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Summary. In this paper, we present a Delaunay refinement algorithm for 4-
dimensional (3D+t) segmented images. The output mesh is proved to consist of
sliver-free simplices. Assuming that the hyper-surface is a closed smooth manifold,
we also guarantee faithful geometric and topological approximation. We implement
and demonstrate the effectiveness of our method on publicly available segmented
cardiac images.
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1 Introduction

Technological advances in imaging have made the acquisition of 4D medical
images feasible [35, 45, 46, 48]. At the same time, pentatope capable FEM
solvers [7, 36] operating directly on 4D data have been shown to be effective
for advection-diffusion and Navier-Stokes formulations.

In this paper, we describe a 4-dimensional Delaunay mesh algorithm which
operates directly on a 4-dimensional image I. I represents the domain Ω to

be meshed as the temporal evolution of a 3D object. That is, Ω =
⋃
ti

Ωti ,

where Ωti is the 3D object at time ti (i.e., the ith slice of Ω).
Volume mesh generation methods can be divided into two categories: PLC-

based and Isosurface-based. The PLC-based methods assume that the surface
∂Ω of the volume Ω (about to be meshed) is given as a Piecewise Linear
Complex (PLC) which contains linear sub-faces embedded in 3 or 4 dimen-
sions [13, 14, 16, 17, 30, 33, 34, 40, 43]. The limitation of this method is that the
success of meshing depends on the quality of the given PLC: if the PLC forms
very small angles, then the overall mesh quality deteriorates and termination
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might be compromised [40, 42]. In Computed Aided Design (CAD) applica-
tions, the surface is usually given as a PLC. In biomedical Computer Aided
Simulations (CAS), however, there is no reason to use this approach, since it
might (depending on the geometry of the image, its segmentation, and its dec-
imation [16]) add the additional small input angle limitation. A workaround
for this small input angle limitation is to treat the surface voxels as the PLC of
the domain, since those input facets meet at large angles (90 or 180 degrees).
This, however, would introduce an unnecessary large number of elements and
little control over the density of the domain.

The Isosurface-based methods assume that Ω is known through a func-
tion f : Rd → R, such that points in different regions of interest evaluate
f differently. This assumption covers a wide range of inputs used in model-
ing and simulation, such as parametric surfaces/volumes [37], level-sets and
segmented multi-labeled images [10, 29, 38]. Of course, these type of functions
can also represent PLCs [29], a fact that makes the Isosurface-based method a
general approach. Isosurface-based methods ought to recover and mesh both
the isosurface ∂Ω and the volume. This method does not suffer from any un-
necessary small input angle artifacts introduced by the initial conversion to
PLCs, since ∂Ω is recovered and meshed during refinement.

In this paper, we describe a space-time Delaunay Isosurface-based mesh-
ing technique for 4 dimensions. We show that the resulting mesh is sliver free
consisting of pentatopes whose boundary is a correct approximation of the

underlying isosurface ∂Ω =
⋃
ti

∂Ωti . Note that space-time meshing is differ-

ent from dynamic surface simulations (see [28] and the references therein for
example). In those simulations, the isosurface is not known; instead, a tetra-
hedral mesh is adapted on each time step that describes accurately the free
surface dynamics.

One way to solve the space-time 4D problem is to mesh separately each
3D object Ωti and then connect the elements between two consecutive objects
to obtain space-time elements. However, finding such correspondence—which
also has to satisfy the quality criteria— is not intuitive, especially when the
topology and the geometry of the two objects varies drastically. Alternatively,
one could mesh a single object Ωti and then deform the mesh to match the
shape of the other temporal instances. The limitation of this approach is
twofold. First, the quality of the deformed mesh might be much worse than
the original; second, there is no control over the mesh density across both
the spatial and the temporal direction [7], since the mesh size of the original
instance determines the size of the rest of the instances.

Space-time meshing methods have already been proposed in the litera-
ture [24, 44]. They assume, however, that the evolving object Ωti has the
same spatial space across time. Furthermore, the implementation of these
techniques is confined to only the 2D+t case (i.e., the space-time elements are
tetrahedra). The more general 3D+t meshing has been the focus in [7, 36],
but they consider only convex hyper-surfaces such as hyper-cubes or hyper-
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cylinders. To our knowledge, the method presented in this paper is the first
to address the 3D+t problem where the topology and the geometry of the
evolving object may differ substantially through time, and hence, it is allowed
to form complex hyper-surfaces.

In the literature [3, 6, 8, 12, 14, 15], it is shown that given a sufficiently
dense sample on a surface ∂Ω, the restriction of its Delaunay triangulation
to ∂Ω is a topologically good approximation, or, alternatively, it satisfies the
closed-topological-ball property [23]. Their focus, however, was not on volume
meshing, but rather, on surface reconstruction. In this paper, we fill the space-
time volume Ω with sliver-free pentatopes, such that ∂Ω is approximated
correctly.

Computing the appropriate sample of the surface is a challenging task. In
the literature, however, it is assumed that either such a sample is known [3–5]
or that an initial sparse sample is given [9, 37, 39]. In this paper, we propose
a method that starts directly from labelled images (of one or many more
connected components) and computes the appropriate sample on the fly, re-
specting at the same time the quality and fidelity guarantees.

Our algorithm guarantees that the resulted pentatopes are of bounded
aspect ratio. We achieve that by generating elements of low radius-edge ratio
and by proving the absence of slivers. We clean the mesh from slivers by
integrating into our framework the theory presented in [30]. In [30], the surface
is given as an already meshed polyhedral domain (i.e., the method in [30] is a
PLC-based method), a different problem than ours, since it is our algorithm’s
responsibility to mesh both the underlying zero-surfaces and the bounded
volume with topological and geometric guarantees.

The rest of the paper is organized as follows: Section 2 introduces some
basic terminology, and in Section 3 we present our algorithm. In Section 4
and Section 5, we prove the guarantees. Section 6 evaluates our method on
segmented 4D cardiac data and Section 7 concludes the paper.

2 Preliminaries

The input of our algorithm is a segmented n dimensional image I ⊂ Rn. The
object Ω ⊆ I is assumed to be represented as a cut function f : Rn 7→ R,
such that its surface ∂Ω is defined by the set {f(p) = 0} [29, 37]. Clearly, from
a segmented image, the zero-surface {f(p) = 0} can be easily computed by
interpolating the voxel values.

We assume that given a point p ∈ R4, we can ask for p’s closest point on
∂Ω. This can be accomplished by an Euclidean Distance Transform (EDT) [20,
32]. Specifically, the EDT returns the voxel p′ ∈ ∂Ω which is closest to p. Then,
we traverse the ray pp′ and we compute the intersection between the ray and
∂Ω by interpolating the positions of different signs [31]. Points on ∂Ω are
referred to as feature points.
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Fig. 1: A 2D illustration. The simplex σ = {v, w} and its surface ball Bz,σ.
m is the midpoint of σ. Observe that since the radius Rz,σ of Bz,σ is larger
than the radius Rσ = |m− v| of Bσ, the picking region of σ as defined here is
larger than the picking region of [30].

The local feature size lfs∂Ω (x) of a point x ∈ ∂Ω is defined as the (clos-
est) distance between x and the medial axis of ∂Ω. Since ∂Ω is smooth, the
local feature size is bounded from below by a positive constant lfs∂Ω , that is,
lfs∂Ω (x) > lfs∂Ω > 0. Another useful property is that the local feature size is
1-Lipschitz, that is,

lfs∂Ω (p) ≤ |p− q|+ lfs∂Ω (q) . (1)

A point set V ⊂ ∂Ω is called an ε-sample, if for every point p ∈ ∂Ω there
is a point v ∈ V at a distance at most ε · lfs∂Ω (p) from p [4].

Let V be a finite set of vertices V = {v1, . . . , vN} ⊂ Rn. The Delaunay
triangulation of V is denoted by D (V ). A k-simplex σk = {v1, . . . , vk+1} ∈
D (V ) is a simplex defined by k + 1 vertices. We denote the length of the
shortest edge of a simplex σ with Lσ. The circumball Bσ of a simplex σ is the
smallest closed ball circumscribing σ’s vertices. Rσ is the circumradius length
of the simplex and Cσ is its circumcenter. The radius-edge ratio of a simplex
σ is defined as ρσ = Rσ

Lσ
.

The voronoi cell V (v) of a vertex v ∈ V is the set V (v) = {p ∈ Rn |
|v− p| ≤ |q− p|,∀q ∈ V }. The voronoi dual of a simplex σ ∈ D (V ) is defined
as the set V (σ) = {V (vi) ∩ V (vj) | ∀vi, vj ∈ σ}.

The restriction of D (V ) to a topological space X is denoted by D|X (V ).
D|X (V ) is a simplicial complex (as is D (V )) that contains simplices of D (V )
whose voronoi dual intersects X in a non-empty set. Consider a k simplex σ
and let V (σ) intersect X at a point z. Any ball centered at z circumscribing σ
is called a surface ball [9]. The corresponding surface ball is denoted by Bz,σ
and its radius by Rz,σ, in the sequel. By the definition of Voronoi diagrams,
Bz,σ does not contain any vertex of V in its interior.
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Following the definition of [30], the metric we use to characterize the qual-

ity of a simplex σk is τσk =
Volσk
Lkσk

. Low values of τ imply a poor-quality

element.

Definition 1 (Sliver [30]). Simplex σ is a sliver if it contains a k-simplex σk
(k ≤ 4) such that ρσk < ρ̄, τσk < τ̄ , and for any m-simplex σm of σ (m < k),
ρσm < ρ̄, τσm ≥ τ̄ .

The picking region PR (σ4) of a 4-simplex σ4 is defined as the 4-dimensional
solid ball centered at Cσ4

with radius ζRσ4
, ζ < 1. Consider a restricted k-

simplex σk and its surface ball Bz,σ k < 4. Its picking region PR (σk) is the
intersection between ∂Ω and the 4-dimensional solid ball centered at z with
radius ζRz,σ, ζ < 1. Note that PR (σ4) and PR (σk) are contained in Bσ and
Bz,σ, respectively. Observe that the picking region of σk (k < 4) is a topolog-
ical k-ball and does not belong (necessarily) in the affine k dimensional space
defined by σk. This is different than the definition in [30], where the picking
regions are defined inside the intersection of Bσ with the affine space of σ.
The reason for this change is the fact that the input of our algorithm is not a
Piecewise Linear Complex (PLC) but a cut function.

A good point p ∈ PR (σ) is a point that does not introduce smaller slivers.
A sliver is small when its radius is less than bRσ. In [30], it is proved that (a)
the number of small slivers S(σ) possibly created after the insertion of p is
constant, and (b) the volume |Fσ| (the forbidden region) inside which p forms
a small sliver is bounded from above. The same findings hold in our case too,
where the picking region of a restricted facet σ3 is not inside the intersection
of Bσ3

and σ3’s affine space, but inside the intersection of Bz,σ3
and ∂Ω.

Lemma 1. Given an almost-good mesh, a point p inside the picking region of
a σk can be found in a constant number of random rounds, such that any new
sliver created after the insertion of p has circumradius no smaller than bRσk
if k = 4, or no smaller than bRz,σk if k = 3.

Remark 1. The proof is similar to [30], since |Fσ| and S(r) do not change and
the volume of the intersection of Bσ3 and σ3’s affine space is smaller than the
intersection of Bz,σ3 and ∂Ω. See Figure 1 for an illustration.

3 Algorithm

The user specifies a parameter δ. It will be clear in Section 5 that the lower
δ is, the better the mesh boundary will approximate ∂Ω. For brevity, the
quantity δ · lfs∂Ω (z) is denoted by ∆∂Ω (z), where z is a feature point.

Our algorithm initially inserts the 16 corners of a hyper-box that contains
the 4 dimensional object Ω, such that the distance between a box corner
x and its closest feature point z = cfp∂Ω (x) is at least 2∆∂Ω (z). After the
computation of this initial triangulation, the refinement starts dictating which



6 Panagiotis Foteinos1,2,‡ and Nikos Chrisochoides2,§

extra points are inserted. At any time, the Delaunay triangulation D (V ) of
the current vertices V is maintained. Note that by construction, D (V ) always
covers the entire hyper-volume and that any point on the box is separated
from ∂Ω by a distance at least 2∆∂Ω (z), where z is a feature point.

During the refinement, some vertices are inserted exactly on the box; these
vertices are called box vertices. The box vertices might lie on 1, 2, or 3-
dimensional box faces. We shall refer to the vertices that are neither box
vertices nor feature vertices as free vertices.

The algorithm inserts new vertices for three reasons: to guarantee that (a)
∂Ω is correctly recovered, (b) all the elements have small radius-edge ratio,
and (c) there are no slivers. Specifically, for a 4-simplex σ4 in the mesh, the
following rules are checked in this order:

• R1: Let Bσ4
intersect ∂Ω and z be equal to cfp∂Ω (Cσ4

). If z is at a distance
no closer than ∆∂Ω (z) to any other feature vertex, then z is inserted.

• R2: Let Bσ4 intersect ∂Ω and z be equal to cfp∂Ω (Cσ4). If Rσ ≥ 2∆∂Ω (z),
Cσ4 is inserted.

• R3: Let Cσ4
lie inside Ω. If ρσ4

≥ ρ̄, Cσ4
is inserted.

• R4: Let Cσ4
lie insideΩ. If σ4 contains a sliver, a good point inside PR (σ4)

is inserted.
• R5: Let σ3 (σ3 ⊂ σ4) be a restricted facet. If the vertices of σ3 are not

feature vertices, then a good point z inside PR (σ3) is inserted. All the
free vertices closer than ∆∂Ω (z) to z are deleted.

For i < j, priority is given to Ri over Rj. That is, right before the insertion
of a point because of Rj, there is no element that violates a rule Ri. Also, in
R4, priority is given to the lower dimensional slivers that σ4 might contain.

Whenever there is no simplex for which R1, R2, R3, or R4 apply, the
refinement process terminates. The final mesh reported is the set of pentatopes
whose circumcenters lie inside Ω.

In a nutshell, R1 and R2 is responsible for generating a sufficiently dense
sample on ∂Ω. R5 makes sure that the vertices of the simplices restricted
to ∂Ω lie on ∂Ω similarly to [37]. Lastly, R3 and R4 deal with the quality
guarantees. In Section 4, we will show that there are values for b, ζ, and ρ̄
that do not compromise termination.

To prove termination, no vertices should be inserted outside the bounding
box. Notice, however, that vertices inserted due to R2 may lie outside the
bounding box. To deal with such cases, Cσ4 is rejected for insertion. Instead,
its projection C ′σ4

on the box is inserted in the triangulation. That is, C ′σ4
is

the closest to Cσ4
box point. In Section 4 and Section 5, we prove that the

insertion of projected points do not compromise either quality or fidelity. Note
that these projections are different than the traditional encroachment rules
described in [40, 41].

Recall that pentatopes with circumcenters on ∂Ω or outside Ω are not
part of the final mesh, and that is why rule R3 and R4 do not check them.
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Fig. 2: Proof of Lemma 3, a 3D illustration.

4 Termination and Quality

In this section, we will specify the appropriate values for ζ, ρ̄, and b, so that
the algorithm terminates. Specifically, we will show during refinement the
shortest edge introduced into the mesh cannot be arbitrarily small.

Suppose that σ violates a rule Ri. σ is called an Ri element. Ri dictates
the insertion of a point p (and possibly the removal of free points). Point p
is called an Ri point. According to [40, 41], the insertion radius Rp of p is
defined as the length of the shortest edge incident to p created right after
the end of Ri and the parent P (p) of p as the most recently inserted vertex
incident to the shortest edge of σ.

Lemma 2. Let p and q define the shortest edge of a simplex σ and q being
inserted after p. Then Rq ≤ Lσ.

Proof. Assume that right after the insertion of q, p is the closest point to q.
In this case, Rq = |p− q| = Lσ. Otherwise, there has to be another closest
vertex to q, which implies that Rq < |p− q| = Lσ.

The following Lemma bounds from below the shortest edge introduced
into the mesh after the insertion of a box vertex:

Lemma 3. Let v be a box vertex inserted into the mesh. Then, Rv ≥
2∆∂Ω (z), where z is a feature point.

Proof. A box point v is inserted only because of R2 The circumcenter Cσ of a
pentatope σ lies on or outside the box and its projection C ′σ = v falls on the
box. Without loss of generality, assume that the projection lies on the interior
of a 3-face (i.e. a box tetrahedron) F . See Figure 2 for a 3D illustration. (If Cσ
lies precisely on the box, C ′σ is equal to v.) Consider the (2D) disk (drawn) of
Bσ which is coplanar with F . That disk contains v and separates Bσ in two
sides: the side that contains Cσ and the side that contains a part of the box.



8 Panagiotis Foteinos1,2,‡ and Nikos Chrisochoides2,§

We claim that the closest vertex —say w— to v lies on the intersection

of Bσ’s boundary and the ray
−−→
Cσv. To see why, note that Bσ is empty of

vertices, and therefore, the closest to v that an arbitrary vertex w′ already
in the triangulation can be is when it lies on the boundary of Bσ and on the
side of Bσ that contains a part of the box, as shown. Consider the triangle
4w′vCσ. From the law of cosines, we have that:

|v − w′|2 = |Cσ − w′|2 + |Cσ − v|2 − 2 |Cσ − w′| |Cσ − v| cosω

≥ |Cσ − w′|2 + |Cσ − v|2 − 2 |Cσ − w′| |Cσ − v| since cosω ≤ 1

= (|Cσ − w′| − |Cσ − v|)2
= (Rσ − |Cσ − v|)2 since w′ lies on the sphere

= |v − w|2 ,

and our claim is proved.
Therefore, any possible new edge connected to v has length at least |v − w|.

Since, however, σ triggers R2, Bσ has to intersect ∂Ω. Therefore, there has
to be a feature point q ∈ ∂Ω (illustrated) inside Bσ and on the same side
of F as w. Let us denote with q′, the projection of q to the box face F . By
construction, |q − q′| is at least 2∆∂Ω (z), where z is a feature point. Observe,
however, that |v − w| is always larger than |q − q′|, because vw ‖ qq′, and the
statement holds. Similar reasoning applies in the case where C ′σ lies on a box
triangle or a box edge.

The following Lemma proves a lower bound on the lengths created into
the mesh because of R1 and R2:

Lemma 4. Let p be a vertex inserted into the mesh because of R1 or R2.
Then, Rp ≥ ∆∂Ω (z), where z is the closest feature point to p.

Proof. If R1 is triggered, then p is equal to z and since there is no other feature
point already inserted in the mesh closer than ∆∂Ω (p) to p, the statement
holds. Otherwise, R2 applies for a simplex σ4 and p is equal to Cσ4 . Due to the
empty ball property, Rp is at least Rσ4

≥ 2∆∂Ω (cfp∂Ω (p)), and the statement
holds.

Lemma 5. Let p be a vertex inserted into the mesh because R3 applies for an
element σ. Then, Rp ≥ ρ̄RP (p).

Proof. Since p is equal to Cσ, Rp ≥ Rσ = ρσLσ ≥ ρ̄Lσ. Lemma 2 suggests
that Lσ ≥ RP (p), and the results follows.

Lemma 6. Let p be inserted into the mesh because of R4. Then,

• Rp ≥ 1−ζ
2 RP (p), if P (p) is neither R4 nor R5,
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Fig. 3: Flow diagram depicting the relationship among the rules. No solid
cycle should have a product less than 1. The dashed arrows break the cycle.

• Rp ≥ bRP (p), otherwise.

Proof. Let σ be the simplex that violates R4.
Suppose that P (p) is neither R4 nor R5. Since p belongs to the picking

region of σ, Rp ≥ (1 − ζ)Rσ ≥ 1−ζ
2 Lσ. From Lemma 2, we have that Rp ≥

1−ζ
2 RP (p).

Otherwise, consider the case P (p) is an R4 point. From Lemma 1, we
know that the circumradius of σ is more than b times the circumradius of the
R4 simplex σ′ that inserted P (p). Therefore, Rp ≥ (1− ζ)Rσ ≥ (1− ζ)bRσ′ .
However, the quantity (1− ζ)Rσ′ is equal to RP (p), and the statement holds.

The exact same logic holds when P (p) is an R5 point, by just substituting
Rz,σ′ for Rσ′ , where σ′ is an R5 simplex.

Lemma 7. Let p be inserted into the mesh because of R5. Then,

• 1−ζ
2 RP (p), if P (p) is not an R5 point,

• ∆∂Ω (z), otherwise.

Proof. Let σ3 be the simplex that violates R4.
Suppose that P (p) is not an R5 point. Because of Lemma 2, the shortest

edge of σ3 is at least RP (p). Therefore, any surface ball of σ3 has radius at

least 1
2RP (p). Since the surface ball does not contain any vertex in its interior,

Rp ≥ 1−ζ
2 RP (p).

Suppose that P (p) is an R5 point. Note that when P (p) is inserted, all
the free vertices closer than ∆∂Ω (P (p)) to P (p) are deleted. Due to R5, σ3
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contains at least one free vertex. Since P (p) is the most recently inserted
vertex incident to the closest edge of σ3, the edge that contains P (p) and the
free vertex has to be at least ∆∂Ω (P (p)). Therefore, any surface ball of σ3
has radius at least 1

2∆∂Ω (P (p)). Hence, Rp ≥ 1−ζ
2 ∆∂Ω (P (p)).

Putting all the Lemmas together, the solid arrows of Figure 3 show the
insertion radius of the inserted point as a fraction of the insertion radius of its
parent. An arrow from Ri to Rj with label x implies that the insertion radius
of an Rj point p is at least x times larger than the insertion radius of its Ri
parent P (p). The label x of the dashed arrows is the absolute value of Rp.
Note that the labels of the dashed arrows depend on the local feature size of
∂Ω, and as such are always positive constants.

Recall that during refinement, free vertices might be deleted (because of
R5). Nevertheless, such deletions of vertices are always preceded by insertion
of feature points. Considering the fact that feature vertices are never deleted
from the mesh, termination is guaranteed if we prove that the insertion radii of
the inserted vertices cannot decrease indefinitely. Clearly, [30, 40, 41], if there
is no solid cycle of product less than 1, termination is guaranteed.

Theorem 1. The algorithm terminates producing simplices of bounded aspect
ratio, if

• (1−ζ)2
4 ρ̄ ≥ 1, and

• 1−ζ
2 b ≥ 1.

Proof. See Figure 3. The smallest product is produced by the solid cycles
R3→R4→R5→R3 and R4→R5→R4. By requiring the label product of these
loops to be more than 1, the desired result follows.

5 Accuracy

In this section, we prove that the mesh boundary is equal to the restriction
of a ∂Ω sample ∆ to ∂Ω. In the literature, it is proved that these tetrahedra
approximate the surface correctly, in geometric and topological sense [3, 8, 14].

First, we show that δ directly controls the density of the feature vertices.
Let V be the set of vertices in the final mesh and ∆ be equal to V ∩ ∂Ω.

Lemma 8. Let δ < 1
4 . Then ∆ is a 5δ

1−4δ -sample of ∂Ω.

Proof. Recall that upon termination, there is no tetrahedron for which R1,
R2, R3, R4, or R5 apply.

See Figure 4. Let p be an arbitrary point on ∂Ω. Since D (V ) covers all the
domain, point p has to lie on or inside the circumsphere of a pentatope σ (not
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Fig. 4: Proof of Lemma 8.

shown). Hence, Bσ intersects ∂Ω. Let point p′ be the feature point closest to
Cσ. Note that |Cσ − p| ≥ |Cσ − p′| and therefore p′ lies on or inside σ’s cir-
cumsphere. We also know that σ’s circumradius has to be less than 2∆∂Ω (p′),
since otherwise R2 would apply for t. Therefore, we have the following:

|p− p′| < 2Rσ (because both p and p′ lie on or inside Bσ)
< 4∆∂Ω (p′) (because of R2)
≤ 4δ (|p− p′|+ lfs∂Ω (p)) (from Inequality (1)),

and by reordering the terms, we obtain that:

|p− p′| < 4δ

1− 4δ
lfs∂Ω (p) , with δ <

1

4
. (2)

Moreover, there must exist a feature vertex v in the triangulation closer
than ∆∂Ω (p′) = δ · lfs∂Ω (p′) to p′, since otherwise R1 would apply for σ.
Hence, |v − p′| < δ · lfs∂Ω (p′), and using Inequality (1), we have that:

|v − p′| < δ (|p− p′|+ lfs∂Ω (p)) (3)

Applying the triangle inequality for 4pvp′ yields the following:

|p− v| ≤ |−pp′|+ |v − p′|
< |p− p′|+ δ (|p− p′|+ lfs∂Ω (p)) (from Inequality (3))
= |p− p′| (1 + δ) + δ · lfs∂Ω (p)
< 4δ

1−4δ lfs∂Ω (p) (1 + δ) + δ · lfs∂Ω (p) (from Inequality (2))

=
(

4δ(1+δ)
1−4δ + δ

)
lfs∂Ω (p)

= 5δ
1−4δ lfs∂Ω (p) ,

and the proof is complete.
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Let us denote with ωi one of the n connected components that Ω consists

of: Ω =

n⋃
i=1

ωi. The next two Lemmas prove a few useful properties for the

mesh MΩ and its boundary ∂MΩ . Our goal is to show that ∂MΩ is always
non-empty and does not have boundary (Lemma 10), a fact that will be used
for proving the fidelity guarantees (Theorem 2).

Lemma 9. Let δ ≤ 1
4 . Then, for every ωi there is a pentatope σ ∈ D (V ),

such that Cσ lies inside ωi.

Proof. Let us consider a single connected component ωi. The same reasoning
applies for any connected component of Ω.

For the sake of contradiction, assume that there is no pentatope whose cir-
cumcenter lies inside ωi. Since the triangulation D (V ) covers all the domain,
the circumballs of the pentatopes in D (V ) also cover the domain ωi. There-
fore, there has to be a circumball Bσ (σ ∈ D (V )) which intersects a point
m on the medial axis of ∂ωi, such that m lies inside ωi. By our assumption,
the circumcenter Cσ cannot lie inside ωi. Therefore, Bσ intersects ∂ωi. Also,
recall that R2 cannot apply to any pentatope. Hence, we have the following:

2 · δ · lfs∂Ω (cfp∂Ω (Cσ)) > Rσ (from R2)

≥ |cfp∂Ω(Cσ)−m|
2

(since m and cfp∂Ω (Cσ) do not lie outside Bσ)
≥ lfs∂Ω(cfp∂Ω(Cσ))

2
(since m is on the medial axis) ⇒

δ > 1
4
,

which raises a contradiction.

Lemma 10. Let δ ≤ 1
4 . Then, ∂MΩ is a non-empty set and does not have

boundary.

Proof. The fact that ∂MΩ is a non-empty set follows directly from Lemma 9:
sinceMΩ cannot be empty, its boundary ∂MΩ cannot be empty too. For the
other part, since ∂MΩ is the boundary of a set of tetrahedra, it cannot have
a boundary.

The following Theorem proves the fidelity guarantees:

Theorem 2. The mesh boundary ∂MΩ is the restriction to ∂Ω of ∆ = V ∩
∂Ω.

Proof. Let f be a tetrahedron σ3 in ∂MΩ . As such, V (σ3) intersects ∂Ω. Due
to R5, the vertices of σ3 lie on ∂Ω. Recall that the surface ball Bz,σ3 does not
contain vertices in its interior. Therefore, Bz,σ3

is empty of vertices in V ∩∂Ω
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also. Without loss of generality, assume that the vertices in V are in general
position. Since there is a ball that circumscribes σ3 and does not contain
vertices of V ∩∂Ω in its interior, σ3 has to appear as a simplex in D (V ∩ ∂Ω).
Since the center z of the surface ball lies on ∂Ω, then the voronoi dual of σ3
intersects ∂Ω in D|∂Ω (∂Ω ∩ V ), as well. Hence, ∂MΩ ⊆ D|∂Ω (∂Ω ∩ V ).

For the other direction, we will prove that ∂MΩ cannot be a proper sub-
set of D|∂Ω (∂Ω ∩ V ), and therefore, equality between these 2 sets is forced.
Toward this direction, we will prove that any proper non-empty subset of
D|∂Ω (∂Ω ∩ V ) has boundary; this is enough, because we have proved in
Lemma 10 that ∂MΩ is non-empty and does not have boundary.
D|∂Ω (∂Ω ∩ V ) is the restriction of a sample of a closed manifold ∂Ω

and therefore it is a 3-manifold without boundary [3]. That means that
any 2-simplex in D|∂Ω (∂Ω ∩ V ) is incident to exactly two 3-simplices of
D|∂Ω (∂Ω ∩ V ). Since any proper non-empty subset A of D|∂Ω (∂Ω ∩ V ) has
fewer 3-simplices, A contains at least a 2-simplex σ2 incident to only one 3-
simplex. But this implies that σ2 belongs to the boundary of A, and the proof
is complete.

6 Experimental Evaluation

The algorithm is implemented in C++. We employed the Bowyer-Watson
kernel [11, 47] for point insertions. The removal of a point p is implemented
by computing the small Delaunay triangulation of the vertices incident to
p [21], such that the vertices inserted earlier in the triangulation are inserted
into the small triangulation first. It can be shown [25] that these new created
pentatopes can always be connected back to the original triangulation without
introducing invalid elements. For the Euclidean Distance Transform, we made
use of the related filter implemented in ITK [2] and described in [32]. Lastly,
we borrowed CGAL’s [1] exact predicates for the accurate computation of the
4D in-sphere tests.

Table 1: Information about the images of the five patients used in this section.
The spacing for all the images is (1.77, 1.77, 6, 1)mm4.

Case Pat1 Pat2 Pat3 Pat4 Pat5
#Voxels (100× 100× 44× 15) (100× 100× 34× 15) (100× 100× 26× 15) (100× 100× 31× 15) (100× 100× 29× 15)

We ran our code on five (segmented) images obtained from the 4D Heart
Database [35]. The first three represent the moving left ventricle of the pa-
tients, while the last two the ventricle together with the myocardium for 15
cardiac cycles. Information about these data is given in Table 1.

Recall that our algorithm needs the distance of any point on ∂Ω from
the medial axis. The robust computation of the medial axis is a very difficult
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Table 2: Statistics of the output meshes generated for each patient.

Pat1 Pat2 Pat3 Pat4 Pat5
#Pentatopes 49,479 43,673 8,883 63,016 56,528

#Boundary Tetrahedra 30,758 29,089 8,271 36,281 33,308
#Vertices 4,709 4,314 1,362 5,567 5,132

Shortest edge (mm) 3.45 3.87 3.90 3.5 4.63
Radius-edge ratio

(maximum, average, deviation)
(1.93, 1.02, 0.17) (1.78, 0.98, 0.15) (1.54, 0.92, 0.10) (2.20, 1.06, 0.18) (1.87, 1.05, 0.18)

Normalized volume
(minimum, average, deviation) (0.01, 0.34, 0.18) (0.01, 0.38, 0.18) (0.02, 0.43, 0.17) (0.01, 0.32, 0.17) (0.01, 0.33, 0.17)

problem (see [22, 27] for computing the exact medial axis, [19] for a review
of image-based medial axis methods, and [5] for computing the medial axis
given a set of surface points) and out of the scope of this paper. Therefore,
in the implementation, we assume that lfs∂Ω (p) is uniform and equal to the
unit, which implies that ∆∂Ω (p) becomes equal to δ. That is, in practice, δ
determines a uniform and (if small enough) dense sample of the surface. We
experimentally verified that a δ value equal to 5 (the length of five consecutive
voxels along the fourth dimension) yielded manifold mesh boundaries with
vertices lying precisely on the iso-surface in accordance with Theorem 2.

The quantity τσ determines the aspect ratio of pentatope σ [30], but it
is not normalized, and therefore, it is hard to draw comparative conclusions.
For this reason, for a pentatope σ of the final mesh, we report its normalized
volume τ̂σ defined as the ratio of its volume over the volume of a regular
pentatope with circumradius equal to the circumradius of σ (or alternatively
τ̂σ = 384Volσ

24R4
σ

√
5
). Clearly, τ̂σ ∈ [0, 1], where a value of 0 implies a degenerate

pentatope, while 1 implies a perfect quality.
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Fig. 5: Normalized volume histogram of the output mesh obtained for the
input image Pat1.

Table 2 shows quantitative data for the mesh generated on each image.
We set the radius of the picking regions equal to ζ = 1

2 . Theorem 1 suggests
that ρ̄ be at least 16 and b at least 4. We experimentally observed that by
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selecting 4 to 10 random points within the picking regions (both the 4- and
the 3-topological balls), no small element σ was created with τ̂σ less than
0.01. Despite the fact a value of 0.01 is rather small, it is three orders of
magnitude larger than the minimum normalized volume reported in the case
where no picking regions are employed at all. Also, notice that the average
normalized volume is much higher than the minimum value. This fact together
with the observed small standard deviation implies that most pentatopes have
normalized volume away from the minimum value and very close to the av-
erage. Figure 5 shows the histogram of the normalized volumes for the first
experiment of Table 2, that is, when the input image Pat1 was used. Similar
histograms are observed for all the other inputs as well.

7 Conclusions

In this paper, we present a space-time meshing method for (3D+t) image data.
The method is able to provably clean up slivers and recover the hyper-surfaces
faithfully. Experiments on five 4D cardiac images show that the resulting
meshes consist of elements of bounded aspect ratio.

Efficient Discontinuous Galerkin formulations require that not only the
hyper-surface should be recovered but also the evolving 3D object at certain
time steps [18]. This is a more challenging task considering the non-manifold
nature of the underlying space-time domain and it is left as future work.

Because of the increased memory space needed for high dimensional mesh-
ing, our 4D algorithm is rather slow: it is approximately 100 times slower than
our three dimensional Delaunay mesher published in the past [26]. In the fu-
ture, we plan to optimize our sequential 4D code presented in this paper
and parallelize it, exploiting in this way the available concurrency across the
temporal dimension as well.
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