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ABSTRACT

PROTEIN LOOP LENGTH ESTIMATION FROM MEDIUM
RESOLUTION CRYOEM IMAGES

A. R. McKnight
Old Dominion University, 2013

Director: Dr. Nikos Chrisochoides

In the post-genomic era, proteomics research presents a new frontier in life sci-

ence. Proteins play roles in virtually every biological process, and understanding

their atomic structures is the key to unraveling how they carry out their work. Com-

pared to the over half million protein sequences in UniProt, only around 25,000

unique sequences have been atomically modeled and deposited to PDB (Protein

Databank). Cryoelectron Microscopy (cryoEM) is an important biophysical tech-

nique that produces 3D subnanometer resolution images of molecules not amenable

to past approaches like x-ray crystallography or nuclear magnetic resonance. De

novo modeling is becoming a promising approach to derive the atomic structure of

proteins from the cryoEM 3D images at ”medium” resolutions–between 5 and 10 Å.

Distance measurement along 1D skeletons of 3D images is an important step in de

novo modeling. Despite the need of such measurement, little has been investigated

about its accuracy in searching for an effective method. We propose a method to

refine the skeletal length via line simplification after selecting the appropriate seg-

mentation from the density map using Hausdorff distances. Complementarily, we

developed a motion planning approach to estimate the minimum length of a loop

lying completely within a contour of the density map. To test the methods, loops

between 1 and 10 residues in length were extracted from atomic structures in PDB

and used to generate density maps at 8 Å resolution, along with experimentally

derived density maps from EMDB (Electron Microscopy Databank).
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CHAPTER 1

INTRODUCTION

Over the last ten years, cryoelectron microscopy (CryoEM) experiments have

yielded increasing numbers of 3D electron density images of protein molecules. The

Electron Microscopy Data Bank (EMDB) currently archives the 3D images, referred

to as density maps, with a wide range of resolutions from 3 Å to over 80 Å [1]. When

the density map is generated at high resolution (3-5 Å) such as in recent EMDB

deposits 5499, 5520, 5495 and 5496 [2, 3], it is possible to derive the near atomic

structure directly from the density map. However, when the density map is not in

the high resolution range, it is still challenging to derive the structure of the imaged

molecule [4, 5]. Fitting and comparative modeling approaches have been developed

to utilize the existing atomic structures in the Protein Data Bank (PDB). These

approaches apply when a component of the target density map has been resolved

to near atomic resolution structure or when the target protein shares significant

homology with existing atomic structures [6, 7, 8, 9].

Modeling protein molecules using de novo methods are advancing in their abil-

ity to derive the atomic structure from medium resolution (5-10 Å) density maps

[10, 11, 12, 13]. Only the 3D image (top left in Figure 1) and amino acid se-

quence (top right) are used in de novo processes–a priori structural information from

databases such as PDB is not included. Secondary structure elements (SSEs) such

as α-helices (red sticks) and β-sheets are first identified using pattern recognition

methods [14, 15, 16, 17, 18, 19]. Skeletonization methods detect the underlying 1D

structure (green, left in Figure 1) of an iso-contour from the density map [13, 20].

Next, the amino acid sequence segments (red cylinders, right of Figure 1) of the

SSEs can be predicted using existing tools [21, 22, 23, 24]. Using a dynamic pro-

gramming algorithm on a weighted, directed graph of cells in a 2D matrix (whose

rows and columns correspond to helices detected in the sequence and density map

respectively), the correct SSE topology is derived and atomic modeling may com-

mence [11, 25, 26, 27, 12, 16].
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FIG. 1: The general steps in the de novo modeling process.

An amino acid sequence has a direction, starting with a nitrogen atom (N-terminal)

and ending with a carbon atom (C-terminal). The SSE topology is the order in

which this sequence traverses the protein’s helices and sheets, including the direc-

tion of entry into and exit from each SSE. The native topology of a protein’s SSEs

is likely to produce the lowest energy state compared to incorrect topologies [28],

hence determining the native state is a crucial step in de novo modeling. Previous

work developed the aforementioned dynamic graph matching approach, which helps

handle errors in density maps and preprocessing [11, 25, 26] .

The edges in the dynamic topology graph are weighted with some distance metric
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between SSEs. Using the density map input, the Euclidean distance between SSE en-

try and exit points was first used [4], and more recently the length along the grayscale

skeleton was measured [10, 26]. From the input amino acid sequence, the length of

gaps between SSEs can be estimated assuming a 3.8 Å distance between residues on

the backbone. The dynamic graph algorithm considers all possible combinations of

gaps between SSEs in the 3D image and amino acid sequence and selects the best

fit.

Despite the relative accuracy of skeletonization algorithms in finding a topologi-

cal skeleton, overestimation may occur if length is measured directly along skeletons’

piecewise linear curves, which contain many right angles. Error from the thinning

process, helix detection and producing the 3D image itself may also contribute to

errors in measurement. Following is a method to estimate the length of backbone

segments between SSEs using CryoEM images for use in topology determination.

By combining several graph-theoretic and computational geometric techniques, we

refine the images’ skeletons and obtain accurate length estimations. We tested the

method using both simulated and experimentally derived density maps. The mea-

sured length appears to agree with the expected length when the SSEs are detected

fairly accurately.
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CHAPTER 2

ESTIMATION OF LOOP LENGTH VIA REFINED

GRAYSCALE SKELETONS

2.1 ALGORITHM

The overall process to measure the loop length along the skeleton contains two

tasks: preprocessing and length calculation (Figure 2). Preprocessing derives the

skeleton and the endpoints of the two helices from the density map. Once such infor-

mation is obtained, our algorithm uses graphs and computational geometric concepts

to derive the simplified curve.

FIG. 2: Preprocessing and algorithm flow diagram for estimating loop length via
grayscale skeletonization.
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2.1.1 PREPROCESSING

We applied a skeletonization method that utilizes the local maximum points and

clustering to derive the skeleton points from the density map. The density regions

corresponding to helix-loop-helix (HLH) motifs for cases in in Table 2 were extracted

from entire density images downloaded from EMDB. After helix detection using

SSETracer, it is necessary to remove the skeleton voxels that belong to the helix

region in order to obtain the skeleton belonging to the loop. We removed those

skeleton voxels that are within 2.3 Å of the central axis of the helix. Note that

an α-helix is between 2.3 and 2.5 Å in radius [14, 29]. After such processing, the

skeleton voxels that presumably belong to the loop are segmented from the rest of

the skeleton voxels and and ready for length calculation.

2.1.2 LOCAL CONNECTIVITY GRAPHS

A local connectivity graph (LCG) represents a cluster of skeleton voxels. While

building a graph of all leftover skeleton voxels, we impose a constraint on the max-

imum allowable edge length l, possibly yielding multiple disconnected components.

For our tests, we normalized the distances between the image’s voxels to unity, and

chose l = 2, producing individual connected subcomponents clustered into distant

groups.

2.1.3 SELECTING CONNECTED COMPONENTS

Oftentimes, segmented or sparse density data yield multiple LCGs. Also, in

general, it is not known which helix endpoints the loop actually lies between. We

must then determine the best LCG for each possible pair of helix endpoints. For two

helices, one with endpoints p and q and the other with r and s, there exists a set Z of

four possible endpoint pairs: Z := {{p, r}, {p, s}, {q, r}, {q, s}}. For each endpoint

pair z ∈ Z, let the directed Hausdorff distance to an LCG [30] be defined as

h(z, b) = max
zi∈z

min
bj∈b

d(zi, bj), (1)

where z is the set of helix endpoints (comprised of voxels denoted zi) and b is an

LCG (comprised of voxels denoted bj) from the set B of all LCGs; d(zi, bj) is then the

Euclidean distance between a helix endpoint voxel and LCG voxel. In the presence

of multiple LCGs, we choose the best LCG l̂z per endpoint pair z ∈ Z by taking the
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minimum directed Hausdorff distance over all LCGs:

l̂z = min
b∈B

h(z, b). (2)

We can then use the voxels of l̂z to build our model of the loop between the endpoints

of z.

It should be noted here that the directed Hausdorff is not commutative–in gen-

eral, h(M,N) 6= h(N,M)–and we always chose M as a set (pair) of helix endpoints,

and N as an LCG (see Appendix B for more information). Figure 3 shows the con-

figuration for case 30 (PDB 1O6L) from Table 1, where we want to find l̂z among

the set of LCGs B := {1, 2, 3, 4, 5, 6} to search for the loop that may lie between

the helix endpoint pair a. After finding l̂z using equation (2), we do the same thing

for each other helix endpoint pair. We try connecting the helix endpoints to their

respective closest voxels in l̂z w.r.t. Euclidean distance. If either of the new edges

connecting p or r is longer than 5 Å, we discard the combination as an infeasible

path.

FIG. 3: Hausdorff distance comparison of the connected skeleton point groups. Two
detected helices (solid red lines), with a pair z of helix endpoints (connected by the
red dashed line) and several LCGs (gray ellipses) from PDB 1O6L. In this case, LCG
1 is closest to z in terms of directed Hausdorff distance.
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2.1.4 PATHFINDING

After finding the best LCG for a given possible helix endpoint pair, the next step

is constructing a path that traverses it in a way that will approximate the loop. We

simply performed a breadth-first search starting from one of the helix endpoints we

added, and reconstruct the path that ends at the other one in the graph [31], with a

helix endpoint as the source. For a given HLH, we find four such paths, one for each

possible helix endpoint pair.

2.1.5 PATH SIMPLIFICATION

Ideally, the distance between the endpoints of two helices should be measured

along the skeleton connecting the two ends by using our initial path. If we simply

add the length of its line segments, there is a danger of over estimation due to the

potential zigzagging induced from drawing a path along the edges of the cubic lattice

of the 3D image.

Douglas-Peucker line simplification is the systematic removal of points that lie

beyond some distance ε from a line describing the general orientation of a piecewise

linear curve (polyline) or one of its subsegments. Consider a two-dimensional example

as in Figure 4. Part (i) shows an initial polyline a...b. The algorithm is recursive,

and takes as parameters the tolerance ε (ii) and a multi-point segment of a polyline.

At each recursive iteration it finds an interior point of the current segment which

is the most distant from the straight line connecting the end points of the segment,

as in (ii) and (iii). If all of the current segment’s vertices lie within the ε band,

the segment is replace with a straight line segment containing only its endpoints.

Otherwise, the segment is split at the most distant point and each subsegment is

handled recursively.

In Figure 4 (iii), ac and cb are treated in different recursive calls; e is the farthest

point from cb, and no points lie outside the epsilon band for ac. Overall, the initial

polyline a...b is simplified into polyline aceb, which approximates the length of the

loop between helix endoints.
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FIG. 4: Recursive iterations of the Douglas Peucker line simplification algorithm.
Each gray region, as in (ii), illustrates the distance from the test line (ab in (ii))
defined by ε.

2.2 EXPERIMENTAL DESIGN

Two data sets were used in testing performance. The simulated data set consists

of fifty randomly selected HLH motifs from atomic structures in PDB. The proteins

extracted exhibit less than 10% sequence identity. Each extracted HLH of the protein

structure was used to generate a 3D density map using EMAN’s pdb2mrc function

[32]. The density maps were simulated to 8 Å resolution.

The real data set consists of 18 cases whose density maps were downloaded from

EMDB with resolution between 4.2 Å and 6.8 Å. Multiple HLH motifs were extracted

from each of the EMDB entries: 5030 (6.4 Å), 1733 (6.8 Å), 5001 (4.2 Å), 1740 (6.8

Å) and 5168 (6.6 Å). Each of these density maps is aligned with their PDB structures

at download.

The length of a loop was measured along the skeleton voxel points between (and
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including) the end points of the two surrounding helices. The endpoint of a helix

represents the end of the central axis of the helix [14, 15]. The helices were detected

using SSETracer, a simplified version of SSELearner [19]. The skeleton was detected

using a local maximum clustering method, more details of which are forthcoming in a

separate paper. In order to test the accuracy of our algorithm, we visually inspected

the detected helices and included only those cases in which the helices were roughly

accurate. This was done to isolate the potential error in our loop length estimation

from that of helix detection.

2.2.1 RESULTS

Measurement accuracy was evaluated using both the simulated set and real data

from EMDB. Table 1 summarizes the results for the simulated data. The input to

our method includes two pieces of information: the detected helix (red sticks in Fig-

ure 5 B and D) end points and the skeleton voxels (red dots). Each measured length

along the skeleton was compared with the expected length of the loop. The expected

length was calculated as 3.8 Å × (n + 1), where n is the number of amino acids on

the loop and 3.8 Å is the average distance between two amino acids. We add 1 to n

because there is always one more interval between amino acids than there are amino

acids in the loop. For example, a loop with one amino acid has a gap between each

helix endpoint (two total), so with n = 1 we have 2 gaps and an expected length of

3.8 Å × 2 = 7.6 Å.
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FIG. 5: Loop length estimation from a simplified curve. The density map (gray),
detected helices (red sticks), and true structure (cyan) are shown for the HLH portion
of the structure for 1DU0 (PDB) in (A, B) and 1MW8 in (C, D). The detected
skeleton (yellow) is shown as a surface in (A) and (C) and as voxels (red dots) in (B)
and (D), where the final simplified curve is shown in blue.

TABLE 1: Accuracy of loop length estimation via grayscale skeletonization in the

simulated data set.

No ID AA Expected Measured Diff RelErr DP ε

1 1ARO 1 7.6 7.4396 0.1604 2.1 1.00

2 1B0B 1 7.6 7.7384 0.1384 1.8 1.25

3 1BGP 1 7.6 7.6755 0.0755 1.0 1.30

4 1BQB 1 7.6 8.0995 0.4995 6.6 2.30

5 1GUX 1 7.6 7.8102 0.2102 2.8 6.00

6 1B43 2 11.4 11.4264 0.0264 0.2 0.45

7 1B89 2 11.4 11.8811 0.4811 4.2 2.55

8 1BD8 2 11.4 11.3578 0.0422 0.4 0.00

9 1BPY 2 11.4 11.4800 0.0800 0.7 2.25

10 1BR1 2 11.4 11.1461 0.2539 2.2 0.00

11 1FJL 3 15.2 15.4724 0.2724 1.8 1.35

12 1FK5 3 15.2 14.9523 0.2477 1.6 0.00

13 1FUR 3 15.2 15.2643 0.0643 0.4 6.00

14 1H0M 3 15.2 15.3601 0.1601 1.1 2.70

15 1DU0 3 15.2 14.9900 0.2100 1.4 0.60

16 1A87 4 19.0 18.8901 0.1099 0.6 0.95
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TABLE 1 Continued

No ID AA Expected Measured Diff RelErr DP ε

17 1AIH 4 19.0 19.2057 0.2057 1.1 6.00

18 1AJ8 4 19.0 4.1231 14.8769 78.3 0.00

19 1BMT 4 19.0 19.2313 0.2313 1.2 5.55

20 1BOU 4 19.0 18.9609 0.0391 0.2 0.70

21 1D8L 5 22.8 23.1403 0.3403 1.5 0.60

22 1DI1 5 22.8 22.9243 0.1243 0.5 4.25

23 1DLC 5 22.8 22.5618 0.2382 1.0 0.00

24 1DNP 5 22.8 23.1044 0.3044 1.3 1.70

25 1DP7 5 22.8 22.7786 0.0214 0.1 2.10

26 1CQX 6 26.6 26.2583 0.3417 1.3 0.00

27 1CSH 6 26.6 26.9157 0.3157 1.2 1.85

28 1HM6 6 26.6 7.1461 18.8539 26.3 0.00

29 1MW8 6 26.6 26.2419 0.3581 1.3 0.00

30 1O6L 6 26.6 26.6271 0.0271 0.1 6.00

31 1DJX 7 30.4 30.7842 0.3842 1.3 3.85

32 1E5Q 7 30.4 30.5342 0.1342 0.4 4.65

33 1FFV 7 30.4 30.0703 0.3297 1.1 2.50

34 1H99 7 30.4 30.1897 0.2103 0.7 0.00

35 1IRX 7 30.4 30.7213 0.3213 1.1 6.00

36 1O6L 8 34.2 34.6762 0.4762 1.4 6.00

37 1QVR 8 34.2 34.2838 0.0838 0.2 0.60

38 1S0V 8 34.2 34.2505 0.0505 0.1 0.95

39 1TAU 8 34.2 34.3267 0.1267 0.4 0.70

40 1U09 8 34.2 34.1468 0.0532 0.2 2.05

41 1D6M 9 38.0 38.1574 0.1574 0.4 1.00

42 1FUR 9 38.0 38.3249 0.3249 0.9 2.85

43 1H32 9 38.0 38.1491 0.1491 0.4 0.70

44 1QPC 9 38.0 37.9111 0.0889 0.2 0.00

45 1SU8 9 38.0 37.9337 0.0663 0.2 0.65

46 1QRT 10 41.8 41.7369 0.0631 0.2 0.75

47 1R1H 10 41.8 41.3131 0.4869 1.2 0.00
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TABLE 1 Continued

No ID AA Expected Measured Diff RelErr DP ε

48 1RJB 10 41.8 41.8528 0.0528 0.1 1.00

49 1XO0 10 41.8 41.8814 0.0814 0.2 1.05

50 2B63 10 41.8 41.4589 0.3411 0.8 4.60

The fifty tested cases were sorted by the length of the loop, ranging from 1 to 10 amino

acids. Almost all the 50 test cases appear to have an error within 0.5 Å (column 6

of Table 1). As an example, the loop in 1DU0 (row 15 of Table 1) has three amino

acids and the expected length of the loop is 15.2 Å. The measured length of the loop

along the skeleton using our method is 14.99 Å. The relative error is 1.4% of the

expected loop length. The simplified curve (blue in Figure 5 B and D) detected by

the algorithm appears to be close to the skeleton points (red dots). Another example

is from 1MW8 (Figure 5 C, D, row 29 of Table 1) with six amino acids on the loop.

The error of the measurement is 0.358 Å in this case (column 6 of row 29, Table

1). Note that even when the skeleton points branch into multiple directions (Figure

5 D), the algorithm correctly measured the length between the two ending points

of the helices by using Hausdorff measurements (see skeletonSegmentationSelection).

In some cases, as in rows 18 and 28 in Table 1, the configuration of the detected

helices and skeleton causes the greedy step in the Hausdorff computation to break

down and we use the wrong skeleton segment to model the loop length.
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TABLE 2: Accuracy of loop length estimation via grayscale skeletonization in the
real data set.

No ID AA Expected Measured Diff RelErr DP ε
1 5030 1 7.6 9.5128 1.9128 25.2 6.00
2 5138 1 7.6 8.2690 0.6690 8.8 6.00
3 5138 2 11.4 11.5490 0.1490 1.3 2.35
4 1733 3 15.2 14.3661 0.8339 5.5 4.05
5 1733 3 15.2 15.0790 0.1210 0.8 3.80
6 5001 3 15.2 11.1189 4.0811 26.8 0.00
7 5001 3 15.2 12.5132 2.6868 17.7 0.00
8 5001 3 15.2 15.6095 0.4095 2.7 2.35
9 5030 3 15.2 15.3747 0.1747 1.1 6.00
10 5030 3 15.2 14.6116 0.5884 3.9 1.75
11 5030 3 15.2 15.1321 0.0679 0.4 3.50
12 5138 3 15.2 14.2916 0.9084 6.0 5.30
13 1733 4 19.0 18.2477 0.7523 4.0 0.00
14 5001 4 19.0 19.1872 0.1872 1.0 6.00
15 5168 4 19.0 21.8790 2.8790 15.2 6.00
16 1740 5 22.8 26.4127 3.6127 15.8 6.00
17 1740 6 26.6 29.3993 2.7993 10.5 6.00
18 5168 6 26.6 22.4231 4.1769 15.7 0.00

The test using the experimentally derived density data involves 18 HLH motifs

from density maps with 4-7 Å resolution from EMDB. 12 of the 18 cases have mea-

sured error within 2 Å, and 6 have error between 2 Å and 5 Å. The real density

maps from the experiments are often more challenging with missing density and ad-

ditional densities that do not align with the true structure. The helices and skeletons

detected from the real maps are therefore often less accurate than those from the

simulated density maps. Figure 6 shows an example of experimentally derived data

in EMDB 5168 (row 15 in Table 2). Its relative error is 15.2%, higher than a compa-

rable case with a synthetic density map used instead. In general, we saw an increase

in error using the real density images, due to greater errors in helix detection and

skeletonization induced by the noise present.

The algorithm uses a simplification parameter ε that is user defined. ε is the width
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FIG. 6: Detected simplified curve for a loop in an experimentally derived CryoEM
image (EMDB 5168). The color scheme is the same as that in Figure 5.

of the vertex removal band (refer to §2.1.5 more details). In general, the smaller the

ε value, the less change in the simplified curve compared to the initial path. In some

cases ε = 0 and no simplification was needed; in other cases a much larger value was

needed. In order to see the degree of simplification that produced the most accurate

results, we sampled ε’s range inside the interval [0,6] in increments of 0.05. The mea-

sured lengths w.r.t. ε values appear to form a step function, and the value closest to

the expected value (Figure 7 left) was marked. As seen from this case, the measured

length reduces as ε increases stepwise, and since the expected length falls between

two steps, the lesser of the two distances a and b is chosen for the best estimate.

FIG. 7: The Douglas-Peucker ε step function. (Left) The ε step function for case
21 in Table 1 (PDB 1D8L), with the value of ε used for the best estimate. (Right)
Distribution of the best ε in the simulated data set of 800 loops. The vertical lines
show the values that are listed in Table 1.
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Figure 7 (right) shows the distribution of the values of ε for about 800 simulated

cases that had less than 0.5 Å difference. The function bounding the shaded region

represents the amount of cases using a particular value of ε to obtain an estimate,

and the vertical lines represent values of ε for cases in Table 1. It appears that most

of the ε values are between 0.0 and 1.5 to minimize the error in the measurement

(Figure 7, right). However, we observed larger ε values for the experimentally derived

data than for the simulated density maps. This difference is likely associated with

the quality of the skeleton and helix detection. For the simulated cases, ε between

0.0 and 1.5 is more likely to produce a good estimate given good preprocessing of the

density maps, as observed from the skew of the function and vertical lines in Figure

7 (right).

2.2.2 CONCLUSIONS

We have developed a new approach to estimate loop length along the skeleton from

a CryoEM density map. Our tests, using both simulated and experimentally derived

images at medium resolution, show that it is possible for our proposed method to

estimate fairly accurately the loop length along the skeleton if the SSEs and skeleton

are detected fairly accurately.



16

CHAPTER 3

ESTIMATION OF LOOP LENGTH BOUNDS VIA

ISO-CONTOUR ROADMAPS

There are several limitations with our previous approach, both theoretical and

practical. First, by constraining our pathfinding to the skeleton of an density map,

we dramatically reduce the size of our search space. A protein loop may twist around

in the general areas of high electron density as encoded in the image–the skeleton

represents one of many possible such paths. By creating a motion planning roadmap

containing all locations within an iso-contour of a density map, we are able to try

many different paths. We also avoid the need for input parameters to control skele-

tonization and curve simplification, working directly with the density map values in

exchange for a single parameter to construct the iso-contours.

3.1 ALGORITHM

A grayscale image IG is provided as input, and an iso-contour Cτ is extracted using

a particular threshold τ . The other input, a pair of detected helices H := {h1, h2} in

the form of piecewise linear curves, provides endpoints for the path to draw through

Cτ . The Hausdorff distance is again used to resolve segmentation in Cτ and choose the

correct endpoints from h1 and h2. A fully-connected graph G of the voxels interior

to the contour is constructed, and edges in this graph that intersect Cτ are removed

to derive a new graph Ĝ representing all possible positions for a path within Cτ . The

process is summarized in Figure 8.

3.1.1 EXTRACTING ISO-CONTOURS FROM GRAYSCALE IMAGES

With a given grayscale image IG (Figure 9 A shows a 2D example) and iso-contour

threshold τ , a binary image IBτ is created by visiting each voxel IG(x,y,z) in IG and

comparing its value v(IG(x,y,z)) to τ to set the value of the corresponding voxel in

IBτ to either 0 or 1, summarized in Equation 3. Figure 9 B shows the binary image
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FIG. 8: The overall process of iso-contour extraction, roadmap construction and
pathfinding.

generated for τ = 30. Once IBτ is generated, the iso-contour polyhedron (polygon in

2D) is found by inserting simplices (lines in 2D, triangles in 3D) between each pair of

adjacent voxels in IBτ with opposite values. Figure 9 C shows the resulting contour

Cτ extracted from IG with τ = 30.

v(IB(x,y,z), τ) =

{
1 : v(IG(x,y,z)) ≥ τ

0 : v(IG(x,y,z)) < τ
(3)

The surface where a pair of adjacent voxels touch is a square, but we want to

define Cτ with a set of triangles to satisfy the requirement of CGAL’s intersection

routine. We simply subdivide each such square into two triangles as in Figure 10

A and B. The union of all such triangles roughly approximates the partition of the

space in IG with values < τ ; in future work a marching cubes algorithm would be

better suited to extract Cτ . Figure 11 shows nine contours from a synthetic density

map generated from a loop portion of the protein structure 1FUR in PDB, with the

percentage of voxels discarded during conversion to binary images (refer to §3.2).
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FIG. 9: A grayscale image with assigned values (A); the binary image extracted
using τ = 30 (B); the edges that comprise the iso-contour, surrounding the binary
voxels with 1 values (C).

FIG. 10: Splitting each intersection square (dark square in A) into triangles (B) to
define the iso-contour surface.

3.1.2 SEGMENTATION RESOLUTION

As seen in Figure 11, the binary image can become segmented at high threshold

values, producing multiple disconnected components. To decide which component

most likely represents the turn between a pair of helices, the directed Hausdorff

distance is used as in §2.1.3, using helix endpoints and Cτ ’s interior voxels. Again,

we have two pairs of helices for a total of four possible pairs of path endpoints, and

we must simultaneously choose the correct segmented image component along with

the correct helix endpoint pair. The selected segment of the contour is henceforth

referred to as Cτ for simplicity.
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FIG. 11: Contours from the density map synthetically generated from a portion
of the structure 1FUR in PDB corresponding to a nine residue loop between two
consecutive helices in the sequence. The percentage below each contour represents
the range of grayscale values discarded during binary conversion–10% means the
lowest 10% of grayscale values were discarded and 90% means only the top 10% of
grayscale-valued voxels were converted into binary voxels of value 1.

3.1.3 CONSTRUCTING ROADMAPS OF INTERIOR VOXELS

We construct a graph of the voxels interior to the contour Cτ representing all

possible locations a path could take using an interior voxel. First, a fully connected

graph G of all voxels in IBτ is constructed, and each edge in G that intersects a facet

in Cτ is removed. The resulting graph, Ĝ, represents the set of segments that can be

used to construct a path lying completely within Cτ .

Euclidean-Weighted Roadmaps

Taking the edges from Ĝ, we construct a roadmap GE with each edge’s weight as

the Euclidean distance between its endpoints e1 and e2, with the well-known formula

wE(e1e2) =
√

(xe1 − xe2)2 + (ye1 − ye2)2 + (ze1 − ze2)2. (4)

By finding the shortest path through this Euclidean-weighted graph, we estimate the

minimum feasible length of a protein turn through a particular density iso-contour.
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Intensity-Weighted Roadmaps

In addition to searching through a solution space with a purely Euclidean metric,

we can also weight each edge using the grayscale values of the voxels in IG. Similar

to the approach in [33] where intensity values are used to produce a modified mini-

mal spanning tree, we generate an intensity-weighted roadmap GI , using the weight

formula

wI(e1e2) =
wE(e1e2)

2I(e1)I(e2)
, (5)

where

I(IB(x,y,z)) = v(IG(x,y,z)), (6)

the grayscale value at voxel (x, y, z) in IG. Many density images have real-valued

intensities (in R), weighting some edges in GI negatively with Equation 8. Because

Dijkstra’s algorithm is used to search through GI , all the values must be translated

into the positive reals (R+) by searching for the minimum intensity dmin in IG and

applying Equation 7 to each voxel to derive a positive-valued image I+G :

v(I+G (x,y,z)) = v(IG(x,y,z)) + |dmin| (7)

3.1.4 SHORTEST-PATH SEARCHES

The goal of this approach is to estimate the minimum feasible length a protein

turn could take between two helix endpoints using the grayscale information in its

density map. Therefore, we use Dijkstra’s algorithm to search for the shortest path

in an iso-contour roadmap to represent this minimum estimate, with paths computed

from GE and GI denoted PE and PI , respectively. Figure 12 shows the difference

between PE and PI as computed from a contour in PDB 1FUR’s density map (see

Figure 11, 70%).

Each path is computed starting at one helix endpoint chosen in §3.1.2 and ending

at the other. However, these endpoints rarely overlap with any voxels inside Cτ , as its

voxels are only adjacent to intersections of the cubic lattice described in the density

image (see Appendix A). Therefore, to obtain the start and end vertices in Ĝ for

shortest path computation, we find the closest vertex to each helix endpoint w.r.t.

Euclidean distance. In the case of intensity-weighting, the closest voxel to a helix

endpoint en is found using a formula similar to Equation 8:

wI(e1e2) =
wE(e1e2)

2I(e1)
, (8)
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FIG. 12: Euclidean-weighted (blue) and intensity-weighted (green) shortest paths
through an iso-contour’s (yellow) non-intersecting interior voxel graph. Part A shows
an off axis view; B, C and D respectively show views from the x-y, x-z and y-z
perspectives.

where e1 is a voxel in GI being tested for the closeness to the helix endpoint e2, which

is implicitly assigned an intensity value of 1.

3.1.5 COMPLEXITY

The inputs are IG, which has n voxels, and the two detected helices, with exactly

4 endpoints. Converting IG to IBτ requires visiting each voxel once and performing

a constant number of operations, specifically those outlined in Equation 3. Building

Cτ also requires a single traversal of each voxel with a constant number of compar-

isons: one for each neighboring voxel cube–6 in total–constructing a surface with

O(n) facets. To resolve segmentation in Cτ , the directed Hausdorff computation re-

quires quadratic time in the number of voxels in each set. However, we know that

one set holds exactly two voxels for the helix endpoint pair and the other contains

those present within a contour segment. Therefore computing dh(A,B) requires only

linear time w.r.t. the amount of contour segment voxels, which is O(n). Building G
requires a quadratic amount of operations to fully connect the set of voxels. Deriving

Ĝ requires constructing an axis-aligned bounding box (AABB) tree [34] of Cτ ’s O(n)

facets–doable in O(n log n) time–and testing each edge in G for intersection, merely



22

TABLE 3: Roadmap based algorithm with time complexities, receiving as input a
grayscale image IG and pair of helices H. All steps consider the number n of voxels
within Cτ .

minimalPath(IG, H) f(n) c n0

1) Convert IG to IBτ Θ(n) – –
2) Extract Cτ Θ(n) – –
3) Choose segment and endpoints O(n) 0.6 ×10−3 150
4) Connect G’s vertices Θ(n2) 1.0×10−4 80
6) Compute Cτ ∩ G Θ(n2) 0.2 ×10−3 50
7) Dijkstra’s algorithm O(n4) 0.2 ×10−8 100

linear time w.r.t. ||Cτ ||. However, because we must search over all Θ(n2) edges in G,

the entire intersection detection step grows quadratically with respect to the number

of interior voxels. Searching Gi for the minimal path with Dijkstra’s algorithm re-

quires quadratic time w.r.t. the number of edges in Gi [35], which, because we have

O(n2) edges in Ĝ, is quartic with respect to n. Although technically ||Gi|| = O(n2),

for turns longer than two or three residues the number of nonintersecting edges is far

from n2. Table 3 summarizes the complexities of the major steps along with their

complexity constants.

The experiment was performed using an Intel i5 1.7 GHz dual-core processor with

4 GB of 1333 MHz DDR3 RAM. Figure 13 shows the runtimes from the experiment

for the cases in Table 5, and Figure 14 shows the runtimes proportional to the

expected complexity functions to determine the constants for each operation. Table

3 includes the approximate values for the complexity constant c and voxel amount

n0 where the runtime growth becomes bounded by the theoretical asymptote.
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FIG. 13: Runtimes for the graph construction (A), segmentation resolution (B),
intersection detection (C) and pathfinding (D) phases of the algorithm.
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FIG. 14: Experimental runtime proportional to the expected complexity function of
each algorithm phase as outlined in Table 3. Labels are identical to those in Figure
13.
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3.2 EXPERIMENTAL DESIGN

The test set was adapted from that described in §2.2, by extracting the data

from the PDB structure files pertaining only to loop residues in each HLH motif.

Density maps were similarly generated for the extracted structure elements at 8 Å,

and the same detected helices were used for the basic evaluation of the algorithm.

The maximum (dmax) and minimum (dmin) density values for each map were gathered

and nine equidistant values for τ in [dmin, dmax] were used to extract a series of iso-

contours. The shortest paths PE and PI were then calculated for each contour.

3.2.1 RESULTS

Our goal is to search for an estimate on the minimum feasible length of a given

protein loop’s density image. With the exception of two test cases, every estimate

is shorter than the expected length of the test case. As expected, the length of PE

decreases as τ increases (extracting narrower contours from IG). ||PI || seems to be

more sensitive to changes in τ , but approaches ||PE|| as τ → 1. Figure 15 shows

PE and PI for each Cτ for τ ∈ [0.1, 0.9]. and Table 4 displays the corresponding

empirical data.

Tables 5 and 6 show the relative errors of PE and PI (respectively) for each con-

tour extracted from each test case, and Figure allContourRelativeErrorGraph shows

the results in graphical format. In general, the error tends to decrease as τ increases

to a certain point, and in many cases, especially where segmentation is present, may

slightly increase as τ → 1. An important observation is that we are searching for

a minimum bound, and nearly all reported errors are negative values, meaning the

measurements are shorter than the true length. The only exceptional cases are for

very short turns with only a single residue, where even small errors in helix de-

tection greatly reduce the accuracy of the measurements in terms of relative error.

See §3.2.2 for a more in-depth treatment of helix detection error and its effect on

measurements. For subsequent tests, we use τ = 0.7 to extract contours. A more so-

phisticated approach to automatically determining the optimal value for τ , perhaps

using segmentation information, is desirable and a possible goal in future work.
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TABLE 4: Accuracies of PE and PI (corresponding to the superscripts in the column
headers) for a 9 residue turn in PDB 1FUR. τ is the normalized threshold used to
obtain Cτ . Diff and RelErr are calculated as in §2.2.1, assuming an expected loop
length l = 3.8Å ∗ (1+AA). For this table, l = 3.8Å ∗ (1 + 9) = 38.0Å.

τ MeasuredE DiffE RelErrE MeasuredI DiffI RelErrI

0.1 24.152203 -13.847797 -36.441571 24.942386 -13.057614 -34.362142
0.2 24.257274 -13.742726 -36.165068 25.371037 -12.628963 -33.234113
0.3 25.797116 -12.202884 -32.112852 27.445488 -10.554512 -27.775031
0.4 26.365347 -11.634653 -30.617507 28.691454 -9.308546 -24.496175
0.5 26.86568 -11.13432 -29.300843 29.7043 -8.2957 -21.83079
0.6 28.321766 -9.678234 -25.469038 30.402267 -7.597733 -19.994034
0.7 28.650608 -9.349392 -24.603662 32.282134 -5.717866 -15.047015
0.8 29.056169 -8.943831 -23.536397 31.817974 -6.182026 -16.268489
0.9 25.319426 -12.680574 -33.369932 25.319426 -12.680574 -33.369932

FIG. 15: Euclidean-weighted (blue) and intensity-weighted (green) paths connecting
detected helices (red) through the iso-contours (yellow) from Figure 11.
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FIG. 16: Relative error plotted against the iso-contour thresholds for each test case
in Tables 5 (top) and 6 (bottom). In both cases, τ = 0.7 seems to produce the best
results in terms of relative error.
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TABLE 5: Relative errors of PE for contours with τ ∈ [0.1, 0.9] ID is the PDB

identifier the test case comes from, AA is the number of residues in the turn, used

to calculate the expected length as described in Table 4. Columns headings 0.1, 0.2,

et cetera are values of τ used to extract Cτ and the column data are the resulting

relative errors as percentages.

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1ARO 1 7.6 -11.30 -13.54 -7.11 -11.45 -4.48 -0.06 -6.84 -6.84 -0.11

1B0B 1 7.6 -2.89 -2.89 1.20 -10.73 -4.63 -10.05 -4.65 -4.65 7.81

1BGP 1 7.6 6.57 7.52 4.96 5.24 1.77 -2.93 -2.93 -2.93 11.45

1BQB 1 7.6 -4.01 -4.01 -4.01 -12.73 -12.73 -12.73 -12.28 -12.28 -1.19

1GUX 1 7.6 -41.39 -41.39 -41.39 -50.23 -52.74 -55.54 -59.75 -59.75 -45.52

1B43 2 11.4 -52.39 -55.29 -55.29 -52.63 -51.22 -50.87 -57.06 -57.06 -52.66

1B89 2 11.4 -26.23 -29.00 -25.37 -21.50 -21.50 -14.42 -23.17 -23.17 -8.88

1BD8 2 11.4 -42.34 -42.34 -46.14 -40.75 -46.14 -32.48 -41.81 -41.81 -39.47

1BPY 2 11.4 -43.13 -43.13 -43.24 -43.60 -38.19 -44.39 -41.19 -41.19 -36.47

1BR1 2 11.4 -47.04 -49.34 -49.34 -46.71 -47.89 -47.89 -45.10 -45.10 -43.13

1DU0 3 15.2 -5.75 -14.26 -16.32 -20.68 -8.37 -13.48 -8.93 -8.93 -5.11

1FJL 3 15.2 -33.85 -33.85 -33.85 -34.00 -38.11 -29.00 -34.14 -34.14 -31.00

1FK5 3 15.2 -43.00 -43.00 -43.00 -43.00 -43.00 -43.00 -42.38 -42.38 -38.61

1FUR 3 15.2 -44.05 -36.62 -36.62 -38.78 -38.78 -39.55 -34.62 -34.62 -36.22

.
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TABLE 5 Continued

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1H0M 3 15.2 -44.04 -47.54 -46.77 -47.41 -47.80 -46.13 -44.80 -44.80 -36.35

1A87 4 19 -44.56 -42.82 -43.13 -27.47 -34.77 -31.23 -30.18 -30.18 -33.56

1AIH 4 19 -48.93 -48.93 -48.93 -52.76 -53.01 -49.88 -49.62 -49.62 -38.62

1AJ8 4 19 -74.57 -74.57 -74.57 -72.56 -74.14 -69.32 -67.33 -67.33 -57.12

1BMT 4 19 -54.98 -49.57 -46.85 -44.46 -43.60 -42.74 -44.01 -44.01 -42.46

1BOU 4 19 -55.77 -50.00 -54.35 -45.35 -38.35 -54.03 -35.88 -35.88 -25.32

1D8L 5 22.8 -59.45 -60.86 -48.52 -44.01 -34.95 -35.13 -27.96 -27.96 -26.69

1DI1 5 22.8 -43.73 -38.38 -35.48 -35.52 -30.08 -32.35 -32.80 -32.80 -23.63

1DLC 5 22.8 -46.06 -43.90 -46.42 -44.69 -45.26 -33.26 -41.84 -41.84 -25.01

1DNP 5 22.8 -50.30 -46.91 -50.17 -44.18 -46.56 -42.86 -42.41 -42.41 -37.47

1DP7 5 22.8 -23.72 -25.82 -25.04 -25.48 -22.80 -22.57 -19.18 -19.18 -19.65

1CQX 6 26.6 -37.78 -37.78 -30.74 -33.49 -32.36 -31.84 -28.05 -28.05 -33.53

1CSH 6 26.6 -40.64 -37.29 -37.38 -27.70 -29.47 -24.74 -23.72 -23.72 -34.32

1HM6 6 26.6 -74.82 -72.68 -71.55 -68.46 -58.26 -52.51 -54.22 -54.22 -42.51

1MW8 6 26.6 -27.24 -22.81 -15.12 -15.54 -16.16 -9.87 -16.19 -16.19 -13.46

1O6L 6 26.6 -40.32 -32.99 -31.89 -32.75 -29.90 -25.76 -20.54 -20.54 -41.36

1DJX 7 30.4 -69.33 -61.90 -53.03 -46.07 -39.33 -38.37 -32.02 -32.02 -43.56

1E5Q 7 30.4 -49.78 -49.85 -49.56 -48.21 -41.62 -40.44 -35.13 -35.13 -44.45

1FFV 7 30.4 -45.74 -43.56 -45.23 -38.77 -36.14 -37.63 -33.04 -33.04 -43.11

.
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TABLE 5 Continued

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1H99 7 30.4 -37.98 -37.93 -35.28 -35.03 -32.90 -33.46 -35.68 -35.68 -41.38

1IRX 7 30.4 -43.11 -35.55 -39.58 -34.97 -41.06 -26.39 -32.21 -32.21 -27.81

1O6L 8 34.2 -31.40 -28.92 -30.13 -28.25 -27.99 -24.42 -22.85 -22.85 -24.59

1QVR 8 34.2 -34.35 -26.53 -26.57 -22.17 -23.25 -19.78 -24.09 -24.09 -24.71

1S0V 8 34.2 -63.53 -57.86 -47.26 -40.88 -34.39 -28.37 -26.87 -26.87 -58.23

1TAU 8 34.2 -45.30 -43.00 -37.66 -38.62 -34.01 -34.40 -30.30 -30.30 -27.31

1U09 8 34.2 -20.40 -18.45 -17.85 -18.94 -19.46 -20.48 -18.32 -18.32 -21.12

1D6M 9 38 -47.96 -47.59 -47.00 -44.79 -45.04 -39.80 -35.93 -35.93 -47.54

1FUR 9 38 -36.44 -36.17 -32.11 -30.62 -29.30 -25.47 -24.60 -24.60 -33.37

1H32 9 38 -53.32 -50.70 -49.07 -47.60 -43.89 -42.62 -38.62 -38.62 -33.29

1QPC 9 38 -38.93 -41.10 -40.56 -39.23 -38.31 -34.19 -31.80 -31.80 -32.65

1QRT 10 41.8 -60.04 -59.91 -52.38 -57.57 -64.13 -62.30 -41.71 -41.71 -67.31

1RJB 10 41.8 -34.69 -33.21 -31.07 -31.20 -30.92 -28.40 -25.78 -25.78 -27.42

1XO0 10 41.8 -30.07 -28.38 -25.22 -29.85 -27.31 -24.70 -26.57 -26.57 -31.70

2B63 10 41.8 -38.84 -37.44 -34.88 -37.53 -36.15 -30.59 -26.08 -26.08 -37.47
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TABLE 6: Relative errors of PI for contours with τ ∈ [0.1, 0.9]. All columns are the

same as in Table 5.

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1ARO 1 7.6 -11.30 -13.54 -7.11 -11.45 -4.48 -0.06 -6.84 -6.84 -0.11

1B0B 1 7.6 -2.89 -2.89 1.20 -10.73 -4.63 -10.05 -4.65 -4.65 7.81

1BGP 1 7.6 6.57 7.52 4.96 5.24 1.77 -2.93 -2.93 -2.93 11.45

1BQB 1 7.6 -4.01 -4.01 -4.01 -12.73 -12.73 -12.73 -12.28 -12.28 -1.19

1GUX 1 7.6 -41.39 -41.39 -41.39 -50.23 -52.74 -55.54 -59.75 -59.75 -45.52

1B43 2 11.4 -52.39 -55.29 -55.29 -52.63 -51.22 -50.87 -57.06 -57.06 -52.66

1B89 2 11.4 -26.23 -29.00 -25.37 -21.50 -21.50 -14.42 -23.17 -23.17 -8.88

1BD8 2 11.4 -42.34 -42.34 -46.14 -40.75 -46.14 -32.48 -41.81 -41.81 -39.47

1BPY 2 11.4 -43.13 -43.13 -43.24 -43.60 -38.19 -44.39 -41.19 -41.19 -36.47

1BR1 2 11.4 -47.04 -49.34 -49.34 -46.71 -47.89 -47.89 -45.10 -45.10 -43.13

1DU0 3 15.2 -5.75 -14.26 -16.32 -20.68 -8.37 -13.48 -8.93 -8.93 -5.11

1FJL 3 15.2 -33.85 -33.85 -33.85 -34.00 -38.11 -29.00 -34.14 -34.14 -31.00

1FK5 3 15.2 -43.00 -43.00 -43.00 -43.00 -43.00 -43.00 -42.38 -42.38 -38.61

1FUR 3 15.2 -44.05 -36.62 -36.62 -38.78 -38.78 -39.55 -34.62 -34.62 -36.22

1H0M 3 15.2 -44.04 -47.54 -46.77 -47.41 -47.80 -46.13 -44.80 -44.80 -36.35

1A87 4 19 -44.56 -42.82 -43.13 -27.47 -34.77 -31.23 -30.18 -30.18 -33.56

1AIH 4 19 -48.93 -48.93 -48.93 -52.76 -53.01 -49.88 -49.62 -49.62 -38.62

.
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TABLE 6 Continued

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1AJ8 4 19 -74.57 -74.57 -74.57 -72.56 -74.14 -69.32 -67.33 -67.33 -57.12

1BMT 4 19 -54.98 -49.57 -46.85 -44.46 -43.60 -42.74 -44.01 -44.01 -42.46

1BOU 4 19 -55.77 -50.00 -54.35 -45.35 -38.35 -54.03 -35.88 -35.88 -25.32

1D8L 5 22.8 -59.45 -60.86 -48.52 -44.01 -34.95 -35.13 -27.96 -27.96 -26.69

1DI1 5 22.8 -43.73 -38.38 -35.48 -35.52 -30.08 -32.35 -32.80 -32.80 -23.63

1DLC 5 22.8 -46.06 -43.90 -46.42 -44.69 -45.26 -33.26 -41.84 -41.84 -25.01

1DNP 5 22.8 -50.30 -46.91 -50.17 -44.18 -46.56 -42.86 -42.41 -42.41 -37.47

1DP7 5 22.8 -23.72 -25.82 -25.04 -25.48 -22.80 -22.57 -19.18 -19.18 -19.65

1CQX 6 26.6 -37.78 -37.78 -30.74 -33.49 -32.36 -31.84 -28.05 -28.05 -33.53

1CSH 6 26.6 -40.64 -37.29 -37.38 -27.70 -29.47 -24.74 -23.72 -23.72 -34.32

1HM6 6 26.6 -74.82 -72.68 -71.55 -68.46 -58.26 -52.51 -54.22 -54.22 -42.51

1MW8 6 26.6 -27.24 -22.81 -15.12 -15.54 -16.16 -9.87 -16.19 -16.19 -13.46

1O6L 6 26.6 -40.32 -32.99 -31.89 -32.75 -29.90 -25.76 -20.54 -20.54 -41.36

1DJX 7 30.4 -69.33 -61.90 -53.03 -46.07 -39.33 -38.37 -32.02 -32.02 -43.56

1E5Q 7 30.4 -49.78 -49.85 -49.56 -48.21 -41.62 -40.44 -35.13 -35.13 -44.45

1FFV 7 30.4 -45.74 -43.56 -45.23 -38.77 -36.14 -37.63 -33.04 -33.04 -43.11

1H99 7 30.4 -37.98 -37.93 -35.28 -35.03 -32.90 -33.46 -35.68 -35.68 -41.38

1IRX 7 30.4 -43.11 -35.55 -39.58 -34.97 -41.06 -26.39 -32.21 -32.21 -27.81

1O6L 8 34.2 -31.40 -28.92 -30.13 -28.25 -27.99 -24.42 -22.85 -22.85 -24.59

.
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TABLE 6 Continued

ID AA Expected 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1QVR 8 34.2 -34.35 -26.53 -26.57 -22.17 -23.25 -19.78 -24.09 -24.09 -24.71

1S0V 8 34.2 -63.53 -57.86 -47.26 -40.88 -34.39 -28.37 -26.87 -26.87 -58.23

1TAU 8 34.2 -45.30 -43.00 -37.66 -38.62 -34.01 -34.40 -30.30 -30.30 -27.31

1U09 8 34.2 -20.40 -18.45 -17.85 -18.94 -19.46 -20.48 -18.32 -18.32 -21.12

1D6M 9 38 -47.96 -47.59 -47.00 -44.79 -45.04 -39.80 -35.93 -35.93 -47.54

1FUR 9 38 -36.44 -36.17 -32.11 -30.62 -29.30 -25.47 -24.60 -24.60 -33.37

1H32 9 38 -53.32 -50.70 -49.07 -47.60 -43.89 -42.62 -38.62 -38.62 -33.29

1QPC 9 38 -38.93 -41.10 -40.56 -39.23 -38.31 -34.19 -31.80 -31.80 -32.65

1QRT 10 41.8 -60.04 -59.91 -52.38 -57.57 -64.13 -62.30 -41.71 -41.71 -67.31

1RJB 10 41.8 -34.69 -33.21 -31.07 -31.20 -30.92 -28.40 -25.78 -25.78 -27.42

1XO0 10 41.8 -30.07 -28.38 -25.22 -29.85 -27.31 -24.70 -26.57 -26.57 -31.70

2B63 10 41.8 -38.84 -37.44 -34.88 -37.53 -36.15 -30.59 -26.08 -26.08 -37.47
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3.2.2 BENCHMARKS

Several sources of error exist throughout the approach: noise may be present in

the density image and helices may not be perfectly detected. In order to understand

the error induced only by the roadmap approach, we isolate the two former sources of

error by generating a series of benchmarks for each. EMAN [32] was used to generate

specified amounts of noise in the existing density maps–we generated images with

5, 10, 15 and 20% flat-band noise levels as seen in Figure 17, denoted I(0.05)G , I(0.1)G ,

I(0.15)G and I(0.2)G (which generate iso-contours denoted C(0.05)τ et cetera). The contour

with τ = 0.7×(dmax−dmin) (throwing out the lowest 70% of grayscale valued voxels)

was extracted from each noisy map for testing. For the ranges of noise tested (up

FIG. 17: Increasing levels of artificial flat-band noise applied to the density image
generated from an 8 residue turn in PDB 1O6L. The helices are in red and PE in
blue, with Cτ=0.7 in gray. Part A is the synthetically generated map from the PDB
structure; B, C, D and E are I(0.05)G , I(0.1)G , I(0.15)G and I(0.2)G respectively.

to 20%), no drastic change was observed in the length estimates. Figure 18 shows

a typical result, with overall relative error changing at mostly the same rate as the

noise level increases, in some cases improving. The actual paths drawn can be seen in

Figure 17. The deletion of voxels within regions usually without holes in Cτ creates

a highly segmented contour. In some cases with higher noise, C(0.2)τ is so segmented

that Ĝ contains no non-intersecting edges. The solution reduces to finding the single

segmented voxel with a minimum Hausdorff distance as found in §3.1.2, and drawing

a curve containing only the voxel and the two helix endpoints. In future work, a more

elegant way to use multiple segmentations would be more appropriate to maximize

use of image data.
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FIG. 18: Absolute relative error (left y-axis) and noise level (right y-axis) of density
image for test case PDB 1O6L from Figure 17.

The detected helices were eroded by successively removing endpoints from the

piecewise linear curve representations until only a point remained (see Figure 19),

recording the detection specificity measure [26] for each erosion. By comparing the

marginal error in our algorithm to that of each benchmark set we can isolate the er-

ror introduced solely by our method. Helix benchmarking, like noise benchmarking,

uses contours with τ = 0.7× (dmax − dmin) Figure 20 shows the helix specificity for

each helix erosion plotted with the absolute value of the relative error of the resulting

estimate. As in the noise benchmarks, the marginal increase in relative error as helix

error increases is insignificant.



36

FIG. 19: Eroding detected helices (red lines) surrounding a 7 residue turn’s density
(gray region) in PDB 1H99, with specificities ranging from 82.8% (leftmost) to 10.3%
(rightmost) The blue and green lines represent the euclidean- and intensity-weighted
paths respectively.

3.2.3 CONCLUSIONS

Iso-contour roadmaps are a robust method of determining the minimum possible

length of a protein loop through a region of density in a cryoEM image. Most of

the results have a lower-than-expected estimate on length, as desired, and degrade

well in the presence of density noise and preprocessing error. Currently, by taking

estimates from a range of contours, the results could be interpreted as a range of

possible actual lengths for the protein loop. This presents another goal for future

work–to combine the information from several contours.
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FIG. 20: Absolute relative error (left y-axis) and helix specificity (right y-axis) for
the six helix erosions for the test case from PDB 1H99.
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CHAPTER 4

CONCLUSIONS

Chapter 2 introduces a robust method to estimate the actual length of a protein

loop and Chapter 3 proposes methods for placing bounds on a feasible estimate of that

length for a given density map. Both methods perform quite well under the controlled

experiments described. More analysis on the parameters for each algorithm should

help to push the processes towards full automation. Further work on iso-contour

roadmaps may provide new ways to formulate the desired estimates, by extending

the intensity-weighted approach and placing additional biological constraints on the

paths, such as bond angles and lengths.



39

BIBLIOGRAPHY

[1] Lawson C, et al.: EMDatabank.org: unified data resource for CryoEM.

Nucleic Acids Res 2011, 39(Database issue):D456–64.

[2] Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, Rossmann M: Structure

of Sputnik, a virophage, at 3.5-A resolution. Proc Nat Acad Sci USA 2012,

109:18431–18436.

[3] Zhang X, Ge P, Yu X, Brannanand J, Bi G, Zhang Q, Schein S, Zhou Z: Cryo-

EM structure of the mature dengue virus at 3.5-A resolution. Nat

Struct Mol Biol 2012, 20:105–110.

[4] Lu Y, Strauss C, He J: Incorporation of Constraints from Low Resolu-

tion Density Map in Ab Initio Structure Prediction Using Rosetta.

In Proceeding of 2007 IEEE international Conference on Bioinformatics and

Biomedicine Workshops 2007:67–73.

[5] Baker M, Jiang W, Wedemeyer W, Rixon F, Baker D, Chiu W: Ab initio

modeling of the herpes virus VP26 core domain assessed by CryoEM

density. PLoS Comput Biol 2006, 2(10):e146.

[6] Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A: Protein struc-

ture fitting and refinement guided by cryo-EM density. Structure 2008,

16(2):295–307.

[7] Topf M, Baker M, John B, Chiu W, Sali A: Structural characterization

of components of protein assemblies by comparative modeling and

electron cryo-microscopy. J Struct Biol 2005, 149(2):191–203.

[8] Lu Y, He J, Strauss C: Deriving topology and sequence alignment for

the helix skeleton in low-resolution protein density maps. J Bioinform

Comput Biol 2008, 6:183–201.

[9] DiMaio F, Tyka M, Baker M, Chiu W, Baker D: Refinement of Protein

Structures into Low-Resolution Density Maps Using Rosetta. Journal

of Molecular Biology 2009, 392:181–190.



40

[10] Nasr KA, Chen L, Si D, Ranjan D, Zubair M, He J: Building the Initial

Chain of the Proteins through De Novo Modeling of the Cryo-Electron

Microscopy Volume Data at the Medium Resolutions. ACM Conference

on Bioinformatics, Computational Biology and Biomedicine, Orlando, FL 2012.

[11] Nasr KA, Ranjan D, Zubair M, He J: Ranking valid topologies of the sec-

ondary structure elements using a constraint graph. J Bioinform Comput

Biol. 2011, 9(3):415–30.

[12] Lindert S, Staritzbichler R, Wotzel N, KarakaS M, Stewart P, Meiler J: EM-

fold: De novo folding of alpha-helical proteins guided by intermediate-

resolution electron microscopy density maps. Structure 2009, 17(7):990–

1003.

[13] Baker M, Abeysinghe S, Schuh S, Coleman R, Abrams A, Marsh M, Hryc C,

Ruths T, Chiu W, Ju T: Modeling protein structure at near atomic res-

olutions with Gorgon. Journal of Structural Biology 2011, 174(2):360–373.

[14] Jiang W, Baker M, Ludtke S, Chiu W: Bridging the information gap: com-

putational tools for intermediate resolution structure interpretation.

J Mol Biol 2001, 308(5):1033–44.

[15] Palu A, He J, Pontelli E, Lu Y: Identification of Alpha-Helices from Low

Resolution Protein Density Maps. In Proceeding of Computational Systems

Bioinformatics Conference (CSB) 2006:89–98.

[16] Baker M, Ju T, Chiu W: Identification of secondary structure elements

in intermediate-resolution density maps. Structure 2007, 15:7–19.

[17] Kong Y, Zhang X, Baker T, Ma J: A Structural-informatics approach for

tracing beta- sheets: building pseudo-C(alpha) traces for beta-strands

in intermediate- resolution density maps. J Mol Biol 2004, 339:117–30.

[18] Zeyun Y, Bajaj C: Computational Approaches for Automatic Structural

Analysis of Large Biomolecular Complexes. Computational Biology and

Bioinformatics, IEEE/ACM Transactions on 2008, 5(4):568–582.



41

[19] Si D, Ji S, Nasr K, He J: A machine learning approach for the identi-

fication of protein secondary structure elements from electron cryo-

microscopy density maps. Biopolymers 2012, 97(9):698–708.

[20] Ju T, Baker ML, Chiu W: Computing a family of skeletons of volumetric

models for shape description. Computer Aided Design 2007, 39(5):352–60.

[21] McGuffin L, Bryson K, Jones D: The PSIPRED protein structure predic-

tion server. Bioinformatics 2000, 16(4):404–5.

[22] Ward J, McGuffin L, Buxton B, Jones D: Secondary structure prediction

with support vector machines. Bioinformatics 2003, 19(13):1650–5.

[23] Pollastri G, McLysaght A: Porter: a new, accurate server for protein

secondary structure prediction. Bioinformatics 2005, 21(8):1719–20.

[24] Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction of

protein secondary structure in three and eight classes using recurrent

neural networks and profiles. Proteins 2002, 47(2):228–35.

[25] Abeysinghe S, Ju T: Shape modeling and matching in identifying protein

structure from low resolution images. In Proceedings of the 2007 ACM

symposium on Solid and physical modeling 2007.

[26] Biswas A, Si D, Nasr KA, Ranjan D, Zubair M, He J: Improved efficiency in

cryo-EM secondary structure topology determination from inaccurate

data. J Bioinform Comput Biol. 2012, 10(3):1242006–1–1242006–16.

[27] Wu Y, Chen M, Lu M, Wang Q, Ma J: Determining Protein Topology from

Skeletons of Secondary Structures. J Mol Biol 2005, 350:571–586.

[28] Sun W, He J: Native Secondary Structure Topology has Near Mini-

mum Contact Energy among All Possible Geometrically Constrained

Topologies. Proteins: Structure, Function and Bioinformatics 2009, 77:159–

73.

[29] Whitford D: Proteins: Structure and Function. Wiley 2005.



42

[30] Veltkamp RC: Shape Matching: Similarity Measures and Algorithms.

In Proceedings of the International Conference on Shape Modeling & Appli-

cations, SMI ’01, Washington, DC, USA: IEEE Computer Society 2001:188–,

[[http://dl.acm.org/citation.cfm?id=882486.884078]].

[31] Cormen T, Leierson C, Rivest R, Stein C: Introduction to Algorithms. MIT

Press, 3 edition 2009.

[32] Ludtke S, Baldwin P, Chiu W: EMAN: semiautomated software for high-

resolution single-particle reconstructions. J Struct Biol 1999, 128:82–97.

[33] Yuan X, Trachtenberg J, Potter S, Roysam B: MDL constrained 3-D

grayscale skeletonization algorithm for automated extraction of den-

drites and spines from fluorescence confocal images. Neuroinformatics

2009, 7(4):213–232.

[34] Cgal, Computational Geometry Algorithms Library.

[Http://www.cgal.org].

[35] Siek J, Lee L, Lumsdaine A: Boost Graph Library, The: User Guide and Ref-

erence Manual. C++ In-Depth Series, Addison-Wesley Professional, 1st edition

2001.

[36] Short J: Image Processing Software: MRC Laboratory of Molecular

Biology 2013, [[http://www2.mrc-lmb.cam.ac.uk/research/locally-developed-

software/image-processing-software/image]].

[37] Munkres J: Topology. Prentice Hall, 2 edition 1999.



43

APPENDIX A

MRC IMAGE FORMAT

One of the inputs to the algorithms is a 3D grayscale image. EMDB distributes

these images in the MRC format [36], and the synthetic test images were generated in

the same format using EMAN. Following is a brief explanation of the data structure.

The voxels are grouped hierarchically by slices (i), then rows (j), and finally

columns (k). The origin can be found by looking down on the first slice from above

and locating the bottom left voxel, marked as (Ox, Oy, Oz) with a black dot in Figure

21. The parameters xlen, ylen and zlen are provided in the MRC header and can

be used to find the dimensions of the image.

FIG. 21: The layout and addressing of voxels in an MRC image, including coordinate
orientation. The eight extremal voxels are shown with their addresses.
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Figure 22 shows how to derive the distance between voxels using MRC header

data detailing the dimensions of each voxel (mx,my and mz). For our purposes,

mx = my = mz and the distances between voxel centers (xlen
mx

, ylen
my

and zlen
mz

) are

always 1 Å.

MRC images are integer addressed, so the true location of each voxel must be

calculated to align the image with helices and draw the correct path. For a given

voxel (i, j, k) ∈ Z3, its actual location in R3 is:

(x, y, z) = (Ox + i ∗mx, Oy + j ∗my, Oz + k ∗mz), (9)

which, because mx = my = mz = 1, becomes

(x, y, z) = (Ox + i, Oy + j, Oz + k). (10)

FIG. 22: Relationship between size of MRC voxels and distances between them.
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APPENDIX B

HAUSDORFF DISTANCE

The Hausdorff distance is a geometrical relation between two sets of points that

utilizes the Euclidean norm to form a metric space [37]. It comes in an assymmetric

form, called the directed Hausdorff distance, defined for two sets of points A and B

as:

h(A,B) = max
a∈A

min
b∈B

d(Aa, Bb) (11)

and

h(B,A) = max
b∈B

min
a∈A

d(Aa, Bb). (12)

In general, h(A,B) 6= h(B,A); however, there is also a symmetric version, called the

undirected Hausdorff distance, defined as:

H(A,B) = H(B,A) = max {h(A,B), h(B,A)}. (13)

Figure 23 provides a simple example. On the left is depicted the computation of

h(A,B) and the right shows h(B,A). To find h(A,B), one visits each element

b ∈ B, recording the shortest distance to an element a ∈ A for each, and tak-

ing the maximum of all recorded distances. Likewise is done for h(B,A) on the

right, and H(A,B) = H(B,A) is simply the larger of the two results. In this case,

h(A,B) = H(A,B) = H(B,A).
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FIG. 23: A simple example of Hausdorff measurement between two sets of points A
and B. The short bars intersecting the distance arrows between set elements mark
the shortest distances for the inner minimizing function, and the circled bar marks
the maximum of the minima, defined as the directed Hausdorff distance.
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