parallel re-
finer for medical images and exploit parallelism in two levels: in the level of
the triangulation (operation making) and in the level of the refiner (decision
making, see Figure 1). To ease the integration, the triangulator employs a
master-workers scheme and sees the refiner (i.e., the master or the masters if
the refiner is parallel) as a black box. Note that if the parallel refiners are syn-
chronized, they will never attempt to improve an element that was previously
removed.

The experimental evaluation presented in this paper focuses on shared-
memory multi-core machines. We are also planning to parallelize our algo-
rithm for larger distributed-memory machines according to the work of Chriso-
choides et al. [13]. Therein, a hybrid mesh generation framework is developed
that takes advantage of both the smaller shared memory layer and the larger
distributed memory layer.

Acknowledgements

The authors would like to thank Andrey Chernikov and Andriy Kot for the
fruitful discussions and constructive comments and the anonymous reviewers
who helped us improve the paper. This work is supported in part by NSF
grants: CCF-1139864, CCF-1136538, and CSI-1136536 and by the John Simon
Guggenheim Foundation and the Richard T. Cheng Endowment.

References

1. Boost C++ libraries. http://www.boost.org/.
2. Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.
3. Nancy M. Amato, Michael T. Goodrich, and Edgar A. Ramos. Parallel algo-

rithms for higher-dimensional convex hulls. In IEEE Symposium on Foundations
of Computer Science, pages 683 –694, November 1994.

4. Christos Antonopoulos, Filip Blagojevic, Andrey Chernikov, Nikos Chriso-
choides, and Dimitris Nikolopoulos. Algorithm, software, and hardware opti-
mizations for delaunay mesh generation on simultaneous multithreaded archi-
tectures. Journal on Parallel and Distributed Computing, 69(7):601–612, 2009.

5. Kevin Barker and Nikos Chrisochoides. Practical performance model for opti-
mizing dynamic load balancing of adaptive applications. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE Computer So-
ciety, 2005.

6. Daniel K. Blandford, Guy E. Blelloch, and Clemens Kadow. Engineering a com-
pact parallel delaunay algorithm in 3d. In Proceedings of the 22nd Symposium
on Computational Geometry, SCG ’06, pages 292–300, New York, NY, USA,
2006. ACM.



Dynamic Parallel 3D Delaunay Triangulation 17

7. Guy E. Blelloch, Gary L. Miller, Jonathan C. Hardwick, and Dafna Talmor.
Design and implementation of a practical parallel delaunay algorithm. Algorith-
mica, 24(3):243–269, 1999.

8. Jean-Daniel Boissonnat and Steve Oudot. Provably good sampling and meshing
of surfaces. Graphical Models, 67(5):405–451, 2005.

9. Adrian Bowyer. Computing Dirichlet tesselations. Computer Journal, 24:162–
166, 1981.

10. Andrey Chernikov and Nikos Chrisochoides. Three-Dimensional Semi-
Generalized Point Placement Method for Delaunay Mesh Refinement. In Pro-
ceedings of the 16th International Meshing Roundtable, pages 25–44, Seattle,
WA, October 2007. Elsevier.

11. Andrey Chernikov and Nikos Chrisochoides. Three-dimensional delaunay re-
finement for multi-core processors. In ACM International Conference on Super-
computing, number 22, pages 214–224, Island of Kos, Greece, June 2008.

12. L. Paul Chew. Guaranteed-quality Delaunay meshing in 3D. In Proceedings of
the 13th ACM Symposium on Computational Geometry, pages 391–393, Nice,
France, 1997.

13. Nikos Chrisochoides, Andrey Chernikov, Andriy Fedorov, Andriy Kot, Leonidas
Linardakis, and Panagiotis Foteinos. Towards exascale parallel delaunay mesh
generation. In International Meshing Roundtable, number 18, pages 319–336,
Salt Lake City, Utah, October 2009.

14. P. Cignoni, C. Montani, R. Perego, and R. Scopigno. Parallel 3d delaunay
triangulation. Computer Graphics Forum, 12(3):129–142, 1993.

15. Olivier Devillers. The delaunay hierarchy. Internat. J. Found. Comput. Sci,
13:163–180, 2002.

16. Olivier Devillers, Sylvain Pion, and Monique Teillaud. Walking in a triangula-
tion. In Proceedings of the 17th annual Symposium on Computational geometry,
SoCG ’01, pages 106–114, New York, NY, USA, 2001. ACM.

17. Olivier Devillers and Monique Teillaud. Perturbations and vertex removal in a
3d delaunay triangulation. In Proceedings of the 14th ACM-SIAM Symposium
on Discrete algorithms, SODA ’03, pages 313–319, Philadelphia, PA, USA, 2003.
Society for Industrial and Applied Mathematics.

18. Dobrina Boltcheva, Mariette Yvinec, and Jean-Daniel Boissonnat. Mesh Gen-
eration from 3D Multi-material Images. In Medical Image Computing and
Computer-Assisted Intervention, pages 283–290. Springer, September 2009.

19. Panagiotis Foteinos, Andrey Chernikov, and Nikos Chrisochoides. Guaranteed
Quality Tetrahedral Delaunay Meshing for Medical Images. In Proceedings of the
7th International Symposium on Voronoi Diagrams in Science and Engineering,
pages 215–223, Quebec City, Canada, June 2010.

20. Jérôme Galtier and Paul-Louis George. Prepartitioning as a way to mesh sub-
domains in parallel. In Special Symposium on Trends in Unstructured Mesh
Generation, pages 107–122. ASME/ASCE/SES, 1997.

21. Paul-Louis George and Houman Borouchaki. Delaunay triangulation and
meshin, Application to finite elements. HERMES, 1998.

22. Orcun Goksel and Septimiu E. Salcudean. Image-based variational meshing.
IEEE Transactions on Medical Imaging, 30(1):11–21, 2011.

23. Jonathan C. Hardwick. Implementation and evaluation of an efficient parallel
delaunay triangulation algorithm. In Proceedings of the 9th ACM symposium
on Parallel algorithms and architectures, pages 239–248, New York, NY, USA,
1997. ACM.



18 Panagiotis Foteinos and Nikos Chrisochoides

24. William N. Scherer III and Michael L. Scott. Advanced contention management
for dynamic software transactional memory. In Proceedings of the 24th annual
ACM symposium on Principles of distributed computing, PODC ’05, pages 240–
248, New York, NY, USA, 2005. ACM.

25. Clemens Martin Joachim Kadow. Parallel Delaunay Refinement Mesh Genera-
tion. 2004. PhD Thesis, Carnegie Mellon University.

26. Bryan Matthew Klingner and Jonathan Richard Shewchuk. Aggressive tetra-
hedral mesh improvement. In Proceedings of the International Meshing
Roundtable, pages 3–23. Springer, 2007.

27. Josef Kohout, Ivana Kolingerová, and Jǐŕı Žára. Practically oriented parallel
delaunay triangulation in E2 for computers with shared memory. Computers &
Graphics, 28(5):703–718, 2004.

28. Leonidas Linardakis and Nikos Chrisochoides. Graded delaunay decoupling
method for parallel guaranteed quality planar mesh generation. SIAM Journal
on Scientific Computing, 30(4):1875–1891, March 2008.

29. Ernst P. Mücke, Isaac Saias, and Binhai Zhu. Fast randomized point location
without preprocessing in two- and three-dimensional delaunay triangulations.
In Proceedings of the 12th ACM Symposium on Computational Geometry, pages
274–283, 1996.

30. Demian Nave, Paul Chew, and Nikos Chrisochoides. Guaranteedquality parallel
delaunay refinement for restricted polyhedral domains. In ACM Symposium on
Computational Geometry (SoCG), pages 135–144, July 2002.

31. T. Okusanya and J. Peraire. 3d parallel unstructured mesh generation, 1997.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.7898.

32. Steve Oudot, Laurent Rineau, and Mariette Yvinec. Meshing volumes bounded
by smooth surfaces. In Proceedings of the International Meshing Roundtable,
pages 203–219, San Diego, California, USA, September 2005. Springer-Verlag.

33. Jean-Philippe Pons, Florent Ségonne, Jean-Daniel Boissonnat, Laurent Rineau,
Mariette Yvinec, and Renaud Keriven. High-Quality Consistent Meshing of
Multi-label Datasets. In Information Processing in Medical Imaging, pages 198–
210, 2007.

34. Laurent Rineau and Mariette Yvinec. Meshing 3d domains bounded by piece-
wise smooth surfaces. In Proceedings of the International Meshing Roundtable,
pages 443–460, 2007.

35. Jonathan Richard Shewchuk. Tetrahedral mesh generation by delaunay refine-
ment. In Proceedings of the 14th ACM Symposium on Computational Geometry,
pages 86–95, Minneapolis, MN, 1998.

36. Y. Ansel Teng, Francis Sullivan, Isabel Beichl, and Enrico Puppo. A data-
parallel algorithm for three-dimensional delaunay triangulation and its imple-
mentation. In ACM Conference on Supercomputing, pages 112–121, New York,
NY, USA, 1993. ACM.

37. David F. Watson. Computing the n-dimensional Delaunay tesselation with ap-
plication to Voronoi polytopes. Computer Journal, 24:167–172, 1981.

38. Yongjie Zhang, Thomas J.R. Hughes, and Chandrajit L. Bajaj. An automatic
3d mesh generation method for domains with multiple materials. Computer
Methods in Applied Mechanics and Engineering, 199(5-8):405 – 415, 2010. Com-
putational Geometry and Analysis.


