
High Quality Real-Time Image-to-Mesh Conversion for
Finite Element Simulations

Panagiotis Foteinos
Department of Computer Science

College of William and Mary
Old Dominion University

pfot@cs.wm.edu

Nikos Chrisochoides
Department of Computer Science

Old Dominion University
nikos@cs.odu.edu

ABSTRACT
In this paper, we present a parallel Image-to-Mesh Con-

version (I2M) algorithm with quality and fidelity guaran-
tees achieved by dynamic point insertions and removals.
Starting directly from an image, it is able to recover the
isosurface and mesh the volume with tetrahedra of good
shape. Our tightly-coupled shared-memory parallel spec-
ulative execution paradigm employs carefully designed con-
tention managers, load balancing, synchronization and op-
timizations schemes which boost the parallel efficiency with
little overhead: our single-threaded performance is faster
than CGAL, the state of the art sequential mesh generation
software we are aware of. The effectiveness of our method is
shown on Blacklight, the Pittsburgh Supercomputing Cen-
ter’s cache-coherent NUMA machine, via a series of case
studies justifying our choices. We observe a more than 82%
strong scaling efficiency for up to 64 cores, and a more than
95% weak scaling efficiency for up to 144 cores, reaching a
rate of 14.7 Million Elements per second. To the best of our
knowledge, this is the fastest and most scalable 3D Delaunay
refinement algorithm.

1 Introduction
Image-to-mesh (I2M) conversion enables patient-specific

Finite Element modeling in image guided diagnosis and ther-
apy. The ability to tessellate a medical image of multiple
tissues into tetrahedra enables Finite Element (FE) Anal-
ysis on patient-specific models [6, 38]. This has significant
implications in many areas, such as imaged-guided therapy,
development of advanced patient-specific blood flow mathe-
matical models for the prevention and treatment of stroke,
patient-specific interactive surgery simulation for training
young clinicians, and study of bio-mechanical properties of
collagen nano-straws of patients with chest wall deformities,
to name just a few.

The sequential volume mesh generation methods can be
divided into two categories: PLC-based and Isosurface-based.
The PLC-based methods assume that the surface ∂O of
the volume O (about to be meshed) is given as a Piecewise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’13, June 10–14, 2013, Eugene, Oregon, USA.
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

Linear Complex (PLC) which contains linear segments and
polygonal facets embedded in 3 dimensions [19, 21, 41, 51].
The limitation of this method is that the success of mesh-
ing depends on the quality of the given PLC: if the PLC
forms very small angles, then termination might be compro-
mised [51, 53].

The Isosurface-based methods assume that O is known
through a function f : R3 → R, such that points in different
regions of interest evaluate f differently. This assumption
covers a wide range of inputs used in modeling and simula-
tion, such as parametric surfaces/volumes [45], level-sets and
segmented multi-labeled images [15, 36, 46]. Function f can
also represent PLCs [36] (albeit without topological guaran-
tees), a fact that makes the Isosurface-based method a gen-
eral approach. Isosurface-based methods ought to recover
and mesh both the isosurface ∂O and the volume. Also,
since the isosurface is not already meshed into a PLC but
it is recovered and meshed during refinement, this method
does not suffer from any angle constraints.

In this paper, we present a parallel high quality Delau-
nay Image-to-Mesh Conversion (PI2M) Isosurface-based al-
gorithm which, starting from a multi-labeled segmented im-
age, recovers the isosurface(s) ∂O of the object(s) O and
meshes the volume concurrently. Our method is able to
produce millions of high-quality elements within seconds re-
specting at the same time the exterior and interior bound-
aries of tissues. As far as we know, PI2M is the first parallel
Isosurface-based method.

In the parallel mesh generation literature, only PLC-based
methods have been considered. That is, either O is given as
an initial mesh [17, 23, 32, 56] or ∂O is already represented
as a polyhedral domain [29, 33, 37, 42]. We, on the contrary,
mesh both the volume and the isosurface directly from an
image and not from a polyhedral domain. This flexibility
offers great control over the trade-off between quality and
fidelity: parts of the isosurface of high curvature can be
meshed with more elements of better quality. Moreover,
our technique avoids the undesired “stair-case” effect [15, 46]
that occurs to algorithms that treat the surface voxels as the
PLC of the domain [19] (since those input planar facets meet
always at 0 or 90 degrees) or to algorithms that heuristically
recover the isosurface [40] without topological guarantees.

PI2M recovers the tissues’ boundaries and generates qual-
ity meshes through a sequence of dynamic insertion and dele-
tion of points which is computed on the fly and in parallel
during the course of refinement. Note that none of the par-
allel Delaunay refinement algorithms we know of support
point removals. Point removal, however, offers new and rich

1

refinement schemes which are shown in the sequential mesh-
ing literature [26, 34] to be very effective in practice.

In our previous work [27], we implemented a parallel Tri-
angulator able to support fully dynamic insertions and re-
movals. Our parallel Triangulator, however, has one major
limitation: as is the case with all Triangulators [8, 11, 12, 27],
it tessellates only the convex hull of a set of points, and it
is not concerned with any quality or fidelity constraints im-
posed by the input geometry and the user. Also, in par-
allel triangulation literature [8, 11, 12], the pointset (whose
convex hull is to be constructed) is static and given before
the algorithm starts. In this paper, we extend our previ-
ous work [27], such that the “discovery” of the (dynamically
changing) set of points to be inserted or removed (that will
eventually force the final mesh to satisfy the quality and fi-
delity constraints) is performed in parallel as well: a very dy-
namic process that increases parallel complexity even more.
This is neither incremental nor a trivial extension.

In this paper, we design and implement PI2M, a parallel
Isosurface-based Delaunay mesh refinement scheme based
on our earlier sequential prototype [26, 28]. Our implemen-
tation employs low level locking mechanisms, carefully de-
signed contention managers, and well-suited load balancing
schemes that not only boost the parallel performance, but
they exhibit very little overhead: our single threaded perfor-
mance is more than 10 times faster than our previous sequen-
tial code and it is consistently 35% faster than CGAL [2],
the state of the art Isosurface-based meshing tool.

Parallel Delaunay refinement is a highly irregular and
data-intensive application and as such, it is very dynamic
in terms of resource management. Implementing an efficient
parallel Delaunay refinement would help the community gain
insight into a whole family of problems characterized by un-
predictable communication patterns [7]. We test and show
the effectiveness of PI2M on the challenging cc-NUMA ar-
chitecture; specifically, we used the Pittsburgh Supercom-
puting Center’s Blacklight, employing BoostC++ threads.
We observe a more than 82% strong scaling efficiency for up
to 64 cores, and also a more than 95% weak scaling efficiency
for up to 144 cores, reaching a rate of 14.7 Million Elements
per second. We are not aware of any 3D parallel Delaunay
refinement method achieving such a performance, on either
distributed or shared-memory architectures. For a higher
core count, however, our method exhibits considerable per-
formance degradation. We show that this deterioration is
not because of load imbalance or high thread contention,
but because of the intensive and hop-wise slower commu-
nication traffic involved in increased problem sizes. This
problem could be potentially be alleviated by using hybrid
approaches to explore network hierarchies [22]. However,
this is outside the scope of the paper. Our goal is to develop
the most efficient and scalable method on a moderate num-
ber of cores. Our long term goal is to increase scalability by
exploiting concurrency at different levels [22].

In summary, the method we present (PI2M): (1) exhibits
the best single-threaded performance, to the best of our
knowledge, (2) supports parallel Delaunay insertions and
removals; past methods including ours dealt only with point
insertions, a much easier task, (3) conforms to user-specified
quality, and most importantly, to the newly added fidelity
constraints, (4) recovers and meshes the isosurface with
topological and geometric guarantees from the beginning of
mesh refinement, and thus exploits parallelism earlier (see

Figure 4), and (5) fills the volume of the domain O with
millions of high-quality tetrahedra within seconds.

Section 2 presents the related work. Section 3 briefly de-
scribes the Sequential Delaunay Refinement for Smooth Sur-
faces and Section 4 outlines the basic building blocks of our
parallel implementation. Section 5 presents the Contention
Managers. Section 6 presents the strong and weak scaling re-
sults together with load balancing improvements. Section 7
is dedicated to single-threaded evaluation. Section 8 sum-
marizes our findings and concludes the paper.

2 Related Work
There is extensive previous work on parallel mesh gen-

eration, including various techniques, such as: Delaunay,
Octree, or Advancing Front meshing. Note that parallel De-
launay mesh generation/refinement should not be confused
with parallel Delaunay triangulation [8, 11, 12, 27]. Delau-
nay triangulation tessellates the convex hull of a given, static
set of points. Mesh generation focuses on element quality
and the conformity to the tissues’ boundary, which neces-
sitates the parallel insertion or removal of points which are
gradually and concurrently discovered through refinement.

One of the main differences between our method and the
other parallel mesh generation algorithms in the literature
is that they either have the surface of the domain given as
a polyhedron, or the extraction of the polyhedron is done
sequentially, or they start by an initial background octree.
As explained in Section 1, our method constructs the poly-
hedral representation of the object’s surface in parallel, to-
gether with the volume meshing, thus taking advantage of
another degree of parallelism.

Given an initial mesh, de Cougny and Shephard [23] dy-
namically repartition the domain such that every processor
has equal work. They also describe “vertex snapping”, a
method that can be used for the representation of curved
boundaries, but they give no guarantees about the achieved
fidelity (both geometrically and topologically). In [42], the
authors implement a tightly-coupled method like ours. We,
however, take extra care to greatly reduce the number of roll-
backs (see Section 5), and thus achieve excellent speedups
for a higher core count. In [18] and [37], a partially-coupled
and a decoupled method for distributed systems is developed
based on medial axis decomposition. Medial axis decompo-
sition in 3D inputs, however, is a very challenging and still
unsolved task. In contrast, our method does not rely on any
domain decomposition, and as such, it is flexible enough to
be extended to arbitrary dimensions. Kadow [33] starts from
a polygonal surface (PSLG) and offers tightly coupled refine-
ment schemes in 2D, respectively. In our case, the polyhe-
dral representation of the object’s surface is done in parallel,
which adds extra functionality. In [20], the authors present
a method which allows the safe insertion of points indepen-
dently without synchronization. The extension, however,
of their method for point removal support is not straight-
forward. Galtier and George [29] compute a smooth sepa-
rator and distribute the subdomains to distinct processors.
However, the separators they create might not be Delaunay-
admissible and thus they need to restart the process from
the beginning. Weatherill et al. [49] subdivide the domain
into decoupled blocks. Each block then is meshed with con-
siderably less communication and synchronization. Tu et
al. [56] describe a parallel octree method that interacts with
the solver in parallel and efficiently. The work of Zhou et

2

(a) (b) (c)

Figure 1: (a) The virual box is meshed into 6 tetrahedra. It
encloses the volumetric object. (b) During refinement, the
final mesh is gradually being carved according to the Rules.
(c) At the end, the set of the tetrahedra whose circumcenter
lies inside O is the geometrically and topologically correct
mesh M.

al. [58], and the Forest-of-octrees method of Burstedde et
al. [17] offer techniques for fair and efficient data migration
and partitioning in parallel. Load balancing and data migra-
tion is also used by Okusanya and Peraire [43] to distribute
bad elements across processors. Ito et al. [32] start from
an initial mesh and Löhner [39] from a PLC for subsequent
parallel mesh generation in advancing front fashion. Oliker
and Biswas [44] employ three different architectures to test
the applicability of 2D adaptive mesh refinement. They con-
clude that unstructured mesh refinement is not suitable for
cc-NUMA architectures: irregular communication patterns
and lack of data locality deteriorate performance sometimes
even on just 4 cores. In this paper, we show that this be-
comes a problem in a much higher core count; i.e., with this
work, we push the envelop even further. Clearly, this ap-
proach has its own limitations, but a highly scalable and
efficient NUMA implementation combined with the decou-
pled and partially coupled approaches we developed in the
past can allow us to explore concurrency levels in the order
of at least 108 to 1010 [22].

3 Delaunay Refinement for Smooth Surfaces
Sequential Delaunay Refinement for smooth surfaces is

presented in detail in the literature [45, 46] and in our pre-
vious work [26, 28]. In this Section, we briefly outline the
main concepts.

As is usually the case in the literature [3, 36, 46], we as-
sume that the surface of the object ∂O to be meshed is
a closed smooth 2-manifold. To prove that the boundary
∂M of the final mesh M is geometrically and topologically
equivalent with ∂O, we make use of the sample theory [3].
Omitting the details, it can be proved [3, 4] that the Delau-
nay triangulation of a dense pointset lying precisely on the
isosurface ∂O contains (as a subset) the correct mesh M.
That mesh consists of the tetrahedra t whose circumcenter
c (t) lies inside O. Formally, the sample theorem could be
stated as follows [4, 14, 25]:

Theorem 1. Let V be samples of ∂O. If for any point
p ∈ ∂O, there is a sample v ∈ V such that |v − p| ≤ δ,
then the boundary triangles of D|O (V) is a provably good
topological approximation of ∂O. Also, the 2-sided Hausdorff
distance between the mesh and ∂O is O(δ2).

Typical values for δ are usually fractions of the local fea-
ture size of ∂O. See [4, 14, 25, 45] for well defined δ param-
eters. In our application, δ values equal to multiples of the
voxel size is sufficient.

Therefore, one of the goals of the refinement is to sample
the isosurface densely enough. To achieve that, our algo-
rithm first constructs a virtual box which encloses O. The

box is then triangulated into 6 tetrahedra, as shown in Fig-
ure 1. This is the only sequential part of our method. Next,
it dynamically computes new points to be inserted into or
removed from the mesh maintaining the Delaunay property.
This process continues, until certain fidelity and quality cri-
teria are met. Specifically, the vertices removed or inserted
are divided into 3 groups: isosurface vertices, circumcenters,
and surface-centers.
The isosurface vertices will eventually form the sampling

of the surface so that Theorem 1 holds together with its the-
oretical guarantees about the fidelity of the mesh boundary.
Let c (t) be the circumcenter of a tetrahedron t. In order
to guarantee termination, our algorithm inserts the isosur-
face vertex which is the closest to c (t). In the sequel, we
shall refer to the Closest IsoSurface vertex of a point p as
cis (p) ∈ ∂O. The isosurface vertices (like the circumcen-
ters) are computed during the refinement dynamically with
the help of a parallel Euclidean Distance Transformation
(EDT) presented and implemented in [54]. Specifically, the
EDT returns the surface voxel p which is closest to p. A
surface-voxel is a voxel that lies inside the foreground and
has at least one neighbor of different label. Then, we traverse

the ray
−→
pp′ on small intervals and we compute cis (p) ∈ ∂O

by interpolating the positions of different labels [40]. The
density of the inserted isosurface vertices is defined by the
user by a parameter δ > 0. A low value for δ implies a
denser sampling of the surface, and therefore, according to
Theorem 1, a better approximation of ∂O.
The circumcenter c (t) of a tetrahedron t is inserted when

t has low quality (in terms of its radius-edge ratio [51]) or
because its circumradius r(t) is larger than a user-defined
size function sf (·). Circumcenters might also be chosen to be
removed, when they lie close to an isosurface vertex, because
in this case termination is compromised.

Consider a facet f of a tetrahedron. The Voronoi edge
V (f) of f is the segment connecting the circumcenters of
the two tetrahedra that contain f . The intersection V (f) ∩
∂O is called a surface-center and is denoted by csurf (f).
During refinement, surface-centers are computed similarly
to the isosurfaces (i.e., by traversing V (f) on small intervals
and interpolating positions of different labels) and inserted
into the mesh to improve the planar angles of the boundary
mesh triangles [52] and to ensure that the vertices of the
boundary mesh triangles lie precisely on the isosurface [45].

In summary, tetrahedra and faces are refined according
to the following Refinement Rules: (R1) Let t be an inter-
secting tetrahedron. Compute the closest isosurface point
z = cis (c (t)). If z is at a distance not closer than δ to any
other isosurface vertex, then z is inserted. (R2) Let t be
an intersecting tetrahedron. Compute the closest isosurface
point z = cis (c (t)). If its radius r(t) is larger than 2 ·δ, then
c (t) is inserted. (R3) Let f be a facet whose Voronoi edge
V (f) intersects ∂O at csurf (f). If either its smallest planar
angle is less than 30◦ or a vertex of f is not an isosurface
vertex, then csurf (f) is inserted. (R4) If t is an interior
tetrahedron whose radius-edge ratio is larger than 2, then
c (t) is inserted. (R5) Let t be an interior tetrahedron. If
its radius r(t) is larger than sf (c (t)), then c (t) is inserted.
(R6) Let t be incident to an isosurface vertex z. All the al-
ready inserted circumcenters closer than 2δ to z are deleted.
Rules R1 and R2 are responsible for creating the appro-

priate dense sample so that the boundary triangles of the
resulting mesh satisfies Theorem 1 and thus the fidelity guar-

3

antees. R3 and R4 deal with the quality guarantees, while
R5 imposes the size constraints of the users. R6 is needed
so termination can be guaranteed. See [26, 28, 45] for more
details. When none of the above rules applies, then refine-
ment is complete. In our previous work [26, 28], we prove
that termination is guaranteed, the radius-edge ratio of ell
elements in the mesh is less than 2, and the planar angles of
the boundary mesh triangles is less than 30◦.

4 Parallel Delaunay Refinement for Smooth

Surfaces
In this Section, we outline the main concepts of our par-

allel implementation. Note that our tightly-coupled paral-
lelization does not alter the fidelity (Theorem 1) and the
quality guarantees described in the previous section.

1) Poor Element List (PEL): Each thread Ti maintains
its own Poor Element List (PEL) PELi. PELi contains the
tetrahedra that violate the Refinement Rules and need to
be refined by thread Ti accordingly.

2) Operation: An operation that refines an element can
be either an insertion of a point p or the removal of a ver-
tex p. In the case of insertion, the cavity C (p) needs to
be found and re-triangulated according to the well known
Bowyer-Watson kernel [16, 57]. Specifically, C (p) consists
of the elements whose circumsphere contains p. These ele-
ments are deleted (because they violate the Delaunay prop-
erty) and p is connected to the vertices of the boundary of
C (p). In the case of a removal, the ball B (p) needs to be
re-triangulated. As explained in [24], this is a more challeng-
ing operation than insertion, because the re-triangulation of
the ball in degenerate cases is not unique which implies the
creation of illegal elements, i.e., elements that cannot be
connected with the corresponding elements outside the ball.
We overcome this difficulty by computing a local Delaunay
triangulation DB(p)

(or DB for brevity) of the vertices in-
cident to p, such that the vertices inserted earlier in the
shared triangulation are inserted into DB first. In order to
avoid races associated with writing, reading, and deleting
vertices/cells from a PEL or the shared mesh, any vertex
touched during the operation of cavity expansion, or ball
filling needs to be locked. We utilize GCC’s atomic built-in
functions for this goal, since they perform faster than the
conventional pthread try locks. Indeed, replacing pthread
locks (our first implementation) with GCC’s atomic built-
ins (current implementation) decreased the execution time
by 3.6% on 1 core and by 4.2% on 12 cores.

In the case a vertex is already locked by another thread,
then we have a rollback : the operation is stopped and the
changes are discarded [42]. When a rollback occurs, the
thread moves on to the next bad element in its PEL.

3) Update new and deleted cells: After a thread Ti

completes an operation, new cells are created and some cells
are invalidated. The new cells are those that re-triangulate
the cavity (in case of an insertion) or the ball (in case of
a removal) of a point p and the invalidated cells are those
that used to form the cavity or the ball of p right before the
operation. Ti determines whether a newly created element
violates a rule. If it does, then Ti pushes it back to PELi (or
to another thread’s PEL, see below) for future refinement.
Also, Ti removes the invalidated elements from the PEL
they have been residing in so far, which might be the PEL
of another thread. To decrease the synchronization involved

for the concurrent access to the PELs, if the invalidated cell
c resides in another thread Tj ’s PELj , then Ti removes c

from PELj only if Tj belongs to the same socket with Ti.
Otherwise, Ti raises cell c’s invalidation flag, so that Tj can
remove it when Tj examines c.

4) Load Balancer: Right after the triangulation of the
virtual box and the sequential creation of the first 6 tetra-
hedra, only the main thread might have a non-empty PEL.
Clearly, Load Balancing is a fundamental aspect of our im-
plementation. Our base (not optimized) Load Balancer is
the classic Random Work Stealing (RHW) [13] technique,
since it best fits our implementation design. In Section 6.1,
we implement an optimized work stealing balancer that takes
advantage of the NUMA architecture and achieves an excel-
lent performance.

If the poor element list PELi of a thread Ti is empty
of elements, Ti “pushes back” its ID to the Begging List, a
global array that tracks down threads without work. Then,
Ti is busy-waiting and can be awaken by a thread Tj right
after Tj gives some work to Ti. A running thread Tj , every
time it completes an operation (i.e., a Delaunay insertion or
a Delaunay removal), it gathers the newly created elements
and places the ones that are poor to the PEL of the first
thread Ti found in the begging list. The classification of
whether or not a newly created cell is poor or not is done
by Tj . Tj also removes Ti from the Begging List.
To decrease unnecessary communication, a thread is not

allowed to give work to threads, if it does not have enough
poor elements in its PEL. Hence, each thread Ti maintains a
counter that keeps track of all the poor and valid cells that
reside in PELi. Ti is forbidden to give work to a thread, if
the counter is less than a threshold. We set that threshold
equal to 5, since it yielded the best results. When Ti invali-
dates an element c or when it makes a poor element c not to
be poor anymore, it decreases accordingly the counter of the
thread that contains c in its PEL. Similarly, when Ti gives
extra poor elements to a thread, Ti increases the counter of
the corresponding thread.

5) Contention Manager (CM): In order to eliminate
livelocks caused by repeated rollbacks, threads talk to a Con-
tention Manager (CM). Its purpose is to pause on run-time
the execution of some threads making sure that at least one
will do useful work so that system throughput can never
get stuck [50]. See Section 5 for approaches able to greatly
reduce the number of rollbacks and yield a considerable
speedup, even in the absence of enough parallelism. Con-
tention managers avoid energy waste because of rollbacks
and reduce dynamic power consumption, by throttling the
number of threads that contend, thereby providing an op-
portunity for the runtime system to place some cores in deep
low power states.

5 Contention Manager
The goal of the Contention Manager (CM) is to reduce the

number of rollbacks and guarantee the absence of rollbacks,
if possible [31, 50].

We implemented and compared three contention techniques:
the Aggressive Contention Manager (Aggressive-CM) [50],
the Random Contention Manager (Random-CM), and the
Global Contention Manager (Global-CM).

The Aggressive-CM and Random-CM are non-blocking
schemes. As is usually the case for non-blocking schemes [5,
31, 35, 42, 50], we do not prove absence of livelocks for these

4

techniques. Nevertheless, they are useful for comparison
purposes as Aggressive-CM is the simplest to implement,
and Random-CM has already been presented in the mesh
generation literature [5, 35, 42].

Note that none of the earlier Transactional Memory tech-
niques [31, 50] and the Random Contention Managers pre-
sented in the past [5, 35, 42] solve the livelock problem. In
this section, we show that if livelocks are not provably elim-
inated in our application, then termination is compromised
on high core counts.

5.1 Aggressive-CM
The Aggressive-CM is a brute-force technique, since there

is no special treatment. Threads greedily attempt to apply
the operation, and in case of a rollback, they just discard the
changes, and move on to the next poor element to refine (if
there is any). The purpose of this technique is to show that
reducing the number of rollbacks is not just a matter of per-
formance, but a matter of correctness. Indeed, experimental
evaluation (see Section 5.4) shows that Aggressive-CM very
often suffers from livelocks.

5.2 Random-CM
Random-CM has already been presented (with minor dif-

ferences) in the literature [5, 35, 42] and worked fairly well,
i.e, no livelocks were observed in practice. This scheme lets
“randomness”choose the execution scenario that would elim-
inate livelocks. We implement this technique as well to show
that our application needs considerably more efficient CMs.
Indeed, recall that in our case, there is no much parallelism
in the beginning of refinement and therefore, there is no
much randomness that can be used to break the livelock.

Each thread Ti counts the number of consecutive rollbacks
ri. If ri exceeds a specified upper value r+, then Ti sleeps
for a random time interval ti. If the consecutive rollbacks
break because an operation was successfully finished then ri
is reset to 0. The time interval ti is in milliseconds and is a
randomly generated number between 1 and r+. The value
of r+ is set to 5. Other values yielded similar results. Note
that lower values for r+ do not necessarily imply faster ex-
ecutions. A low r+ decreases the number of rollbacks much
more, but increases the number of times that a contented
thread goes to sleep (for ti milliseconds). On the other hand,
a high r+ increases the number of rollbacks, but randomness
is given more chance to avoid livelocks; that is, a contented
thread has now more chances to find other elements to refine
before it goes to sleep (for ti milliseconds).

Random-CM cannot guarantee the absence of livelocks.
As noted in [10], this randomness can rarely lead to livelocks,
but it should be rejected as it is not a valid solution. We
also experimentally verified that livelocks are not that rare
(see Section 5.4).

5.3 Global-CM
Global-CM maintains a global Contention List (CL). If

a thread Ti encounters a rollback, then it writes its id in
CL and it busy waits (i.e., it blocks). Threads waiting in
CL are potentially awaken (in FIFO order) by threads that
have made a lot of progress, or in other words, by threads
that have not recently encountered many rollbacks. There-
fore, each thread Ti computes its “progress”by counting how
many consecutive successful operations si have been per-
formed without an interruption by a rollbacks. If si exceeds
a upper value s+, then Ti awakes the first thread in CL, if

Table 1: Comparison among Contention Managers (CM).
Global-CM greatly reduced the number of rollbacks and the
overhead time.

128 cores 256 cores
Random-CM Global-CM Global-CM

execution time 64s 23s 22s

rollbacks 25×106 (52.9%) 728,087 (3.1%) 883,768 (3.6%)
contention
overhead

4,317s 1,049 3,054s

load balance
overhead

869s 130s 281s

rollback over-
head

595s 3s 3s

total overhead 5,703s 1,183s 3,339s
speedup 16.9 47.0 49.1

any. The value for s+ is set to 10. Experimentally, we found
that this value yielded the best results.

Global-CM can never create livelocks, because it is a block-
ing mechanism as opposed to random-CM which does not
block any thread. Nevertheless, the system might end up to
a deadlock, because of the interaction with the Load Balanc-
ing’s Begging List BL (see the Load Balancer in Section 4).

Therefore, at any time, the number of active threads needs
to be tracked down, that is, the number of threads that do
not busy wait in either the CL or the Begging List. A thread
is forbidden to enter CL and busy wait, if it sees that there is
only one (i.e., itself) active thread; instead, it skips CL and
attempts to refine the next element in its Poor Element List.
Similarly, a thread about to enter the Begging List (because
it has no work to do) checks whether or not it is the only
active thread at this moment, in which case, it awakes a
thread from the CL, before it starts idling for extra work.
In this simple way, the absence of livelocks and deadlocks are
guaranteed, since threads always block in case of a rollback
and there will always be at least one active thread.

5.4 Comparison
For this case study, we evaluated each CM on the CT ab-

dominal atlas of IRCAD Laparoscopic Center (http://www.
ircad.fr/) using 128 and 256 Blacklight cores (see Table 2 for
its specification). The final mesh consists of about 150×106

tetrahedra. The single-threaded execution time on Black-
light was 1,080 seconds. See Table 1.

There are three direct sources of wasted cycles in our al-
gorithm, and all of them are shown in Table 1. The con-
tention overhead time is the total time that threads spent
busy-waiting on a Contention List (or busy-waiting for a
random number of seconds as is the case of Random-CM)
and accessing the Contention List (in case of Global-CM).
The load balance overhead time is the total time that
threads spent busy-waiting on the Begging List waiting for
more work to arrive (see Section 4) and accessing the Beg-
ging List. Lastly, the rollback overhead time is the total
time that threads had spent for the partial completion of an
operation right before they decided that they had to discard
the changes and roll back.

The Aggressive-CM is missing for both core counts, and
the Random-CM is missing from the 256-core experiment,
because they were stuck in a livelock. Indeed, we exper-
imentally found that they did not make any progress for
more than 1 hour, a scenario of livelock.

Observe that Global-CM greatly reduced the number of
rollbacks and the associated wasted cycles, as compared to
the standard Contention Manager used in the literature.
Random-CM encounters a rollback 50% of the total oper-

5

Table 2: The specifications of the cc-NUMA machines we
used.

Model
cores per
socket

sockets
per blade

blades
memory
per socket

max hops

Blacklight
Intel Xeon
X7560

8 2 128 64GB 5

CRTC
Intel Xeon
X5690

6 2 1 48GB 0

Ti

BL1=Ti.GetMySocketBL();

Is BL1 full?

Level 1 Begging List (BL)
(shared among threads of the same socket)

capacity=cores per socket -1

BL2=Ti.GetMyBladeBL();

Is BL2 full?

Level 2 Begging List (BL)
(shared among threads of the same blade)

capacity=sockets per blade -1

BL3=Ti.GetGlobalBL();

Is BL3 full?

Level 3 Begging List (BL)
(shared among all threads)

capacity=blades reserved -1

Termination
(There is no unrefined

element in the mesh)

BL1=Ti.GetMySocketBL();

Is BL1 empty?

BL2=Ti.GetMyBladeBL();

Is BL2 empty?

BL3=Ti.GetGlobalBL();

Is BL3 empty?

no more work

no

Ti waits on BL1

yes

no

Ti waits on BL2

yes

no

Ti waits on BL3

yes

there is more work

no

Ti gives work to

and awakes a thread in BL1

no

Ti gives work to

and awakes a thread in BL2

no

Ti gives work to

and awakes a thread in BL3

yes

yes

yes

Figure 2: The 3-layer Hierarchical Work Stealing design.
Threads ask work from their closest candidates first.

ations attempted, while Global-CM decreased it down to
3% on 128 cores. See the speedup achieved by these two
CMS (over the single-thread execution): Global-CM is 2.7
times faster. Even on 256 cores, where both Aggressive-CM
and Random-CM failed to terminate, Global-CM achieved
a (slight) improvement over its 128-core performance.

Although there are other elaborate and hybrid contention
techniques [31, 50], none of them guarantees the absence of
livelocks. Therefore, we chose Global-CM because of its sim-
plicity and efficiency.

6 Performance
In this Section, we describe a load balancing optimization

and present the strong and weak scaling performance on
Blacklight. See Table 2 for its specifications.

6.1 Hierarchical Work Stealing (HWS)
In order to further decrease the communication overhead

associated with remote memory accesses, we implemented a
Hierarchical Work Stealing scheme (HWS) by taking advan-
tage of the cc-NUMA architecture.

We re-organized the Begging List into three levels: BL1,
BL2, and BL3. See Figure 2. Threads of a single socket
that run out of work place themselves into the first level
begging list BL1 which is shared among threads of a sin-
gle socket. If the thread realizes that all the other socket
threads wait on BL1, it skips BL1, and places itself to BL2,
which is shared among threads of a single blade. Similarly, if
the thread realizes that BL2 already accommodates a thread
from the other socket in its blade, it asks work by placing
itself into the last level begging list BL3. When a thread
completes an operation and is about to send extra work to

an idle thread, it gives priority to BL1 threads first, then
to BL2, and lastly to BL3 threads. In other words, BL1
is shared among the threads of a single socket and is able
to accommodate up to number of threads per socket − 1
idle threads (in Blacklight, that is 7 threads). BL2 is shared
among the sockets of a single blade and is able to accommo-
date up to number of sockets per blade−1 idle threads (in
Blacklight, that is 1 thread). Lastly, BL3 is shared among
all the allocated blades and can accommodate at most one
thread per blade. In this way, an idle thread Ti tends to take
work first from threads inside its socket. If there is none, Ti

takes work from a thread of the other socket inside its blade,
if any. Finally, if all the other threads inside Ti’s blade are
idling for extra work, Ti places its id to BL3, asking work
from a thread of another blade.

6.2 Strong Scaling Results
Figure 3 shows the strong scaling experiment demonstrat-

ing both the Random Work Stealing (RWS) load balance
and the Hierarchical Work Stealing (HWS). The input image
we used is the CT abdominal atlas obtained by IRCAD La-
paroscopic Center (http://www.ircad.fr/). The final mesh
generated consists of 147×106 elements. On a single Black-
light core, the execution time was 1300 seconds.

Observe that the speed-up of RWS deteriorates by a lot
for more than 64 cores (see the green line in Figure 3a). In
contrast, HWS manages to achieve a (slight) improvement
even on 176 cores. This could be attributed to the fact that
the number of inter-blade (i.e., remote) accesses are greatly
reduced by HWS (see Figure 3b), since begging threads are
more likely to get poor elements created by threads of their
own socket and blade first. Clearly, this reduces the com-
munication involved when a thread reads memory residing
in a remote memory bank. Indeed, on 176 cores, 98% of all
the number of times threads asked for work, they received it
from a thread of their own blade, yielding a 42% reduction
in inter-blade accesses, as Figure 3b shows.

Figure 3c shows the breakdown of the overhead time per
thread for HWS across runs. Note that since this is a strong
scaling case study, the ideal behavior is a linear increase
of the height of the bars with the respect to the number
of threads. Observe, however, that the overhead time per
thread is always below the overhead time measured on 16
threads. This means that Global-CM and the Hierarchical
Work Stealing method (HLB) are able to serve threads fast
and tolerate congestion efficiently on runtime.

6.3 Weak Scaling Results
In this section, we present the weak scaling performance

of PI2M on the CT abdominal atlas (http://www.ircad.fr/
softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip). Other in-
puts (the knee [48] and the brain atlas [55] for example)
exhibit similar results on comparable mesh sizes. We do not
report them here, because of space limitations.

We measure the number of tetrahedra created per second
across the runs. Specifically, let us define with Elements (n)
and Time (n), the number of elements created and the time
elapsed, when n threads are employed. Then, the speedup

is defined as Elements(n)×Time(n)
Time(n)×Elements(1)

. With n threads, a perfect

speedup would be equal to n [30].

We can directly control the size of the problem (i.e., the
number of generated tetrahedra) via the parameter δ (see
Section 3). This parameter sets an upper limit on the vol-
ume of the tetrahedra generated. With a simple volume

6

1 16 32 64 128 144 160 176
0

50

100

150

200

Number of cores

S
p
e
e
d
−

u
p

ideal

RWS

HWS

(a)

1 16 32 64 128 144 160 176
0

2

4

6

8

10

12
x 10

6

Number of cores

N
u

m
b

e
r

o
f
in

te
r−

b
la

d
e

 a
c
c
e

s
s
e

s

RWS

HWS

(b) (c)

Figure 3: Strong scaling performance achieved by the classic Random Work Stealing (RWS) and Hierarchical Work Stealing

(HWS). (a)-(b) Comparison between RWS and HWS on speed-up (
time1

time#Threads
) and on the number of inter-blade accesses.

(c) Breakdown of the overhead time for HWS.

Table 3: Weak scaling performance. Across runs, the number
of elements per thread remains approximately constant.

#Threads 1 32 64 128 144 160 176

#Elements 1.08E+07 3.49E+08 7.44E+08 1.32E+09 1.51E+09 1.67E+09 1.85E+09
Time (secs) 100.80 92.25 102.27 95.91 102.98 135.81 180.96
Elements
per second

1.07E+05 3.79E+06 7.28E+06 1.37E+07 1.47E+07 1.23E+07 1.02E+07

Speedup 1.00 35.41 68.05 128.34 137.24 115.06 95.71
Efficiency 1.000 1.107 1.063 1.003 0.953 0.719 0.544
Overhead
secs per
thread

0.00 2.28 3.74 4.62 4.66 6.85 8.54

Execution Time

C
u

m
u

la
ti
v
e

 o
v
e

rh
e

a
d

 b
y
 a

ll
th

re
a
d
s

d
u

ri
n

g
 e

x
e

c
u

ti
o

n

0 14 27 40 53 66 79 93 106 119 132 145 158 171
0

300

690
760

1000

1500 cumulative contention overhead by all threads

cumulative load balance overhead by all threads

cumulative rollback overhead by all threads

71.9%

efficiency ≈ 100% efficiency

94%

efficiency

Figure 4: Overhead time breakdown with respect to the wall
time for the experiment on 176 cores of Table 3. A pair (x, y)

tells us that up to the xth second of execution, threads have
not been doing useful work so far for y seconds all together.

argument, we can show that a decrease of δ by a factor of
x results in an x3 times increase of the mesh size, approxi-
mately.

See Table 3. The observed speedup is super-linear for up
to 128 threads. On 144 cores, we achieve an unprecedented
efficiency of 95%, and a rate of 14.7 Million Elements per
second. It is worth mentioning that CGAL [2], the fastest
sequential publicly available Isosurface-based mesh gener-
ation tool, on the same CT abdominal (http://www.ircad.
fr/softwares/3Dircadb/3Dircadb2/3Dircadb2.2.zip) image in-
put, is 81% slower than our single-threaded performance.
Indeed, CGAL took 548.21 seconds to generate a similarly-
sized mesh (1.00× 107 tetrahedra) with comparable quality
and fidelity to ours (see Section 7 for a more thorough com-
parison case study). Thus, compared to CGAL, the speedup
we achieve on 144 cores is 746.39.

Nevertheless, our performance deteriorates beyond this
core count. We claim that the main reason of this degrada-
tion is not the overhead cycles spent on rollbacks, contention
lists, and begging lists (see Section 5.4), but the congested
network responsible for the communication. Below, we sup-
port our claim.

First of all, notice that the total overhead time per thread
increases. Since this is a weak scaling case study, the best
that can happen is a constant number overhead seconds per
thread. But this is not happening. The reason is that in
the beginning of refinement, the mesh is practically empty:
only the six tetrahedra needed to fill the virtual box are
present (see Figure 1). Therefore, during the early stages
of refinement, the problem does not behave as a weak scal-
ing case study, but as a strong scaling one: more threads,
but in fact the same size, which renders our application a
very challenging problem. See Figure 4 for an illustration
of the 176-core experiment of Table 3. X-axis shows the
wall-time clock of the execution. The Y-axis shows the to-
tal number of seconds that threads have spent on useless
computation (i.e., rollback, contention, and load balance
overhead, see Section 5.4) so far, cumulatively. The more
straight the lines are, the more useful work the threads per-
form. Rapidly growing lines imply lack of parallelism and
intense contention. Observe that in the first 14 seconds of
refinement, there is high contention and severe load imbal-
ance. Nevertheless, even in this case, 176×14−690

176×14
≈ 71.9%

of the time, all 176 threads were doing useful work, i.e., the
threads were working on their full capacity.

However, this overhead time increase cannot explain the
performance deterioration. See for example the numbers on
176 threads. 176 threads run for 180.96s each, and, on the
average, they do useless work for 8.54s each. In other words,
if there were no rollbacks, no contention list overhead, and
no load balancing overhead, the execution time would have
to be 180.96s-8.54s =172.42s. 172.42s, however, is far from
the ideal 100.8s (that the first column with 1 thread shows)
by 172.42s-100.8=71.62s. Therefore, while rollbacks, con-
tention management, and load balancing introduce a merely
8.54s overhead, the real bottleneck is the 71.62s overhead
spent on memory (often remote) loads/stores. Neverthe-
less, we verified that the number of remote accesses, LLC,
and TLB misses remain constant per thread across runs,
which is the ideal scenario: our Hierarchical Load Balancer
(HLB) suppresses successfully excessive remote accesses thus
achieving better data locality. Since, however, the prob-
lem size increases linearly with respect to the number of
threads, either the communication traffic per network switch
increases across runs, or it goes through a higher number of
hops (each of which adds a 2,000 cycle latency penalty [1]),
or both. It seems that after 144 cores, this pressure on the
switches slows performance down. A hybrid approach [22]
able to scale for larger network hierarchies is left for future
work.

7

Table 4: The single-threaded performance of our algorithm.
It includes the extra overhead introduced by synchronization,
contention management, and load balancing to support the
(potential) presence of other threads.

PI2M CGAL
#tetrahedra / seconds 51,968 33,462

time 7.1 secs 11.0 secs
#tetrahedra 368,974 368,077

max radius-edge ratio 2 2
smallest boundary planar angle 30◦ 30◦

(min, max) dihedral angles (4.6◦, 170.2◦) (3.5◦, 174.7◦)
Hausdorff distance 10.7 mm 10.3 mm

(a) whole mesh (b) cross section
Figure 5: The 368,974 element mesh generated by PI2M
with input image the MRI knee atlas [48].

Hyper-threading suffers from the same memory congestion
with one exception: the slow-down happens in a lower core
count, a fact that needs further investigation. Nevertheless,
for low core counts, we obtain a considerable improvement:
on 64 cores (128 threads), the execution time is 70.8s, a 30%
time decrease compared to the 64 non hyper-threaded core
experiment of Table 3.

7 Single-threaded evaluation
In this section, we show that our single-threaded execution

time, although it introduces extra overhead due to locking,
synchronization, contention management bookkeeping (see
Section 5), and hierarchical load balance (see Section 6.1), it
is faster than and has similar quality to CGAL, the quickest
state-of-the-art Delaunay Isosurface-based mesh generator
we are aware of.

See Table 4. For this case study, we set the sizing parame-
ters of CGAL to values that produced meshes of similar size
with ours. Observe that the resulting meshes are of simi-
lar quality and that the single-threaded PI2M is 35% faster
than CGAL. Our timing includes the 1.2 seconds needed for
the computation of the Euclidean Distance Transform (see
Section 3).

The input image used in this study is the 48-tissue MRI
knee atlas freely available at [48]. Other input images yielded
the same results: PI2M generates meshes of similar quality
to CGAL’s and 35% faster. Figure 5 illustrates the mesh
generated by PI2M. We used CRTC (see Table 2 for its
specifications) for this case study.

8 Discussion, Conclusions, and Future Work
In this paper, we present PI2M: the first parallel Image-

to-Mesh (PI2M) Conversion Isosurface-based algorithm and
its implementation. Starting directly from a multi-label seg-
mented 3D image, it is able to recover and mesh both the iso-
surface ∂O with geometric and topological guarantees (see
Theorem 1) and the underlying volume O with quality ele-
ments.

This work is different from parallel Triangulators [8, 11, 12,

27], since parallel mesh generation and refinement focuses on
the quality of elements (tetrahedra and facets) and the con-
formal representation of the tissues’ boundaries/isosurfaces
by computing on demand the appropriate points for inser-
tion or deletion. Parallel Triangulators tessellate only the
convex hull of a set of points.

Our tighly-coupled method greatly reduces the number
of rollbacks and scales up to a much higher core count,
compared to the tighly-coupled method our group devel-
oped in the past [42]. The data decomposition method [20]
does not support Delaunay removals, a technique that it
is shown to be effective in the sequential mesh generation
literature [26, 28]. The extension of partially-coupled [18]
and decoupled [37] methods to 3D is a very difficult task,
since Delaunay-admissible 3D medial decomposition is an
unsolved problem. On the contrary, our method does not
rely on any domain decomposition, and could be extended
to arbitrary dimensions as well. Indeed, we plan to extend
PI2M to 4 dimensions and generate space-time elements
(needed for spatio-temporal simulations [9, 47]) in parallel,
thus, exploiting parallelism in the fourth dimension.

Our code is highly optimized through carefully designed
contention managers, and load balancers which take advan-
tage of NUMA architectures. Our Global Contention Man-
ager (Global-CM) provably eliminates deadlocks and live-
locks and, at the same time, reduces the number of roll-
backs by a factor of 17 compared to the standard Random
technique found in the literature. Global-CM also reduced
the number of wasted cycles by a factor of 4.8, improving
energy-efficiency by avoiding energy waste because of roll-
backs. Our Hierarchical Load Balancer (HLB) sped up the
execution by a factor of 1.44 on 176 cores, as a result of a
42% remote accesses reduction.

All in all, PI2M achieves a strong scaling efficiency of
more than 82% on 64 cores. It also achieves an excellent
weak scaling efficiency of more than 95% on up to 144 cores.
Other image inputs yielded very similar results. Because of
the limited space, we do not report them here. We are not
aware of any 3D parallel Delaunay mesh refinement algo-
rithm achieving such a performance.

It is worth noting that PI2M exhibits excellent single-
threaded performance. Despite the extra overhead asso-
ciated with synchronization, contention management, and
load balancing, PI2M generates meshes 35% faster than
CGAL and with similar quality.

Recall that in our method, threads spend time idling on
the contention and load balancing lists. And this is neces-
sary in our algorithm for correctness and performance ef-
ficiency. This fact offers great opportunities to control the
power consumption, or alternatively, to maximize the Elements

second×Watt
ratio. Since idling is not the time critical component in
our algorithm, the CPU frequency could be decreased dur-
ing such an idling. Nevertheless, the appropriate frequency
drop, the amount of idling, and performance is a trade-off,
and its investigation is left as future work.

As already explained, for core counts higher than 144,
weak scaling performance deteriorates because communica-
tion traffic (per switch) is more intense and passes through
a larger number of hops. In the future, we plan to increase
scalability by employing a hierarchically layered (distributed
and shared memory) implementation design [22] and com-
bine this tightly-coupled method with the decoupled and

8

partially coupled methods we developed in the past, explor-
ing in this way different levels of concurrency.

Acknowledgments
The authors are deeply grateful to PSC’s system group for

its priceless and prompt support. Special thanks to Dimitris
Nikolopoulos, Andrey Chernikov, and Andriy Kot, for their
instructive comments and insightful discussions. This work
is supported in part by NSF grants: CCF-1139864, CCF-
1136538, and CSI-1136536 and by the John Simon Guggen-
heim Foundation and the Richard T. Cheng Endowment.

9 References

[1] SGI UV 100/1000 system specifications.
http://www.sgi.com/products/servers/uv/specs.html,
2012. available online.

[2] Cgal, Computational Geometry Algorithms Library.
http://www.cgal.org, v4.0.

[3] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. In SCG ’98: Proceedings of the
fourteenth annual symposium on Computational
geometry, pages 39–48, New York, NY, USA, 1998.
ACM.

[4] N. Amenta, S. Choi, and R. K. Kolluri. The power
crust. In Proceedings of the sixth ACM symposium on
Solid modeling and applications, SMA ’01, pages
249–266, New York, NY, USA, 2001. ACM.

[5] C. Antonopoulos, X. Ding, A. Chernikov,
F. Blagojevic, D. Nikolopoulos, and N. Chrisochoides.
Multigrain parallel Delaunay mesh generation:
Challenges and opportunities for multithreaded
architectures. In ACM International Conference on
Supercomputing, number 19, pages 367–376, 2005.

[6] N. Archip, O. Clatz, A. Fedorov, A. Kot, S. Whalen,
D. Kacher, N. Chrisochoides, F. Jolesz, A. Golby,
P. Black, and S. K. Warfield. Non-rigid alignment of
preoperative MRI, fMRI, DT-MRI, with
intra-operative MRI for enchanced visualization and
navigation in image-guided neurosurgery. Neuroimage,
35(2):609–624, 2007.

[7] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
view of the parallel computing landscape. Commun.
ACM, 52:56–67, Oct. 2009.

[8] V. H. Batista, D. L. Millman, S. Pion, and J. Singler.
Parallel geometric algorithms for multi-core
computers. Computational Geometry, 43(8):663–677,
2010.

[9] M. Behr. Simplex space-time meshes in finite element
simulations. International Journal for Numerical
Methods in Fluids, 57:1421–1434, 2008.

[10] M. Ben-Ari. Principles of concurrent programming,
Chapter 3, pages 30-43. Prentice-Hall, Englewood
Cliffs, NJ, 1982.

[11] D. K. Blandford, G. E. Blelloch, and C. Kadow.
Engineering a compact parallel Delaunay algorithm in
3D. In Proceedings of the 22nd Symposium on
Computational Geometry, SCG ’06, pages 292–300,
New York, NY, USA, 2006. ACM.

[12] G. E. Blelloch, G. L. Miller, J. C. Hardwick, and
D. Talmor. Design and implementation of a practical

parallel Delaunay algorithm. Algorithmica,
24(3):243–269, 1999.

[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. In Proceedings
of the fifth ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’95,
pages 207–216, New York, NY, USA, 1995. ACM.

[14] J.-D. Boissonnat and S. Oudot. Provably good
sampling and meshing of surfaces. Graphical Models,
67(5):405–451, 2005.

[15] D. Boltcheva, M. Yvinec, and J.-D. Boissonnat. Mesh
Generation from 3D Multi-material Images. In Medical
Image Computing and Computer-Assisted
Intervention, pages 283–290. Springer, September
2009.

[16] A. Bowyer. Computing Dirichlet tesselations.
Computer Journal, 24:162–166, 1981.

[17] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac,
G. Stadler, T. Warburton, and L. Wilcox.
Extreme-scale amr. In Proceedings of the 2010
ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’10, pages 1–12, 2010.

[18] A. Chernikov and N. Chrisochoides. Algorithm 872:
Parallel 2D constrained Delaunay mesh generation.
ACM Transactions on Mathematical Software,
34:6–25, January 2008.

[19] A. Chernikov and N. Chrisochoides. Multitissue
tetrahedral image-to-mesh conversion with guaranteed
quality and fidelity. SIAM Journal on Scientific
Computing, 33:3491–3508, 2011.

[20] A. N. Chernikov and N. P. Chrisochoides.
Three-dimensional Delaunay refinement for multi-core
processors. In Proceedings of the 22nd annual
international Conference on Supercomputing, ICS ’08,
pages 214–224, New York, NY, USA, 2008. ACM.

[21] A. N. Chernikov and N. P. Chrisochoides. Generalized
insertion region guides for Delaunay mesh refinement.
SIAM Journal on Scientific Computing (SISC), 2011.
under revision.

[22] N. Chrisochoides, A. Chernikov, A. Fedorov, A. Kot,
L. Linardakis, and P. Foteinos. Towards exascale
parallel Delaunay mesh generation. In International
Meshing Roundtable, number 18, pages 319–336, Salt
Lake City, Utah, October 2009.

[23] H. L. D. Cougny and M. S. Shephard. Parallel
refinement and coarsening of tetrahedral meshes.
International Journal for Numerical Methods in
Engineering, 46(7):1101–1125, 1999.

[24] O. Devillers and M. Teillaud. Perturbations and
vertex removal in a 3D Delaunay triangulation. In
Proceedings of the 14th ACM-SIAM Symposium on
Discrete algorithms, SODA ’03, pages 313–319, 2003.

[25] T. K. Dey and W. Zhao. Approximate medial axis as
a voronoi subcomplex. Computer-Aided Design,
36(2):195–202, 2004.

[26] P. Foteinos, A. Chernikov, and N. Chrisochoides.
Guaranteed Quality Tetrahedral Delaunay Meshing
for Medical Images. In Proceedings of the 7th

International Symposium on Voronoi Diagrams in
Science and Engineering, pages 215–223, June 2010.

9

[27] P. Foteinos and N. Chrisochoides. Dynamic parallel
3D Delaunay triangulation. In International Meshing
Roundtable, pages 9–26, Paris, France, October 2011.

[28] P. Foteinos and N. Chrisochoides. High-quality
multi-tissue mesh generation for finite element
analysis. In MeshMed, Workshop on Mesh Processing
in Medical Image Analysis (MICCAI), pages 18–28,
September 2011.

[29] J. Galtier and P.-L. George. Prepartitioning as a way
to mesh subdomains in parallel. In Special Symposium
on Trends in Unstructured Mesh Generation, pages
107–122. ASME/ASCE/SES, 1997.

[30] J. L. Gustafson. Reevaluating Amdahl’s law.
Communications of the ACM, 31:532–533, 1988.

[31] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd
International Conference on Distributed Computing
Systems, ICDCS ’03, 2003.

[32] Y. Ito, A. Shih, A. Erukala, B. Soni, A. Chernikov,
N. Chrisochoides, and K. Nakahashi. Parallel mesh
generation using an advancing front method.
Mathematics and Computers in Simulation,
75:200–209, September 2007.

[33] C. M. J. Kadow. Parallel Delaunay Refinement Mesh
Generation. 2004. PhD Thesis, Carnegie Mellon
University.

[34] B. M. Klingner and J. R. Shewchuk. Aggressive
tetrahedral mesh improvement. In Proceedings of the
International Meshing Roundtable, pages 3–23.
Springer, 2007.

[35] M. Kulkarni, P. Carribault, K. Pingali,
G. Ramanarayanan, B. Walter, K. Bala, and L. P.
Chew. Scheduling strategies for optimistic parallel
execution of irregular programs. In Proc. Symp. on
Parallelism in algorithms and architectures (SPAA),
pages 217–228, New York, NY, USA, 2008.

[36] F. Labelle and J. R. Shewchuk. Isosurface stuffing:
fast tetrahedral meshes with good dihedral angles.
ACM Transactions on Graphics, 26(3):57, 2007.

[37] L. Linardakis and N. Chrisochoides. Graded Delaunay
decoupling method for parallel guaranteed quality
planar mesh generation. SIAM Journal on Scientific
Computing, 30(4):1875–1891, March 2008.

[38] Y. Liu, C. Yao, L. Zhou, and N. Chrisochoides. A
point based non-rigid registration for tumor resection
using imri. In IEEE International Symposium on
Biomedical Imaging: From Nano to Macro, pages
1217–1220, April 2010.

[39] R. Löhner. A 2nd generation parallel advancing front
grid generator. In X. Jiao and J.-C. Weill, editors,
Proceedings of the 21st International Meshing
Roundtable, pages 457–474, 2013.

[40] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm.
SIGGRAPH Computer Graphics, 21(4):163–169, 1987.

[41] G. L. Miller, D. Talmor, S.-H. Teng, and
N. Walkington. A Delaunay based numerical method
for three dimensions: generation, formulation, and
partition. In Proceedings of the 27th Annu. ACM
Sympos. Theory Comput, pages 683–692. ACM, 1995.

[42] D. Nave, N. Chrisochoides, and P. Chew. Parallel

Delaunay refinement for restricted polyhedral
domains. Computational Geometry: Theory and
Applications, 28:191–215, 2004.

[43] T. Okusanya and J. Peraire. 3D parallel unstructured
mesh generation, 1997. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.48.7898.

[44] L. Oliker and R. Biswas. Parallelization of a dynamic
unstructured algorithm using three leading
programming paradigms. IEEE Trans. Parallel
Distrib. Syst., 11(9):931–940, Sept. 2000.

[45] S. Oudot, L. Rineau, and M. Yvinec. Meshing volumes
bounded by smooth surfaces. In Proceedings of the
International Meshing Roundtable, pages 203–219.
Springer-Verlag, September 2005.

[46] J.-P. Pons, F. Ségonne, J.-D. Boissonnat, L. Rineau,
M. Yvinec, and R. Keriven. High-Quality Consistent
Meshing of Multi-label Datasets. In Information
Processing in Medical Imaging, pages 198–210, 2007.

[47] T. C. S. Rendall, C. B. Allen, and E. D. C. Power.
Conservative unsteady aerodynamic simulation of
arbitrary boundary motion using structured and
unstructured meshes in time. International Journal for
Numerical Methods in Fluids, 70(12):1518–1542, 2012.

[48] J. Richolt, M. Jakab, and R. Kikinis. SPL Knee Atlas.
January 2011. Available at: http:
//www.spl.harvard.edu/publications/item/view/1953.

[49] R. Said, N. Weatherill, K. Morgan, and N. Verhoeven.
Distributed parallel Delaunay mesh generation.
Computer Methods in Applied Mechanics and
Engineering, 177(1-2):109–125, 1999.

[50] W. N. Scherer, III and M. L. Scott. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the 24th

annual ACM symposium on Principles of distributed
computing, PODC ’05, pages 240–248. ACM, 2005.

[51] J. R. Shewchuk. Tetrahedral mesh generation by
Delaunay refinement. In Proceedings of the 14th ACM
Symposium on Computational Geometry, pages 86–95,
Minneapolis, MN, 1998.

[52] J. R. Shewchuk. Delaunay refinement algorithms for
triangular mesh generation. Computational Geometry:
Theory and Applications, 22(1-3):21–74, May 2002.

[53] H. Si. Constrained Delaunay tetrahedral mesh
generation and refinement. Finite Elements in
Analysis and Design, 46:33–46, 2010.

[54] R. Staubs, A. Fedorov, L. Linardakis, B. Dunton, and
N. Chrisochoides. Parallel n-dimensional exact signed
euclidean distance transform. September 2006.

[55] I. Talos, M. Jakab, R. Kikinis, and M. Shenton.
SPL-PNL Brain Atlas. March 2008.

[56] T. Tu, D. R. O. Hallaron, and O. Ghattas. Scalable
parallel octree meshing for terascale applications. In
Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, SC ’05, 2005.

[57] D. F. Watson. Computing the n-dimensional Delaunay
tesselation with application to Voronoi polytopes.
Computer Journal, 24:167–172, 1981.

[58] M. Zhou, O. Sahni, T. Xie, M. S. Shephard, and K. E.
Jansen. Unstructured mesh partition improvement for
implicit finite element at extreme scale. J.
Supercomput., 59(3):1218–1228, Mar. 2012.

10

