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Abstract
We present an Adaptive Physics-Based Non-Rigid Regis-

tration (APBNRR) framework for warping pre-operative to

intra-operative brain Magnetic Resonance Images (MRI) of

patients who have undergone a tumor resection. The pro-

posed method, iteratively removes the tumor from a gradu-

ally warped segmented pre-operative image via an adaptively

changing biomechanical model which is necessary for deal-

ing with deformations like those induced by a tumor resec-

tion. We show that our scheme not only accurately captures

the deformations associated with the resection but also satis-

fies the time constraints imposed by the neurosurgical work-

flow. We evaluate the APBNRR framework on clinical vol-

ume MRI data and compare it with the publicly available

PBNRR method of ITK. In all the case studies, our method

achieves high accuracy and close to real-time performance.

Indeed, APBNRR reduces the alignment error up to 6.61 and

4.95 times compared to a rigid and the PBNRR registration,

respectively, while the execution time is less than 1 minute in

a Linux Dell workstation with 12 Intel Xeon 3.47GHz CPU

cores and 96 GB of RAM.

1. INTRODUCTION

Non-Rigid Registration between pre-operative MRI data

and the in-situ shape of the brain can compensate for brain de-

formation during Image-Guided Neurosurgery (IGNS). Non-

Rigid Registration (NRR) is a key enabling technology which

brings real-time information that the surgeon is otherwise un-

able to collect intra-operatively.

In [1, 13] it was demonstrated that a reasonably accurate

NRR of pre-operatively acquired MRI can be achieved well,

within the time constraints imposed by the neurosurgical pro-

cedure, using intra-operative data. Methods [1, 4, 7] compen-

sate for small brain deformations (shifts) caused mainly from

the cerebro spinal fluid (CSF) leakage, gravity, edema and

administration of osmotic diuretics. However, the complex

neurosurgical procedure of brain retraction or tumor resec-

tion, which invalidates the biomechanical model defined on

the pre-operative MRI and compromises the fidelity of the

IGNS, is not addressed. In this paper we focus in one of those

two challenges: the tumor resection.

In [8], the retraction and the resection were simulated to up-

date the pre-operative image to realistically reflect the brain

morphology in the Operating-Room (OR). A Finite Element

(FE) model was created and boundary conditions were ap-

plied to the retracted surfaces. Then, the elements that coin-

cided with the intra-operatively resected tissue were manually

deleted.

In [10], an adaptive FE multi-level grid registration method

which accommodates a superficial tumor resection was de-

veloped. This method evaluated only in 2D medical and

synthetic images. In [9], a robust Expectation-Maximization

(EM) framework was presented to simultaneously segment

and register a pair of 3D clinical images with partial or miss-

ing data. A MatLab implementation of this method required

30 min to register a pair of 64� 64� 64 volumes on a 2.8

GHz Linux machine.

In this paper, we augment the software implementation in [7]

and propose an Adaptive Physics-Based Non-Rigid Regis-

tration (APBNRR) framework to compensate for the brain

deformation induced by a tumor resection. The proposed

scheme removes automatically the tumor from a gradually

warped segmented pre-operative image, while an adaptive

biomechanical model deals with the complex brain deforma-

tions occurring during the resection. Our method is reason-

ably fast to satisfy the time constraints required by the neu-

rosurgical procedure. We introduce several parallel compo-

nents, thus we can register adult brain MRIs with resolution

250� 219� 176 voxels in less than 60 seconds. The evalu-

ation of our framework is based on 6 volume clinical cases

with : (i) brain shifts (2 cases), (ii) partial tumor resections

(2 cases) and (iii) complete tumor resections (2 cases). In all

the case studies, the APBNRR achieves higher accuracy com-

pared to the publicly available non-rigid registration method

PBNRR [7] of ITK1 and exhibits close to real-time perfor-

mance.

In the next section we will describe the proposed scheme that

manages the FE model adaptivity. A comprehensive descrip-

tion of the framework with an extensive evaluation on a larger

data set is available at [6].

1http://www.itk.org/
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Figure 1. The APBNRR framework [6]. The green, red and gray boxes represent the input, the new contributions and the

existing ITK modules, respectively. The red arrows show the execution order of the modules. Orange represents the output

warped pre-operative MRI.

2. METHOD

The APBNRR framework is built on the ITK open-source

system. Figure 1 illustrates the modules of the framework.

All parallel modules are developed with the POSIX thread li-

brary.

The basic idea of the APBNRR method is to iteratively es-

timate a dense deformation field that defines a transforma-

tion for every point in the intra-operative to the pre-operative

image. The estimation of the dense field is facilitated by a

heterogeneous (brain parenchyma, tumor) FE biomechanical

model of high quality tetrahedral elements. During the exe-

cution, the model deforms and adapts to the new brain mor-

phology induced by the tumor resection (Figure 1).

In each APBNRR iteration, first we select high discriminant

features (blocks) from the warped pre-operative MRI (when

i = 1 the warped pre-operative MRI equals to the input pre-

operative MRI). Then, we compute a sparse displacement

field that matches the selected features to their correspond-

ing blocks in the intra-operative MRI (block matching dis-

placements). Next, we apply the sparse field of matches to the

model and we estimate the deformations on the mesh vertices

with the solution of a linear system of equations. The model

stiffness and consequently the computed mesh deformations

mostly depend on: a) the mechanical properties of the brain

and tumor tissues, b) the shape (quality) of the elements, c)

the number and the positions of the selected blocks, d) the

block matching displacements.

In a later step, we convert the mesh deformations to an image

deformation field which is used to warp the pre-operative and

the segmented pre-operative images. Additionally, we apply

correction modules on the image deformation field and the

warped segmented pre-operative image, to compensate for

the resected tissue (Figure 1). We should point out that the

image deformation field is additive; it holds the sum of the

previous image fields at iterations 1;2; : : : ; i� 1 and the cur-

rent image field at iteration i. In that way, independently of

the number of iterations, we interpolate only the input pre-

operative and segmented pre-operative images.

Figure 2 shows the FE brain model adaptivity implemented

on the APBNRR framework. The example consists of five

adaptive iterations. For each mesh: a) its surface is conformed

to the segmented image boundary of the current iteration i,

and b) the distorted poor quality tetrahedral elements occur-

ring after each deformation are eliminated.

The model deformation and consequently the image warping,

stops when i = Niter, where Niter is the desired number of

adaptive iterations (Table 2). Our experimental evaluation has

shown that a satisfactory alignment accuracy can be achieved

within the neurosurgical time constraints, when Niter= 3�5.

The output registered image is the warped pre-operative MRI

at iteration Niter (Figure 1). A complete description of the

new and existing APBNRR modules can be found in [6, 7].



Table 2. The input parameters for the 6 clinical cases. BS : Brain Shift, PTR : Partial Tumor Resection, CTR : Complete Tumor

Resection, FS : Feature Selection, BM : Block Matching, MG : Mesh Generation, FEMS : FEM Solver, All : PBNRR-APBNRR,

x : axial, y : coronal, z : sagittal.

Parameter Units Value Description Module Method

Bsx�Bsy�Bsz voxels 3�3�3 Block size FS-BM All

Wsx �Wsy�Wsz voxels 7�7�7 (BS) Window search size BM All

9�9�9 (PTR, CTR)

Fs - 5% % of selected feature blocks FS All

δ - 5 Mesh size MG APBNRR

Eb Pa 2:1�103 Brain Young’s modulus FEMS All

Et Pa 2:1�104 Tumor Young’s modulus FEMS APBNRR

νb - 0.45 Brain Poisson’s ratio FEMS All

νt - 0.45 Tumor Poisson’s ratio FEMS APBNRR

λ - 1 Trade off parameter FEMS All

Fr - 25% % of rejected outlier blocks FEMS All

Nappr - 10 Number of approximation steps FEMS All

Nint - 5 Number of interpolation steps FEMS All

Niter - 3 (BS) Number of adaptive iterations - APBNRR

4 (PTR,CTR)

(a) i= 1 (b) i= 2 (c) i= 3

(d) i= 4 (e) i= 5

Figure 2. The adaptive FE biomechanical model imple-

mented in the APBNRR framework. Each mesh is con-

formed to the warped segmented pre-operative image of it-

eration i. Number of generated tetrahedra for i = 1� 5 :

7725;8102;7720;7262;6991.

3. RESULTS
We evaluate our framework on 6 clinical volume MRI

cases and we compare it with the publicly available non-

rigid registration method PBNRR [7] of ITK. Prior to the

non-rigid registration we extract the brain from the skull with

BET [11] and we rigidly align the pre-operative to the intra-

operative MRI with 3D Slicer1. All MRI data are anonymized

and an Institutional Review Board (IRB) is granted. The Sur-

gical Planning Laboratory at Brigham and Women’s Hospi-

1http://www.slicer.org/

Table 1. The clinical MRI data of this study. BS : Brain

Shift, PTR : Partial Tumor Resection, CTR : Complete Tu-

mor Resection.
Case Type Provider Genre Tumor Location

1 BS B&W M R frontal

2 BS B&W F R occipital

3 PTR B&W F L frontal

4 PTR Huashan M L frontal

5 CTR Huashan M R temporal

6 CTR Huashan F L posterior temporal

tal [12] provided the first three cases and the Department of

Neurosurgery at Shanghai Huashan Hospital provided the last

three [3]. Depending on the type of resection depicted in the

intra-operative MRI (i.e., just brain shift but no tumor resec-

tion, or partially/completed resected), the cases are catego-

rized as Brain Shifts (BS), Partial Tumor Resections (PTR)

and Complete Tumor Resections (CTR). From totally 6 cases,

2 are BS, 2 are PTR and 2 are CTR. Table 1 lists the pro-

vided clinical data. All MRI data were resampled to a uni-

form image spacing 1:00� 1:00� 1:00 (mm) along the x, y,

z (axial, coronal, sagittal) image directions. For all the con-

ducted experiments we used linear displacement FE biome-

chanical models with 4-node tetrahedral elements and the

tissues (brain parenchyma, tumor) were modeled as elastic

isotropic materials. Table 2 lists the parameters for the exper-

iments. More details about the parameters are given in [6, 7].

3.1. Quantitative evaluation

For the quantitative evaluation, we employ the Haus-

dorff Distance (HD) metric as it is implemented in [5].



The HD is computed between extracted point sets in the

warped pre-operative and the intra-operative images. For

the point extraction we employ ITK’s Canny edge detec-

tion method [2]. We compute the alignment errors HDRIGID,

HDPBNRR and HDAPBNRR, after a rigid, a non-rigid (PBNRR)

and an adaptive non-rigid (APBNRR) registration, respec-

tively. The smaller the HD value, the better the alignment.

Additionally, we compute the alignment improvement of the

APBNRR compared to the rigid and the PBNRR registra-

tion. The corresponding ratios are HDRIGID=HDAPBNRR and

HDPBNRR=HDAPBNRR. When ratio > 1 the APBNRR outper-

forms the other method. The higher the ratio, the greater the

improvement.

In Table 3 we present the quantitative results. Figure 3 de-

picts all HD values and their corresponding average values

for all the experiments. As shown in Table 3 and Figure 3,

our method, in all the case studies, significantly reduces the

alignment error compared to the rigid and the PBNRR regis-

tration. The maximum improvement occurs in case 5 (CTR),

with values 6.61 and 4.95, respectively (Table 3). On the av-

erage the APBNRR is 4.23 and 3.18 times more accurate than

the rigid and the PBNRR registration, respectively (Table 3).

Generally, the APBNRR performs better on the PTR and

CTR cases, because it captures accurately the large, complex

intra-operative deformations associated with the tissue resec-

tion. On the other hand, the PBNRR is a non-adaptive method

which is designed to handle only the small brain shifts occur-

ring during the surgery.

Table 3. The quantitative evaluation results for the 6 clinical

cases. HDRIGID;HDPBNRR;HDAPBNRR is the alignment error

after a rigid, a non-rigid (PBNRR) and an adaptive non-rigid

registration (APBNRR), respectively. All HD are in mm.
Case HDRIGID HDPBNRR HDAPBNRR

HDRIGID
HDAPBNRR

HDPBNRR
HDAPBNRR

1 13.63 11.22 5.91 2.30 1.89

2 8.60 7.00 5.38 1.59 1.30

3 19.33 16.03 3.74 5.16 4.28

4 12.72 9.43 2.82 4.51 3.34

5 16.15 12.08 2.44 6.61 4.95

6 19.62 12.53 3.74 5.24 3.35

Average 15.00 11.38 4.00 4.23 3.18
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Figure 3. The Hausdorff Distance (HD) error for the 6 clini-

cal cases. The horizontal lines illustrate the average HD error.

3.2. Qualitative evaluation
Figure 4 depicts the qualitative results for cases PTR (3-4)

and CTR (5-6). These cases clearly demonstrate the impact

of our method on the challenging problem of tumor resec-

tion. Figure 4 shows the same representative slice for all the

MRI belonging to the same row. The cyan color delineates the

tumor segmentation in the pre-operative image. The fifth and

sixth column (from the left) show the warped pre-operative

MRI subtracted from the intra-operative MRI. The black and

white regions in the difference images indicate larger discrep-

ancies, while the gray regions indicate smaller discrepancies.

Obviously, the APBNRR aligns the images with high accu-

racy, particularly near the tumor resection margins where the

black and white regions are mostly eliminated. Moreover, the

APBNRR provides accurate alignments independently of the

portion of the resected tissue depicted in the intra-operative

image (partial or complete tumor resection). On the contrary,

the PBNRR cannot compensate for the large deformations in-

duced by the resection and shows significant misalignments

nearby the tumor cavities.

3.3. Performance evaluation
In this paper we perform all the experiments in a Dell

Linux workstation with 12 Intel Xeon X5690@3.47GHz

CPU cores and 96 GB of RAM. Figure 5 shows the total

(end-to-end) APBNRR execution time, for all the case stud-

ies, with 1, 4, 8, and 12 hardware cores. Because of the vari-

ous implemented multi-threaded modules, our method is able

to register the clinical data in less than 1 minute (between

34.51 and 56.17 seconds), as shown with green in Figure 5.

We should point out that the APBNRR does not scale linearly

with the number of the cores. There is a significant speed

boost from 1 to 4 cores, but limited improvement from 4 to 12

cores. The reason is mainly that APBNRR has not fully par-

allelized yet (Figure 1), so the maximum achieved speedup is

always limited by Amdahl’s law. After the parallelization of

the sequential modules (Figure 1) and especially the compu-

tationally intensive FEM Solver [6], we expect to reduce the

end-to-end execution time by 30-40% and achieve the align-

ments in less than 45 seconds.
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Figure 5. The APBNRR (end-to-end) execution time for the

6 clinical cases using 1, 4, 8, and 12 hardware cores.



Figure 4. Qualitative evaluation results for the tumor resection cases. Each row represents a single case. The left margin

indicates the number and the type of each case. From left to right column: pre-op MRI, intra-op MRI, warped pre-op MRI

(PBNRR), warped pre-op MRI (APBNRR), warped pre-op MRI (PBNRR) subtracted from intra-op MRI, warped pre-op MRI

(APBNRR) subtracted from intra-op MRI. For the PTR and CTR cases the cyan color delineates the tumor segmentation in the

pre-op MRI.

4. SUMMARY AND CONCLUSION

We presented an Adaptive Physics-Based Non-Rigid Reg-

istration (APBNRR) framework to compensate for the brain

deformations induced by a tumor resection.

The proposed method is built on the ITK open-source sys-

tem and implements an adaptively changing heterogeneous

(brain parenchyma, tumor), patient-specific, FE biomechan-

ical model, to warp the pre-operative to the intra-operative

MRI. We show that our framework can accurately handle the

complex brain deformations associated with the neurosurgi-

cal procedure, independently of the portion (partial/complete)

of the resected tissue depicted in the intra-operative MRI.

Our evaluation is based on clinical volume MRI data from 6

patients acquired from two hospitals. In all the conducted ex-

periments our scheme exhibited high registration accuracy. It

reduced the alignement error up to 6.61 and 4.95 times, com-

pared to a rigid registration and the publicly available non-

rigid registration method PBNRR of ITK, respectively.

Besides, most of the APBNRR modules are parallel. In all

the case studies we tried in a Dell Linux workstation with 12

Intel Xeon X5690@3.47GHz CPU cores, our method needed

between 34.51 and 56.17 seconds to register a pair of vol-

ume MRIs. Consequently, our scheme fits well within the

time constraints (less than 1-2 minutes) imposed by the neu-

rosurgery procedure. For this reason and considering the high

accuracy of the provided alignments, we believe that our

method has a potential use in the Operating-Room.

In the future, we will incorporate more tissues (e.g. brain ven-

tricles) into the model in order to improve the registration ac-

curacy. Also, we will parallelize the sequential modules to

reduce further the end-to-end execution time.
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