Estimating Lower Bounds on the Length of Protein Polymer Chain Segments using
Robot Motion Planning

Andrew McKnight, Jing He, Nikos Chrisochoides and Andrey Chernikov
Department of Computer Science
Old Dominion University
Norfolk, VA, USA
{amcknigh, jhe, nikos, achernik}@cs.odu.edu

Abstract—Finding the 3D structure a protein will assume
given only its amino acid sequence remains largely an open
question in bioinformatics. New developments have incorpo-
rated 3D images—"density maps”—of molecules from electron
microscopy, but this presents its own problems. We seek to
measure the lengths of segments of protein polymer chains
associated with specific regions of the density map. We briefly
discuss past efforts, and introduce an analog to robot motion
planning as a novel approach. We will show this new ap-
proach’s superiority through complexity analysis, and present
some experimental results in the 2D case, leaving the 3D case
to future work.

Keywords-simplification; bounded; skeleton; shortest-path;
graph

I. INTRODUCTION

In the field of proteomics, an important question is how
to efficiently determine the structure of a protein given
its amino acid sequence: determining the phenotype of
the protein from just the genotype, usually using machine
learning methods. This approach has a vast solution space
and exponential complexity. One promising advance in this
area includes data from electron microscopy images of the
protein molecules, the latest development being cryogenic
electron microscopy (cryoEM). This approach can aid in
discovering the structure and topology being sought and
hopefully provide insight into the mechanisms that transform
a given amino acid sequence into a functioning structure.

The microscopes produce three dimensional grayscale
images whose voxels represent measured electron densities
at the corresponding locations in space. These images are
used in two ways to derive the protein’s topology:

1) a-helix detection: Helixhunter [10] was previously
used to determine the location of any a-helices, one
of two secondary structure elements (SSEs) commonly
found in proteins. More recently, we have developed
and used our own gradient-based tool to detect the
helices [19].

2) skeletonization: the Gorgon software package [16]
produces a set of line segments and planes making up
the basic “shape” described by the 3D density map in a
process called morphological thinning [14,15]. Gorgon

requires an input parameter; we have developed a tool
that requires no input parameter, but that produces
slightly more connected skeletal structures [18].

Kamal et al.’s topology ranking algorithm [3] attempts to
find the correct pathway through the skeleton and a-helices
that the amino acid sequence takes. They showed how
to shrink the original solution space of O(n!2™) possible
topologies, where 7 is the number of a-helices, to O(n?2")
using dynamic programming methods. The algorithm is able
to narrow the possible topologies by comparing the distances
between detected a-helices and the number of amino acids
that are known to lie between them (it is generally accepted
that the distance between two amino acids is between 3.5
and 3.8 A).

Topology matching relies on knowing the distances be-
tween a-helix endpoints along the protein backbone, seen in
Figure 1. We can use the skeleton to approximate the loca-
tion of the polymer chain, and therefore measure its length,
but it often contains many right angles, inflating the length
estimates we derive from them. As a countermeasure, we
employed the Douglas-Peucker line simplification algorithm
[4]. While this is a widely accepted algorithm for these
purposes, it requires an input threshold which affects its
output, hence another degree of freedom in our own solution
space. Other line simplification algorithms exist, claiming
optimality under different metrics and independence from
this input parameter [5,6,7,8].

i

Figure 1. The tunnel-like partition of space induced from all matrix values
over a threshold value in the 3D electron density map, and the associated
segment of protein backbone whose length we want to know.

There are several limitations with our previous approach,

both theoretical and practical. First, by constraining our
pathfinding to the skeleton of an image, we dramatically
reduce the size of our search space. A protein turn may
twist around in the general areas of high electron density as
encoded in the image—the skeleton represents one of many
possible such paths. By creating a roadmap containing all
locations within an iso-surface in the image, we are able to
try many different paths. We also avoid the need for input
parameters for skeletonization and curve simplification, by
working directly with the density map values, in exchange
for one parameter to construct the iso-surfaces.

II. APPROACH

Our approach is analogous to the robot motion planning
problem [2]. This can be done in any number of dimensions—
and the protein problem is in three dimensions—but for
purposes of simplicity we will present our approach in only
two. Our robot is a point with no size, and its work space
and configuration space (which are identical for point robots)
are the area inside the iso-surface defined in the image, as
illustrated in Figure 1 in the 3D case. Such a tunnel can be
obtained by removing all voxels from the 3D image under
a certain threshold value.

The problem, as stated formally, is the following: given a
simple polygon P subdividing the plane and a start point
s and end point f, find the shortest path from s to f
that lies completely inside the polygon. P and the robot’s
configuration space C are both embedded in Z2, hence our
solution will also contain only points in Z2. In future work,
we may choose to subdivide the intervals between points to
obtain a finer discretization of the tunnel interior for more
precise shortest path estimates. Figure 2 illustrates a simple
case.

Y S ! 1 1 1 1 T T
oo o o
1 S -
Y UUUUUURN (USSPt) IUUUUUEIOUUUOOD 000t S S O I J
2k o]
1 RN, - BRI i
of @ J
; 1 1 1 1 1 1 1 1 1 1
o 2 3 4 5 B 7 8 95 1m0
Figure 2. A 2D tunnel embedded in Z? with its vertices and start and

end configurations. The shaded region represents the configuration space
we will work in.

Beginning with the grayscale density image Z, we gener-
ate a binary image Zp by setting all voxels with values lesser
than some threshold 7 value to 0, and those voxels with
values higher than the threshold to 1. The union of edges

between pixels of opposite binary value forms an iso-surface
polygon P in 2D, and the threshold value that produced Zp
is called the iso-surface threshold. The pixels inside the iso-
surface can be readily discerned from the binary image, by
simply taking all entries with a value of 1.

Next, we construct our roadmap graph G by examining
all pairs of interior pixels and testing whether a straight line
segment between them intersects any edge in P. If there is
no intersection, then this is a possible path to take through P,
and two segments are added to G with the Euclidean distance
between endpoints as the edge weight: one in each direction.
When complete, G represents our entire search space for all
possible locations within the iso-surface. Figures 3 and 4
summarize this process.

Figure 3. The initial tunnel voxel graph.

\\//l"%;

Figure 4. i) The removed edges that intersect the tunnel boundary. ii) The
legal moves our robot can make to find the shortest path between s and f.

Using our search space, we would like to find the shortest
possible path, representing the lower bound on the length of
the protein’s turn. Our roadmap is a positively weighted,
directed graph, and so we use Dijsktra’s algorithm to find
all shortest paths from s, and reconstruct the path that ends
at f. A simple case is shown in Figure 5. There are several
situations where the choice of endpoints differ:

1) An endpoint lies inside 7P. We simply use the endpoint.

2) An endpoint lies outside P. We search through P’s
interior voxels for the one closest to the endpoint in
terms of Euclidean distance.

sh J
abd P i J
I]
il 48 T e v
Op ot t- : b
; 1 1 1 | 1 I 1 1 | 1
0 1 2 3 [3 7 8 3w
Figure 5. The shortest path between s and f that lies inside the tunnel.

The distances between vertices can be easily computed
with the result and summed to obtain our lower bound
estimation on the length of the protein polymer chain. Figure
6 summarizes the process:

Grayscale Image

¥

47/ Convert to binary image /
/Build iso-surface / / Build graph /

set of edges
representing boundary

Remove intersecting ed ges

Iso-surface
threshold

Fully connected graph
of all tunnel pixels

Graph with edges representing
all possible paths between
Y tunnel pixels

4ﬁstra f_l

Shortest paths to all tunnel
’ pixels from start point

Start/End Points

A

Shortest Path

|

Figure 6. The complete algorithm.

III. ANALYSIS

Our 2D images are square matrices of size s X s, so there
are exactly n = s2 pixels. The binary images we produce
are sparse binary matrices, with 7 = O(n) vertices, usually
much less than n. Generating the Zp requires visiting each
pixel once and so is ©(n). Collecting P’s interior pixel also
takes linear time w.r.t. n. To collect P’s edges from Zp, each
pixel is again visited once, and its four adjacent neighbors
are inspected, again a linearly asymptotic operation with a
constant number of operations at each pixel.

The most intensive operations are composing the roadmap
by testing for intersections between graph edges and P’s
edges, and searching the roadmap for the optimal shortest
path from s to f. By testing all possible pairs of interior pix-
els, we must make O(n?) comparisons. At each comparison,
we are testing the intersection between the line segment [
and any edge in P, which can be checked in constant time.
Dijkstra’s algorithm is quadratic in the number of vertices
in the graph, and so is also O(n?). Reconstructing the path
afterwards is trivial in comparison.

The overall complexity of the algorithm is dominated by
the O(n?) terms, so is quadratic w.r.t. the number of voxels
in the cube. Figure 7 summarizes the complexities of the
algorithm’s components.

shortestPath(Zs, s, f)
1) convert Zg to I Ip

o(
2) construct P’s edges O(
3) gather G’s vertices O(n
4) construct G O(
5) find intersections between P and G (
6) Dijkstra’s algorithm

Figure 7. The algorithm with time complexities.

IV. RESULTS

Testing was performed with a 1.7 GHz quad-core Intel i5
and 4 GB 1333 MHz DDR3 RAM, with cases ranging in
size from 9 < a < 248. A quadratic trend is evident in the
observed test cases, as can be seen in Table 1 and Figure
8. Table 1 shows the amount of tunnel voxels per case,
runtimes, and multiplication factors between subsequent
cases’ a and runtime values.

Table I
RUNTIMES WITH RESPECT TO a.
Case (i) a Runtime?! ;—11 %

0 9 0.48 - -

1 10 0.86 1.11 1.79
2 10 0.6 1.0 0.7
3 11 0.69 1.1 1.15
4 12 0.84 1.09 1.22
5 15 0.186 1.25 0.22
6 16 0.226 1.07 1.21
7 18 0.179 1.13 0.79
8 19 0.208 1.06 1.16
9 22 1.64875 1.16 7.93
10 25 1.64755 1.14 1.0
11 26 0.623 1.04 0.38
12 27 0.399 1.04 0.64
13 48 6.65008 1.78 16.67
14 94 24.6529 1.96 3.71
15 248 262.386 2.64 10.64

200+

100

S0

o a0 100 180 200 250

Figure 8. Runtimes with respect to a.

We implemented the algorithm in C++, utilizing the
CGAL [15] library for applicable geometric computations
and the Boost library [14] for graph operations. Some basic
geometries were supplied as test cases, as well as some
larger ones representative of the molecular structures that
the algorithm is meant to evaluate, all of which can be seen
in Figures 9-16. Cases 0-4 show the effect of eroding the
corner of an l-shaped polygon; also tested were polygons
with xy-, X-, y- and no monotonicity. Square-like and start-
like polygons are both present. All the test cases are in two
dimensions. However, our actual interest is in 3D molecules,
and therefore 3D tunnels and corresponding paths. We are
nearing completion of expanding our algorithm to 3D for
work on actual density maps.

Figure 9. Left: case i = 0. Right: case i = 1.

Figure 10. Left: case i = 2. Right: case i = 3.

Figure 11. Left: case i = 4. Right: case i = 5.

—

Lo———0]|

Figure 12. Left: case i = 6. Right: case i = 7.

==

Figure 13. Left: case i = 8. Right: case i = 9.

T

=

Figure 14. Left: case i = 10. Right: case i = 11.

e

A

Figure 15. Left: case i = 12. Right: case i = 13.

=&

Figure 16. Left: case i = 14. Right: case i = 15.

We also included, as a real-world example, a two-
dimensional slice from a density map. The map was gener-
ated using EMAN [20], by extracting the turn residues from
a PDB atomic structure file and supplying them as input, to
produce a synthetic density map representing only the turn.
The endpoints of the path are the corresponding endpoints
from the detected helix curves, as detected from a density
map generated from the surrounding helix-turn-helix motif
the turn in which the actual turn is located. We are currently
using these synthetic maps to reduce the noise present, which
is usually seen in real data, for initial development of this
new technique. Figure 17 shows the results from this case.

Figure 17. Left: a helix-turn-helix motif from PDB 1R1H in blue, with
the density map generated using the turn residues as the grey mesh. Right:
The iso-surface boundary for the median density value in magenta, with
the shortest path between the two helix endpoints in green.

V. CONCLUSION

Robot-motion planning principles show promise in esti-
mating the minimum length of a protein chain between two
helices given only the 3D density map for the molecule.
It replaces several steps: skeletonization, all-pairs shortest
path computation and line simplification, thereby reducing
the asymptotic complexity of the general problem’s solution.
It is readily translatable into the 3D case, which we have left
for further study. Overall, it is a more elegant solution to the
problem of estimating the lower bounds of polymer lengths
from 3D images.

ACKNOWLEDGMENT

The authors would like to thank Dong Si, Lin Chen and
Kamal al-Nasr of ODU for their work in related areas of
the protein topology matching problem, and for the software
they have provided. They would also like to acknowledge
the authors of the CGAL and Boost libraries.

REFERENCES

[1] Thomas H. Cormen et al, Introduction to Algorithms, 3rd ed.
Cambridge, Massachusetts: The MIT Press, 2009.

[2] Mark de Berg et al, Computational Geometry: Algorithms and
Applications, 3rd ed. Berlin: Springer-Verlag, 2008.

[3] Kamal al Nasr et al, Ranking Valid Topologies of the Secondary
Structure Elements Using a Constraint Graph, Journal of
Bioinformatics and Computational Biology 9(3), 2011, pp.
415-430.

[4] John Hershberher and Jack Snoeyink, Speeding Up the
Douglas-Peucker Line-Simplification Algorithm, Proc. 5th
Intl. Symp. on Spatial Data Handling, 1992, pp. 134-143.

[5] Pankaj K. Agarwal et al, Near-Linear Time Approximation
Algorithms for Curve Simplification, Algorithmica 43, 2005,
pp. 203-219.

[6] Prosenjit Bose et al, Area-Preserving Approximations of Polyg-
onal Paths, Journal of Discrete Algorithms 4, 2006, pp. 554-
566.

[71 Wang Xiao-li and Zhang De, Selecting Optimal Threshold
Value of Douglas-Peucker Algorithm Based on Curve Fit, First
Intl. Conf. on Networking and Dist. Computing, 2010.

[8] Veregin, Howard, Line Simplification, Geometric Distortion,
and Positional Error, Cartographica 36(1), 1999, pp. 25-39.

[9] Bernard Chazelle et al, Algorithms for Bichromatic Line-
Segment Problems and Polyhedral Terrains, Algorithmica
11, 1994, pp. 116-132.

[10] A. Dal Palu et al, Identification of a-Helices from Low
Resolution Density Maps, Comp. Syst. Bioinformatics Conf.,
2006, pp. 89-98.

[11] Khalid Saeed et al, K3M: A Univeral Algorithm for Image
Skeletonization and a Review of Thinning Techniques, Int. J.
Appl. Math. Comp. Sci. 20(2), 2010, pp. 317-335.

[12] Sasakthi S. Abeysinge et al, Segmentation-free Skeletoniza-
tion of Grayscale Volumes for Shape Understanding, —SMI
2008, pp. 63-71.

[13] Ju, Tao, Matthew L. Baker and Wah Chiu, Computing a Fam-
ily of Skeletons of Volumetric Models for Shape Description,
Computer Aided Design 39(5), 2007, pp. 352-360.

[14] Siek, Jeremy G., Lie-Quan Lee and Andrew Lumsdaine, The
Boost Graph Library: User Guide and Reference Manual,
Addison-Wesley Professional, 2001.

[15] NA. CGAL: User and Reference Manual,
Release 4.1, October 2012. Retrieved from
http://www.cgal.org/Manual/latest/doc_pdf/cgal_manual.pdf

[16] NA. The Gorgon Project,
http://gorgon.wustl.edu/index.php

Retrieved from

[17] Andrew McKnight et al, CryoEM Skeleton Length Estimation
using a Decimated Curve, 1EEE BIBM CSBW, 2012, pp.
109-113.

[18] Nasr KA, Chen L, Si D, Ranjan D, Zubair M, He J, Building
the Initial Chain of the Proteins through De Novo Modeling
of the Cryo-Electron Microscopy Volume Data at the Medium
Resolutions, ACM Conference on Bioinformatics, Computa-
tional Biology and Biomedicine, Orlando, FL 2012.

[19] Si D, Ji S, Nasr K, He J, A machine learning approach for
the identifcation of protein secondary structure elements from
electron cryo-microscopy density maps.hskip lem plus 0.5em
minus 0.4emBiopolymers 2012, 97(9):698-708.

[20] Ludtke S, Baldwin P, Chiu W, EMAN: semiautomated soft-
ware for high-resolution single-particle reconstructions, J
Struct Biol 1999, 128:82-97.

